

CS150 APL: Abstract Interpretation

Guannan Wei

`guannan.wei@tufts.edu`

Nov 20, 2025

Tufts University

Today

Last time

- Abstract interpretation of conditionals and while loops
- Fixpoint iteration

Today

- More expressive abstract domains
- Widening
- Narrowing

Numeric abstract domains

- Signs
- Intervals
- ...

Interval

- Intervals $I = \{[l, u] \mid l, u \in \mathbb{R} \cup \{-\infty, +\infty\}\} \cup \{\perp\}$
- Example:
 - $[1, 5]$
 - $[-\infty, 3]$
 - $[4, +\infty]$

- Intervals $I = \{[l, u] \mid l, u \in \mathbb{R} \cup \{-\infty, +\infty\}\} \cup \{\perp\}$
- Example:
 - $[1, 5]$
 - $[-\infty, 3]$
 - $[4, +\infty]$
- Arithmetic operations:
 - Addition: $[l_1, u_1] + [l_2, u_2] = [l_1 + l_2, u_1 + u_2]$
 - Subtraction: $[l_1, u_1] - [l_2, u_2] = [l_1 - u_2, u_1 - l_2]$
 - Multiplication and division can be defined too, see Wikipedia “Interval arithmetic”.
- Examples:
 - $[1, 3] + [4, 5] = ?$
 - $[2, 6] - [1, 4] = ?$

Intervals as lattice

- Top element: $\top = [-\infty, +\infty]$
- Bottom element: \perp

Intervals as lattice

- Top element: $\top = [-\infty, +\infty]$
- Bottom element: \perp
- Partial order: $[l_1, u_1] \sqsubseteq [l_2, u_2]$ iff $l_2 \leq l_1$ and $u_1 \leq u_2$
 - Example: $[2, 4] \sqsubseteq [1, 5]$

Intervals as lattice

- Join:
 - $[l_1, u_1] \sqcup [l_2, u_2] = [\min(l_1, l_2), \max(u_1, u_2)]$
 - If one operand is \perp , return the other operand
 - Example: $[2, 4] \sqcup [3, 5] = [2, 5]$, $[2, 4] \sqcup [5, 6] = [2, 6]$

Intervals as lattice

- Join:
 - $[l_1, u_1] \sqcup [l_2, u_2] = [\min(l_1, l_2), \max(u_1, u_2)]$
 - If one operand is \perp , return the other operand
 - Example: $[2, 4] \sqcup [3, 5] = [2, 5]$, $[2, 4] \sqcup [5, 6] = [2, 6]$
- Meet:
 - $[l_1, u_1] \sqcap [l_2, u_2] = \perp$, if $\max(l_1, l_2) > \min(u_1, u_2)$
 - $[l_1, u_1] \sqcap [l_2, u_2] = [\max(l_1, l_2), \min(u_1, u_2)]$
 - If one operand is \perp , return \perp
 - Example: $[2, 4] \sqcap [3, 5] = [3, 4]$, $[2, 3] \sqcap [4, 5] = \perp$

Analyzing loops with intervals

Consider analyzing the following program:

```
x := 0;  
while (e) {  
    x := x + 1;  
}
```

What is the interval for x at the end of the program?

Analyzing loops with intervals

Consider analyzing the following program:

```
x := 0;  
while (e) {  
    x := x + 1;  
}
```

What is the interval for x at the end of the program?

- Initial state: $\{x \mapsto [0, 0]\}$
- After first iteration: $\{x \mapsto [0, 1]\}$
- After second iteration: $\{x \mapsto [0, 2]\}$
- ...

Why intervals may not converge

- Interval domain does not satisfy the **ascending chain condition** (ACC).
 - As a lattice, interval lattice has an infinite height.
 - $[0, 0] \sqsubseteq [0, 1] \sqsubseteq [0, 2] \sqsubseteq [0, 3] \sqsubseteq \dots$ (infinite steps until convergence) $\dots \sqsubseteq [0, +\infty]$
- ACC: there is no infinite strictly ascending chain of elements.
- Simply using Kleene's fixpoint iteration does not guarantee termination.

Widening

- Widening is a technique to enforce convergence in abstract interpretation.
- Widening operator $A \nabla B$ is an over-approximation of $A \sqcup B$
 - $A \sqcup B \sqsubseteq A \nabla B$

Widening

- Widening is a technique to enforce convergence in abstract interpretation.
- Widening operator $A \nabla B$ is an over-approximation of $A \sqcup B$
 - $A \sqcup B \sqsubseteq A \nabla B$
- Ensures convergence of ascending chains, and reaches the termination at post-fixed-points.
 - For ascending chain $d_0 \sqsubseteq d_1 \sqsubseteq d_2 \sqsubseteq \dots$, ascending chain $d_0^\nabla \sqsubseteq d_1^\nabla \sqsubseteq d_2^\nabla \dots$ converges in finite steps
 - where $d_0^\nabla = d_0$ and $d_{i+1}^\nabla = d_i^\nabla \nabla d_{i+1}$

Widening for intervals

- Widening operator for intervals:
 - $[l_1, u_1] \nabla \perp = [l_1, u_1]$
 - $\perp \nabla [l_2, u_2] = [l_2, u_2]$
 - $[l_1, u_1] \nabla [l_2, u_2] = [l, u]$, where
 - $l = \begin{cases} -\infty & \text{if } l_2 < l_1 \\ l_1 & \text{otherwise} \end{cases}$
 - $u = \begin{cases} +\infty & \text{if } u_1 < u_2 \\ u_2 & \text{otherwise} \end{cases}$

Widening for intervals

- Widening operator for intervals:
 - $[l_1, u_1] \nabla \perp = [l_1, u_1]$
 - $\perp \nabla [l_2, u_2] = [l_2, u_2]$
 - $[l_1, u_1] \nabla [l_2, u_2] = [l, u]$, where
 - $l = \begin{cases} -\infty & \text{if } l_2 < l_1 \\ l_1 & \text{otherwise} \end{cases}$
 - $u = \begin{cases} +\infty & \text{if } u_1 < u_2 \\ u_2 & \text{otherwise} \end{cases}$
- $[2, 3] \nabla [2, 5] = ?$
- $[2, 3] \nabla [1, 4] = ?$
- $[1, 4] \nabla [2, 3] = ?$

Widening for intervals

- Widening operator for intervals:
 - $[l_1, u_1] \nabla \perp = [l_1, u_1]$
 - $\perp \nabla [l_2, u_2] = [l_2, u_2]$
 - $[l_1, u_1] \nabla [l_2, u_2] = [l, u]$, where
 - $l = \begin{cases} -\infty & \text{if } l_2 < l_1 \\ l_1 & \text{otherwise} \end{cases}$
 - $u = \begin{cases} +\infty & \text{if } u_1 < u_2 \\ u_2 & \text{otherwise} \end{cases}$
- $[2, 3] \nabla [2, 5] = [2, +\infty]$
- $[2, 3] \nabla [1, 4] = [-\infty, +\infty]$
- $[1, 4] \nabla [2, 3] = [1, 4]$

Using widening in fixpoint iteration

Algorithmically:

```
def fix(f: D -> D, init: D) -> D:
    val next = f(init)
    if (next == init) next
    else fix(f, widen(init, next)) // before: fix(f, next)
```

Using widening in fixpoint iteration

Consider analyzing the following program:

```
x := 0;  
while (e) {  
    x := x + 1;  
}
```

Using widening in fixpoint iteration

Consider analyzing the following program:

```
x := 0;  
while (e) {  
    x := x + 1;  
}
```

- Converges at $[0, 0] \nabla [0, 1] = [0, +\infty]$

Narrowing

- Idea: after reaching a post-fixed-point using widening, we can use narrowing to refine the result.
- $[l, u] \Delta \perp = \perp$
- $\perp \Delta [l, u] = \perp$
- $[l_1, u_1] \Delta [l_2, u_2] = [l, u]$, where
 - $l = \begin{cases} l_2 & \text{if } l_1 = -\infty \\ l_1 & \text{otherwise} \end{cases}$
 - $u = \begin{cases} u_2 & \text{if } u_1 = +\infty \\ u_1 & \text{otherwise} \end{cases}$

Numeric abstract domains

- Non-relational domains (they do not capture relationships between variables)
 - Signs $\{+, -, 0, \top, \perp\}$
 - Intervals $[l, u]$

Numeric abstract domains

- Non-relational domains (they do not capture relationships between variables)
 - Signs $\{+, -, 0, \top, \perp\}$
 - Intervals $[l, u]$
- Relational domains
 - Polyhedra $c_1x_1 + c_2x_2 + \dots + c_nx_n \leq c$
 - Octagons $\pm x \pm y \leq c$
 - ...

Numeric abstract domains

- Non-relational domains (they do not capture relationships between variables)
 - Signs $\{+, -, 0, \top, \perp\}$
 - Intervals $[l, u]$
- Relational domains
 - Polyhedra $c_1x_1 + c_2x_2 + \dots + c_nx_n \leq c$
 - Octagons $\pm x \pm y \leq c$
 - ...
- Further reading:
 - Tutorial with Scala code:
<https://continuation.passing.style/blog/writing-abstract-interpreter-in-scala.html>
 - Introduction to Neural Network Verification, Aws Albarghouthi:
<https://arxiv.org/abs/2109.10317>