CS150 APL: Abstract Interpretation

Guannan Wei
guannan.wei@tufts.edu

Nov 20, 2025

Tufts University

Last time

= Abstract interpretation of conditionals and while loops
= Fixpoint iteration

Today

= More expressive abstract domains
= Widening
= Narrowing

Numeric abstract domains

= Signs
= |ntervals

» Intervals I = {[l,u] | l,u € RU{—o0,+o0}} U{L}
= Example:

= [L,5]

= [—00,3]

v [4, 4]

» Intervals I = {[l,u] | l,u € RU{—o0,+o0}} U{L}
= Example:

= [L,5]

= [—00,3]

v [4, 4]

= Arithmetic operations:

= Addition: [l;,uq] + [l5, ug] = [1; + Iy, u; + usy)

= Subtraction: [Iy,uy] — [l us] = [l; — g, uy — 5]

= Multiplication and division can be defined too, see Wikipedia “Interval arithmetic”.
= Examples:

» [1,3]+[4,5] =

» [2,6] —[1,4] =7

Intervals as lattice

= Top element: T = [—00, +00]

= Bottom element: L

Intervals as lattice

= Top element: T = [—00, +00]
= Bottom element: L

» Partial order: [ly,uy] C [ly,us] iff Iy <1y and uy < ugy
= Example: [2,4] C [1, 5]

Intervals as lattice

= Join:
" [llv ul] U [127 u2] = [min(llv l2)7 maX(ulv u2)]
= If one operand is L, return the other operand
= Example: [2,4]U[3,5] = [2,5], [2,4] U [5, 6] = [2, 6]

Intervals as lattice

= Join:
" [llv ul] U [127 u2] = [min(lh l2)7 maX(ulv u2)]
= If one operand is L, return the other operand
= Example: [2,4]U[3,5] = [2,5], [2,4] U [5, 6] = [2, 6]

= Meet:
v [l uq] M [lg, us] = L, if max(ly,ly) > min(ug,uy)
= [l ug] T [y, up] = [max(ly, ly), min(uy, uy)]
= If one operand is L, return L
» Example: [2,4] M [3,5] = [3,4], [2,3] N [4,5] = L

Analyzing loops with intervals

Consider analyzing the following program:

x := 0;
while (e) {

X :=x + 1;
}

What is the interval for x at the end of the program?

Analyzing loops with intervals

Consider analyzing the following program:

x := 0;
while (e) {

X :=x + 1;
}

What is the interval for x at the end of the program?

= Initial state: {z [0,0]}
= After first iteration: {x [0, 1]}
= After second iteration: {z — [0,2]}

Why intervals may not converge

= Interval domain does not satisfy the ascending chain condition (ACC).

= As a lattice, interval lattice has an infinite height.
= [0,0] C[0,1] C [0,2] C [0, 3] C ... (infinite steps until convergence) - C [0, +-00]

= ACC: there is no infinite strictly ascending chain of elements.

= Simply using Kleene's fixpoint iteration does not guarantee termination.

= Widening is a technique to enforce convergence in abstract interpretation.

= Widening operator AV B is an over-approximation of A LI B
= AUBC AVB

= Widening is a technique to enforce convergence in abstract interpretation.

= Widening operator AV B is an over-approximation of A LI B
= AUBC AVB

= Ensures convergence of ascending chains, and reaches the termination at
post-fixed-points.
= For ascending chain d, = d; C d, C ..., ascending chain dy = dY C dy ...
converges in finite steps
\ v _ v

Widening for intervals

= Widening operator for intervals:
" [11,U1]VJ— = [l1aU1]
" J-V[lmuz] = [12,u2]
" [llvul]v[l27u2] = [l7u]' where
—oo ifly <l
g otherwise
{+oo if uy <ug
n Y =

Uq otherwise

10

Widening for intervals

= Widening operator for intervals:
o [,]VL =[]
= LV, up] = [ly, uy]
v (1, u|V[ly, us] = [I,u], where
—oo ifly <y

n [=
g otherwise

{+oo if uy <ug
o=

Uq otherwise
. [2,3]V[2,5] =7
. [2,3]V[1,4] =7
. [1,4V[2,3] =7

w

10

Widening for intervals

= Widening operator for intervals:
o [l w] VL =i, u]
v LV[ly, up] = [ly, uy]
U [ll,ul]v[l2,UQ] = [l,u], Where
i) —Ee if lo <y
; I otherwise
{+oo if u; <y
U =
u, otherwise
- [2,3]V]2,5] = [2, +00)]
v [2,3]V]1,4] = [0, +00]
[1,4]

| |
'F‘
=
<
vl\D
0

I

11

Using widening in fixpoint iteration

Algorithmically:

def fix(f: D -> D, init: D) -> D:
val next f(init)
if (next == init) next

else fix(f, widen(init, next)) // before: fiz(f, next)

12

Using widening in fixpoint iteration

Consider analyzing the following program:

x := 0;
while (e) {

X :=x +1;
}

13

Using widening in fixpoint iteration

Consider analyzing the following program:

x := 0;
while (e) {

X :=x +1;
}

= Converges at [0,0]V[0, 1] = [0, +o0]

13

Narrowing

= Idea: after reaching a post-fixed-point using widening, we can use narrowing to
refine the result.

» [LulAl=1
» LA[Lul=1
v [, uq]Aly, uy] = [I, u], where
l, otherwise
Uy if u; = +00
u; otherwise

Y =

14

Numeric abstract domains

= Non-relational domains (they do not capture relationships between variables)
= Signs {+,—,0, T, L}
= Intervals [/, u]

il5

Numeric abstract domains

= Non-relational domains (they do not capture relationships between variables)
= Signs {+,—,0,T, L}
= Intervals [/, u]

= Relational domains
= Polyhedra c¢;zy + coxg + - +c,z,, < C
= Octagons +x +y < c¢

il5

Numeric abstract domains

= Non-relational domains (they do not capture relationships between variables)
= Signs {+,—,0,T, L}
= Intervals [/, u]

= Relational domains

= Polyhedra c¢;zy + coxg + - +c,z,, < C
= Octagons +x +y < c¢

= Further reading:

= Tutorial with Scala code:

https://continuation.passing.style/blog/writing-abstract-interpreter-in-scala.html
= Introduction to Neural Network Verification, Aws Albarghouthi:
https://arxiv.org/abs/2109.10317

il5

