
CS150 APL: Abstract Interpretation

Guannan Wei
guannan.wei@tufts.edu
Nov 20, 2025

Tufts University

1



Today

Last time

• Abstract interpretation of conditionals and while loops
• Fixpoint iteration

Today

• More expressive abstract domains
• Widening
• Narrowing

2



Numeric abstract domains

• Signs
• Intervals
• …

3



Interval

• Intervals 𝐼 = {[𝑙, 𝑢] ∣ 𝑙, 𝑢 ∈ ℝ ∪ {−∞,+∞}} ∪ {⊥}
• Example:

• [1, 5]
• [−∞, 3]
• [4, +∞]

• Arithmetic operations:
• Addition: [𝑙1, 𝑢1] + [𝑙2, 𝑢2] = [𝑙1 + 𝑙2, 𝑢1 + 𝑢2]
• Subtraction: [𝑙1, 𝑢1] − [𝑙2, 𝑢2] = [𝑙1 − 𝑢2, 𝑢1 − 𝑙2]
• Multiplication and division can be defined too, see Wikipedia “Interval arithmetic”.

• Examples:
• [1, 3] + [4, 5] = ?
• [2, 6] − [1, 4] = ?

4



Interval

• Intervals 𝐼 = {[𝑙, 𝑢] ∣ 𝑙, 𝑢 ∈ ℝ ∪ {−∞,+∞}} ∪ {⊥}
• Example:

• [1, 5]
• [−∞, 3]
• [4, +∞]

• Arithmetic operations:
• Addition: [𝑙1, 𝑢1] + [𝑙2, 𝑢2] = [𝑙1 + 𝑙2, 𝑢1 + 𝑢2]
• Subtraction: [𝑙1, 𝑢1] − [𝑙2, 𝑢2] = [𝑙1 − 𝑢2, 𝑢1 − 𝑙2]
• Multiplication and division can be defined too, see Wikipedia “Interval arithmetic”.

• Examples:
• [1, 3] + [4, 5] = ?
• [2, 6] − [1, 4] = ?

4



Intervals as lattice

• Top element: ⊤ = [−∞,+∞]

• Bottom element: ⊥

• Partial order: [𝑙1, 𝑢1] ⊑ [𝑙2, 𝑢2] iff 𝑙2 ≤ 𝑙1 and 𝑢1 ≤ 𝑢2
• Example: [2, 4] ⊑ [1, 5]

5



Intervals as lattice

• Top element: ⊤ = [−∞,+∞]

• Bottom element: ⊥

• Partial order: [𝑙1, 𝑢1] ⊑ [𝑙2, 𝑢2] iff 𝑙2 ≤ 𝑙1 and 𝑢1 ≤ 𝑢2
• Example: [2, 4] ⊑ [1, 5]

5



Intervals as lattice

• Join:
• [𝑙1, 𝑢1] ⊔ [𝑙2, 𝑢2] = [min(𝑙1, 𝑙2),max(𝑢1, 𝑢2)]
• If one operand is ⊥, return the other operand
• Example: [2, 4] ⊔ [3, 5] = [2, 5], [2, 4] ⊔ [5, 6] = [2, 6]

• Meet:
• [𝑙1, 𝑢1] ⊓ [𝑙2, 𝑢2] = ⊥, if max(𝑙1, 𝑙2) > min(𝑢1, 𝑢2)
• [𝑙1, 𝑢1] ⊓ [𝑙2, 𝑢2] = [max(𝑙1, 𝑙2),min(𝑢1, 𝑢2)]
• If one operand is ⊥, return ⊥
• Example: [2, 4] ⊓ [3, 5] = [3, 4], [2, 3] ⊓ [4, 5] = ⊥

6



Intervals as lattice

• Join:
• [𝑙1, 𝑢1] ⊔ [𝑙2, 𝑢2] = [min(𝑙1, 𝑙2),max(𝑢1, 𝑢2)]
• If one operand is ⊥, return the other operand
• Example: [2, 4] ⊔ [3, 5] = [2, 5], [2, 4] ⊔ [5, 6] = [2, 6]

• Meet:
• [𝑙1, 𝑢1] ⊓ [𝑙2, 𝑢2] = ⊥, if max(𝑙1, 𝑙2) > min(𝑢1, 𝑢2)
• [𝑙1, 𝑢1] ⊓ [𝑙2, 𝑢2] = [max(𝑙1, 𝑙2),min(𝑢1, 𝑢2)]
• If one operand is ⊥, return ⊥
• Example: [2, 4] ⊓ [3, 5] = [3, 4], [2, 3] ⊓ [4, 5] = ⊥

6



Analyzing loops with intervals

Consider analyzing the following program:

x := 0;
while (e) {

x := x + 1;
}

What is the interval for x at the end of the program?

• Initial state: {𝑥 ↦ [0, 0]}
• After first iteration: {𝑥 ↦ [0, 1]}
• After second iteration: {𝑥 ↦ [0, 2]}
• …

7



Analyzing loops with intervals

Consider analyzing the following program:

x := 0;
while (e) {

x := x + 1;
}

What is the interval for x at the end of the program?

• Initial state: {𝑥 ↦ [0, 0]}
• After first iteration: {𝑥 ↦ [0, 1]}
• After second iteration: {𝑥 ↦ [0, 2]}
• …

7



Why intervals may not converge

• Interval domain does not satisfy the ascending chain condition (ACC).

• As a lattice, interval lattice has an infinite height.
• [0, 0] ⊑ [0, 1] ⊑ [0, 2] ⊑ [0, 3] ⊑ … (infinite steps until convergence)⋯ ⊑ [0,+∞]

• ACC: there is no infinite strictly ascending chain of elements.

• Simply using Kleene’s fixpoint iteration does not guarantee termination.

8



Widening

• Widening is a technique to enforce convergence in abstract interpretation.
• Widening operator 𝐴∇𝐵 is an over-approximation of 𝐴 ⊔ 𝐵

• 𝐴 ⊔ 𝐵 ⊑ 𝐴∇𝐵

• Ensures convergence of ascending chains, and reaches the termination at
post-fixed-points.

• For ascending chain 𝑑0 ⊑ 𝑑1 ⊑ 𝑑2 ⊑ …, ascending chain 𝑑∇
0 ⊑ 𝑑∇

1 ⊑ 𝑑∇
2 …

converges in finite steps
• where 𝑑∇

0 = 𝑑0 and 𝑑∇
𝑖+1 = 𝑑∇

𝑖 ∇𝑑𝑖+1

9



Widening

• Widening is a technique to enforce convergence in abstract interpretation.
• Widening operator 𝐴∇𝐵 is an over-approximation of 𝐴 ⊔ 𝐵

• 𝐴 ⊔ 𝐵 ⊑ 𝐴∇𝐵

• Ensures convergence of ascending chains, and reaches the termination at
post-fixed-points.

• For ascending chain 𝑑0 ⊑ 𝑑1 ⊑ 𝑑2 ⊑ …, ascending chain 𝑑∇
0 ⊑ 𝑑∇

1 ⊑ 𝑑∇
2 …

converges in finite steps
• where 𝑑∇

0 = 𝑑0 and 𝑑∇
𝑖+1 = 𝑑∇

𝑖 ∇𝑑𝑖+1

9



Widening for intervals

• Widening operator for intervals:
• [𝑙1, 𝑢1]∇⊥ = [𝑙1, 𝑢1]
• ⊥∇[𝑙2, 𝑢2] = [𝑙2, 𝑢2]
• [𝑙1, 𝑢1]∇[𝑙2, 𝑢2] = [𝑙, 𝑢], where

• 𝑙 = {−∞ if 𝑙2 < 𝑙1
𝑙1 otherwise

• 𝑢 = {+∞ if 𝑢1 < 𝑢2

𝑢1 otherwise

• [2, 3]∇[2, 5] = ?
• [2, 3]∇[1, 4] = ?
• [1, 4]∇[2, 3] = ?

10



Widening for intervals

• Widening operator for intervals:
• [𝑙1, 𝑢1]∇⊥ = [𝑙1, 𝑢1]
• ⊥∇[𝑙2, 𝑢2] = [𝑙2, 𝑢2]
• [𝑙1, 𝑢1]∇[𝑙2, 𝑢2] = [𝑙, 𝑢], where

• 𝑙 = {−∞ if 𝑙2 < 𝑙1
𝑙1 otherwise

• 𝑢 = {+∞ if 𝑢1 < 𝑢2

𝑢1 otherwise

• [2, 3]∇[2, 5] = ?
• [2, 3]∇[1, 4] = ?
• [1, 4]∇[2, 3] = ?

10



Widening for intervals

• Widening operator for intervals:
• [𝑙1, 𝑢1]∇⊥ = [𝑙1, 𝑢1]
• ⊥∇[𝑙2, 𝑢2] = [𝑙2, 𝑢2]
• [𝑙1, 𝑢1]∇[𝑙2, 𝑢2] = [𝑙, 𝑢], where

• 𝑙 = {−∞ if 𝑙2 < 𝑙1
𝑙1 otherwise

• 𝑢 = {+∞ if 𝑢1 < 𝑢2

𝑢1 otherwise
• [2, 3]∇[2, 5] = [2,+∞]
• [2, 3]∇[1, 4] = [−∞,+∞]
• [1, 4]∇[2, 3] = [1, 4]

11



Using widening in fixpoint iteration

Algorithmically:

def fix(f: D -> D, init: D) -> D:
val next = f(init)
if (next == init) next
else fix(f, widen(init, next)) // before: fix(f, next)

12



Using widening in fixpoint iteration

Consider analyzing the following program:

x := 0;
while (e) {

x := x + 1;
}

• Converges at [0, 0]∇[0, 1] = [0,+∞]

13



Using widening in fixpoint iteration

Consider analyzing the following program:

x := 0;
while (e) {

x := x + 1;
}

• Converges at [0, 0]∇[0, 1] = [0,+∞]

13



Narrowing

• Idea: after reaching a post-fixed-point using widening, we can use narrowing to
refine the result.

• [𝑙, 𝑢]Δ⊥ = ⊥

• ⊥Δ[𝑙, 𝑢] = ⊥

• [𝑙1, 𝑢1]Δ[𝑙2, 𝑢2] = [𝑙, 𝑢], where

• 𝑙 = {𝑙2 if 𝑙1 = −∞
𝑙1 otherwise

• 𝑢 = {𝑢2 if 𝑢1 = +∞
𝑢1 otherwise

14



Numeric abstract domains

• Non-relational domains (they do not capture relationships between variables)
• Signs {+,−, 0,⊤,⊥}
• Intervals [𝑙, 𝑢]

• Relational domains
• Polyhedra 𝑐1𝑥1 + 𝑐2𝑥2 +⋯+ 𝑐𝑛𝑥𝑛 ≤ 𝑐
• Octagons ±𝑥 ± 𝑦 ≤ 𝑐
• …

• Further reading:
• Tutorial with Scala code:

https://continuation.passing.style/blog/writing-abstract-interpreter-in-scala.html
• Introduction to Neural Network Verification, Aws Albarghouthi:

https://arxiv.org/abs/2109.10317

15



Numeric abstract domains

• Non-relational domains (they do not capture relationships between variables)
• Signs {+,−, 0,⊤,⊥}
• Intervals [𝑙, 𝑢]

• Relational domains
• Polyhedra 𝑐1𝑥1 + 𝑐2𝑥2 +⋯+ 𝑐𝑛𝑥𝑛 ≤ 𝑐
• Octagons ±𝑥 ± 𝑦 ≤ 𝑐
• …

• Further reading:
• Tutorial with Scala code:

https://continuation.passing.style/blog/writing-abstract-interpreter-in-scala.html
• Introduction to Neural Network Verification, Aws Albarghouthi:

https://arxiv.org/abs/2109.10317

15



Numeric abstract domains

• Non-relational domains (they do not capture relationships between variables)
• Signs {+,−, 0,⊤,⊥}
• Intervals [𝑙, 𝑢]

• Relational domains
• Polyhedra 𝑐1𝑥1 + 𝑐2𝑥2 +⋯+ 𝑐𝑛𝑥𝑛 ≤ 𝑐
• Octagons ±𝑥 ± 𝑦 ≤ 𝑐
• …

• Further reading:
• Tutorial with Scala code:

https://continuation.passing.style/blog/writing-abstract-interpreter-in-scala.html
• Introduction to Neural Network Verification, Aws Albarghouthi:

https://arxiv.org/abs/2109.10317

15


