CS150 APL: Abstract Interpretation

Guannan Wei
guannan.wei@tufts.edu

Nov 18, 2025

Tufts University

= Abstract interpretation

= Lattice and abstract domains

= Soundness condition: galois connection

= Analyzing expressions and sequential control-flow with sign domains

= Conditional
= Loops
= Fixpoints

Syntax
e = n|x|ete,|e —ey|e/es| input() (expressions)
s == x < el|skip| sy;$, | 1f0 e then s; else s, | while (e) s (statements)

= Analysis: range of numeric variables

Abstract domain

« (D,C,U,Mn,L,T)
= C: D x D — B: partial order
= U: D x D — D: least upper bound (join)
= M:D x D — D: greatest lower bound (meet)
= | € D: least element
= T € D: greatest element
= Galois connection
= «:Z — D: abstraction function
= ~:D — P(Z): concretization function

Abstract semantics

= Expression and statement semantics take a Store = Var — D

[e] : Store — D

[n]Jo = a(n)

[l6 =b)
le; +es]Jo = [ei]o + [e;]o
le; —es]o = [ei]o f [e;]o

[eir/es]o =leq]a / [eslo
[input()Je = Tp

Abstract semantics: Statements

= Statement semantics

[s] : Store — Store
[x < e]o = alz > [e]o]
[skiplo =

o
[s158200 = [52]([51]0)
[if0 e then s, else syJ0 =7

~

Abstract semantics: Conditionals

= Need to cover both branches

[s] :Store — Store

[x + e]o = oz [e]o]
[skip]o =o
[s158000 = [so]([s1]0)
[if0 e then sy else sy]0 = [s1]o U [sy]o

Abstract semantics: Conditionals

= Need to cover both branches

[s]
[x < e]o
[skip]o

[s1; 8500
if0 e then s, else s,|0
1 2

= Have we defined LI for two abstract stores?

: Store — Store
= o[z > [e]o]

= [so]([s1]0)

= [s1Jo U [s.lo

Detour: Point-wise lattice operations

= Given a lattice (D,Cp,Up,Mp, Lp, Tp) and a set X

» X — D forms a lattice (X — D,C, 1, MM, L, T) where
= f1 T fyiff Vo € X.fi(z) Cp fola)
= (fiUfo) =Az.fi(z) Up fo(@), fn(z) = Lp if x ¢ dom(f,)
= (/1N fy) = Az f1(@) Np fo(@), fr(z) =Tp if x ¢ dom(f,,)
s Ll=)z.lp
s T=MX2.Tp

Abstract semantics: Conditionals

= Need to cover both branches

[s] : Store — Store
[x < e]o = alz > [e]o]
[skip]o 0

[s1550]0 = [s5]([s1]0)
[if0 e then s, else sy = [sy]o U [ss]o

= Example: if0 e then { x <- -5, y <~ 3 } else { x <- 7 }
U’:hn = {IL‘ = neg,y — pOS}, U;|S = {(B = pOS}

10

Abstract semantics: Conditionals

= Need to cover both branches

[s] : Store — Store
[x < e]o = alz > [e]o]
[skip]o 0

[s1550]0 = [s5]([s1]0)
[if0 e then s, else sy = [sy]o U [ss]o

= Example: if0 e then { x <- -5, y <~ 3 } else { x <- 7 }
U’:hn = {IL‘ = neg,y — pOS}, U;|S = {(B = pOS}

= Can we do better?

10

Abstract semantics: Conditionals

= Need to cover both branches

= Examine the condition if it can only be 0
= Generic way using 7y but not always computable
= Could use domain-specific knowledge

[s]
[x < €]o
[skip]o

[s1;85]0

[if0 e then s; else s,]0

: Store — Store

olx — [e]o]

~

[s2]([s1]0)
[silo
[so]o

[s:]o U [s2]o

if v([e]o) = {0}
if 0 ¢ y([e]o)

otherwise

11

While loops

= What about while loops?

[s] : Store — Store
[x < e]o = o)z [e]o]

[skip]Jo =0
[s1550]0 = [s5]([s1]0)
[if0 e then s, else sy = [sy]o U [ss]o

[while (e) sjlo =7

12

While loops

= What about while loops?

[s] : Store — Store

[x < e]o = o)z [e]o]
[skip]Jo =0
[s1550]0 = [s5]([s1]0)
[if0 e then s; else sy]0 = [sy]o U [ss]o

[while (e) sjlo =7
Intuitively:

[while (e) sJo = [if0 e then (s;while (e) s) else skip]o

12

While loops

Intuitively:

[while (e) s]o

[if0 e then (s;while (e) s) else skip]o
[s;while (e) s]o U [skip]o

[while (e) s]([s]o) U [skip]o

[if0 e then (s;while (e) s) else skip]([s]o) U
([s;while (e) s][s]o U [skip]([s]o)) Lo
(Iwhile (e) s]([s]([slo)) U ([s]o)) U

i3

While loops

[while (e) s]jo = fix (F')(0) where F(c") = [s]o’

= Given a monotonic function F': D — D, x € D is a fixpoint of F' if F(z) =«

» fix (F') : D — D finds a fixpoint of F'

14

While loops

[while (e) s]jo = fix (F')(0) where F(c") = [s]o’

= Given a monotonic function F': D — D, x € D is a fixpoint of F' if F(z) =«
» fix (F') : D — D finds a fixpoint of F'
Algorithmically:

def fix(f: D -> D, init: D) -> D:
val next = f(init)
if (next == init) next

else fix(f, next)

14

Kleene’s fixpoint theorem

[while (e) sJo = fix (F')(o) where F(c") = [s]o’

Does it always terminate?

il5

Kleene’s fixpoint theorem

[while (e) sJo = fix (F')(o) where F(c") = [s]o’

Does it always terminate?

= If D is a complete lattice and F': D — D is Scott-continous (implying
monotonic), then F' has a least fixpoint
s fix F =[], F'(L) = {1, F(L), F(F(L)), F(F(F(L1))), .}
» Scott-continuous: F(| |C) =| {F(c)|ce C}

il5

= More expressive abstract domains
= Widening for termination

16

