
CS150 APL: Abstract Interpretation

Guannan Wei
guannan.wei@tufts.edu
Nov 18, 2025

Tufts University

1



Last time

• Abstract interpretation
• Lattice and abstract domains
• Soundness condition: galois connection
• Analyzing expressions and sequential control-flow with sign domains

2



Today

• Conditional
• Loops
• Fixpoints

3



Syntax

Syntax

𝑒 ∶∶= 𝑛 ∣ 𝑥 ∣ 𝑒1 + 𝑒2 ∣ 𝑒1 − 𝑒2 ∣ 𝑒1/𝑒2 ∣ input() (expressions)
𝑠 ∶∶= 𝑥 ← 𝑒 ∣ skip ∣ 𝑠1; 𝑠2 ∣ if0 𝑒 then 𝑠1 else 𝑠2 ∣ while (𝑒) 𝑠 (statements)

• Analysis: range of numeric variables

4



Abstract domain

• ⟨𝐷,⊑, ⊔, ⊓,⊥,⊤⟩
• ⊑∶ 𝐷 ×𝐷 → 𝔹: partial order
• ⊔ ∶ 𝐷 ×𝐷 → 𝐷: least upper bound (join)
• ⊓ ∶ 𝐷 ×𝐷 → 𝐷: greatest lower bound (meet)
• ⊥ ∈ 𝐷: least element
• ⊤ ∈ 𝐷: greatest element

• Galois connection
• 𝛼 ∶ ℤ → 𝐷: abstraction function
• 𝛾 ∶ 𝐷 → P(ℤ): concretization function

5



Abstract semantics

• Expression and statement semantics take a 𝑆𝑡𝑜𝑟𝑒 = 𝑉 𝑎𝑟 → 𝐷

J𝑒K ∶ 𝑆𝑡𝑜𝑟𝑒 → 𝐷J𝑛K𝜎̂ = 𝛼(𝑛)J𝑥K𝜎̂ = 𝜎̂(𝑥)J𝑒1 + 𝑒2K𝜎̂ = J𝑒1K𝜎̂ +̂ J𝑒2K𝜎̂J𝑒1 − 𝑒2K𝜎̂ = J𝑒1K𝜎̂ −̂ J𝑒2K𝜎̂J𝑒1/𝑒2K𝜎̂ = J𝑒1K𝜎̂ ̂/ J𝑒2K𝜎̂Jinput()K𝜎̂ = ⊤𝐷

6



Abstract semantics: Statements

• Statement semantics

J𝑠K ∶ 𝑆𝑡𝑜𝑟𝑒 → 𝑆𝑡𝑜𝑟𝑒J𝑥 ← 𝑒K𝜎̂ = 𝜎̂[𝑥 ↦ J𝑒K𝜎̂]JskipK𝜎̂ = 𝜎̂J𝑠1; 𝑠2K𝜎̂ = J𝑠2K(J𝑠1K𝜎̂)Jif0 𝑒 then 𝑠1 else 𝑠2K𝜎̂ = ?

7



Abstract semantics: Conditionals

• Need to cover both branches

J𝑠K ∶ 𝑆𝑡𝑜𝑟𝑒 → 𝑆𝑡𝑜𝑟𝑒J𝑥 ← 𝑒K𝜎̂ = 𝜎̂[𝑥 ↦ J𝑒K𝜎̂]JskipK𝜎̂ = 𝜎̂J𝑠1; 𝑠2K𝜎̂ = J𝑠2K(J𝑠1K𝜎̂)Jif0 𝑒 then 𝑠1 else 𝑠2K𝜎̂ = J𝑠1K𝜎̂ ⊔ J𝑠2K𝜎̂

• Have we defined ⊔ for two abstract stores?

8



Abstract semantics: Conditionals

• Need to cover both branches

J𝑠K ∶ 𝑆𝑡𝑜𝑟𝑒 → 𝑆𝑡𝑜𝑟𝑒J𝑥 ← 𝑒K𝜎̂ = 𝜎̂[𝑥 ↦ J𝑒K𝜎̂]JskipK𝜎̂ = 𝜎̂J𝑠1; 𝑠2K𝜎̂ = J𝑠2K(J𝑠1K𝜎̂)Jif0 𝑒 then 𝑠1 else 𝑠2K𝜎̂ = J𝑠1K𝜎̂ ⊔ J𝑠2K𝜎̂
• Have we defined ⊔ for two abstract stores?

8



Detour: Point-wise lattice operations

• Given a lattice ⟨𝐷,⊑𝐷, ⊔𝐷, ⊓𝐷, ⊥𝐷, ⊤𝐷⟩ and a set 𝑋
• 𝑋 → 𝐷 forms a lattice ⟨𝑋 → 𝐷,⊑,⊔, ⊓,⊥,⊤⟩ where

• 𝑓1 ⊑ 𝑓2 iff ∀𝑥 ∈ 𝑋.𝑓1(𝑥) ⊑𝐷 𝑓2(𝑥)
• (𝑓1 ⊔ 𝑓2) = 𝜆𝑥.𝑓1(𝑥) ⊔𝐷 𝑓2(𝑥), 𝑓𝑛(𝑥) = ⊥𝐷 if 𝑥 ∉ dom(𝑓𝑛)
• (𝑓1 ⊓ 𝑓2) = 𝜆𝑥.𝑓1(𝑥) ⊓𝐷 𝑓2(𝑥), 𝑓𝑛(𝑥) = ⊤𝐷 if 𝑥 ∉ dom(𝑓𝑛)
• ⊥ = 𝜆𝑥.⊥𝐷
• ⊤ = 𝜆𝑥.⊤𝐷

9



Abstract semantics: Conditionals

• Need to cover both branches

J𝑠K ∶ 𝑆𝑡𝑜𝑟𝑒 → 𝑆𝑡𝑜𝑟𝑒J𝑥 ← 𝑒K𝜎̂ = 𝜎̂[𝑥 ↦ J𝑒K𝜎̂]JskipK𝜎̂ = 𝜎̂J𝑠1; 𝑠2K𝜎̂ = J𝑠2K(J𝑠1K𝜎̂)Jif0 𝑒 then 𝑠1 else 𝑠2K𝜎̂ = J𝑠1K𝜎̂ ⊔ J𝑠2K𝜎̂
• Example: if0 e then { x <- -5, y <- 3 } else { x <- 7 }

̂𝜎thn = {𝑥 ↦ neg, 𝑦 ↦ pos}, ̂𝜎els = {𝑥 ↦ pos}

• Can we do better?

10



Abstract semantics: Conditionals

• Need to cover both branches

J𝑠K ∶ 𝑆𝑡𝑜𝑟𝑒 → 𝑆𝑡𝑜𝑟𝑒J𝑥 ← 𝑒K𝜎̂ = 𝜎̂[𝑥 ↦ J𝑒K𝜎̂]JskipK𝜎̂ = 𝜎̂J𝑠1; 𝑠2K𝜎̂ = J𝑠2K(J𝑠1K𝜎̂)Jif0 𝑒 then 𝑠1 else 𝑠2K𝜎̂ = J𝑠1K𝜎̂ ⊔ J𝑠2K𝜎̂
• Example: if0 e then { x <- -5, y <- 3 } else { x <- 7 }

̂𝜎thn = {𝑥 ↦ neg, 𝑦 ↦ pos}, ̂𝜎els = {𝑥 ↦ pos}

• Can we do better?
10



Abstract semantics: Conditionals

• Need to cover both branches
• Examine the condition if it can only be 0

• Generic way using 𝛾 but not always computable
• Could use domain-specific knowledge

J𝑠K ∶ 𝑆𝑡𝑜𝑟𝑒 → 𝑆𝑡𝑜𝑟𝑒J𝑥 ← 𝑒K𝜎̂ = 𝜎̂[𝑥 ↦ J𝑒K𝜎̂]JskipK𝜎̂ = 𝜎̂J𝑠1; 𝑠2K𝜎̂ = J𝑠2K(J𝑠1K𝜎̂)
Jif0 𝑒 then 𝑠1 else 𝑠2K𝜎̂ =

⎧{{
⎨{{⎩

J𝑠1K𝜎̂ if 𝛾(J𝑒K𝜎̂) = {0}J𝑠2K𝜎̂ if 0 ∉ 𝛾(J𝑒K𝜎̂)J𝑠1K𝜎̂ ⊔ J𝑠2K𝜎̂ otherwise
11



While loops

• What about while loops?

J𝑠K ∶ 𝑆𝑡𝑜𝑟𝑒 → 𝑆𝑡𝑜𝑟𝑒J𝑥 ← 𝑒K𝜎̂ = 𝜎̂[𝑥 ↦ J𝑒K𝜎̂]JskipK𝜎̂ = 𝜎̂J𝑠1; 𝑠2K𝜎̂ = J𝑠2K(J𝑠1K𝜎̂)Jif0 𝑒 then 𝑠1 else 𝑠2K𝜎̂ = J𝑠1K𝜎̂ ⊔ J𝑠2K𝜎̂Jwhile (𝑒) 𝑠K𝜎̂ = ?

Intuitively:

Jwhile (𝑒) 𝑠K𝜎̂ = Jif0 𝑒 then (𝑠; while (𝑒) 𝑠) else skipK𝜎̂

12



While loops

• What about while loops?

J𝑠K ∶ 𝑆𝑡𝑜𝑟𝑒 → 𝑆𝑡𝑜𝑟𝑒J𝑥 ← 𝑒K𝜎̂ = 𝜎̂[𝑥 ↦ J𝑒K𝜎̂]JskipK𝜎̂ = 𝜎̂J𝑠1; 𝑠2K𝜎̂ = J𝑠2K(J𝑠1K𝜎̂)Jif0 𝑒 then 𝑠1 else 𝑠2K𝜎̂ = J𝑠1K𝜎̂ ⊔ J𝑠2K𝜎̂Jwhile (𝑒) 𝑠K𝜎̂ = ?

Intuitively:

Jwhile (𝑒) 𝑠K𝜎̂ = Jif0 𝑒 then (𝑠; while (𝑒) 𝑠) else skipK𝜎̂
12



While loops

Intuitively:

Jwhile (𝑒) 𝑠K𝜎̂ = Jif0 𝑒 then (𝑠; while (𝑒) 𝑠) else skipK𝜎̂
= J𝑠; while (𝑒) 𝑠K𝜎̂ ⊔ JskipK𝜎̂
= Jwhile (𝑒) 𝑠K(J𝑠K𝜎̂) ⊔ JskipK𝜎̂
= Jif0 𝑒 then (𝑠; while (𝑒) 𝑠) else skipK(J𝑠K𝜎̂) ⊔ 𝜎̂
= (J𝑠; while (𝑒) 𝑠KJ𝑠K𝜎̂ ⊔ JskipK(J𝑠K𝜎̂)) ⊔ 𝜎̂
= (Jwhile (𝑒) 𝑠K(J𝑠K(J𝑠K𝜎̂)) ⊔ (J𝑠K𝜎̂)) ⊔ 𝜎̂
= …

13



While loops

Jwhile (𝑒) 𝑠K𝜎̂ = fix (𝐹)(𝜎̂) where 𝐹(𝜎̂′) = J𝑠K𝜎̂′

• Given a monotonic function 𝐹 ∶ 𝐷 → 𝐷, 𝑥 ∈ 𝐷 is a fixpoint of 𝐹 if 𝐹(𝑥) = 𝑥

• fix (𝐹) ∶ 𝐷 → 𝐷 finds a fixpoint of 𝐹

Algorithmically:

def fix(f: D -> D, init: D) -> D:
val next = f(init)
if (next == init) next
else fix(f, next)

14



While loops

Jwhile (𝑒) 𝑠K𝜎̂ = fix (𝐹)(𝜎̂) where 𝐹(𝜎̂′) = J𝑠K𝜎̂′

• Given a monotonic function 𝐹 ∶ 𝐷 → 𝐷, 𝑥 ∈ 𝐷 is a fixpoint of 𝐹 if 𝐹(𝑥) = 𝑥

• fix (𝐹) ∶ 𝐷 → 𝐷 finds a fixpoint of 𝐹

Algorithmically:

def fix(f: D -> D, init: D) -> D:
val next = f(init)
if (next == init) next
else fix(f, next)

14



Kleene’s fixpoint theorem

Jwhile (𝑒) 𝑠K𝜎̂ = fix (𝐹)(𝜎̂) where 𝐹(𝜎̂′) = J𝑠K𝜎̂′

Does it always terminate?

• If 𝐷 is a complete lattice and 𝐹 ∶ 𝐷 → 𝐷 is Scott-continous (implying
monotonic), then 𝐹 has a least fixpoint

• fix 𝐹 = ⨆𝑖≥0 𝐹 𝑖(⊥) = ⨆{⊥,𝐹(⊥), 𝐹(𝐹(⊥)), 𝐹 (𝐹(𝐹(⊥))),…}
• Scott-continuous: 𝐹(⨆𝐶) = ⨆{𝐹(𝑐) ∣ 𝑐 ∈ 𝐶}

15



Kleene’s fixpoint theorem

Jwhile (𝑒) 𝑠K𝜎̂ = fix (𝐹)(𝜎̂) where 𝐹(𝜎̂′) = J𝑠K𝜎̂′

Does it always terminate?

• If 𝐷 is a complete lattice and 𝐹 ∶ 𝐷 → 𝐷 is Scott-continous (implying
monotonic), then 𝐹 has a least fixpoint

• fix 𝐹 = ⨆𝑖≥0 𝐹 𝑖(⊥) = ⨆{⊥,𝐹(⊥), 𝐹(𝐹(⊥)), 𝐹 (𝐹(𝐹(⊥))),…}
• Scott-continuous: 𝐹(⨆𝐶) = ⨆{𝐹(𝑐) ∣ 𝑐 ∈ 𝐶}

15



Next time

• More expressive abstract domains
• Widening for termination

16


