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Ensuring Correctness of Programs

● Empirical approaches
○ Testing
○ Debugging
○ Runtime monitoring

● Formal approaches 
○ Deductive verification

■ Use theorem prover and program logic (eg Hoare logic, etc.), manual efforts
○ Model checking

■ Automated, precise, but usually finite models
○ Static analysis

■ Automated, deals with infinite models with abstraction, but can be imprecise



Static Analysis

● What can we say about programs without running the program?
● Examples

○ Buffer overflow
○ Division by 0
○ Null pointer
○ Control-flow and points-to information
○ Termination
○ ...

● Abstract interpretation: the theory behind static analysis



Abstract interpretation

Patrick Cousot Radhia Cousot

POPL 1977



Abstract Interpretation - Industry Adoption

● Astrée - https://www.absint.com/astree/ 

Proved the absence of runtime errors for 132,000 lines 
of C code for Airbus A340 flight control software 
(2003).

https://www.absint.com/astree/


Abstract Interpretation - Industry Adoption

● NASA IKOS - https://github.com/NASA-SW-VnV/ikos 

● BioSentinel spacecraft (launched in 
Nov 2022)

● IKOS found 17 real bugs in software 
running on BioSentinel

https://github.com/NASA-SW-VnV/ikos


Abstract Interpretation - Industry Adoption

● Infer static analyzer
● SPARTA static analyzer
● Deployed with Meta’s continuous integration system



Undecidability and Approximation

● Halting problem: 
Can we have an analyzer that decides if a given program terminates?
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Undecidability and Approximation

● Halting problem: 
Can we have an analyzer that decides if a given program terminates?

● Rice’s theorem:

All interesting semantic properties are undecidable (not computable).
        Proof: reduce to the Halting problem.

● Abstract interpretation:

We can still predict the behavior of programs, but with some loss in 
precision (over-approximation).



Concrete Behaviors (Possibly infinite)



Safety Property: cannot reach into “forbidden zones”



Safety Property: Testing is not enough



Abstraction: over-approximate concrete behaviors



Specifying Abstract Interpretation

● Step 1: define the meaning (concrete semantics) of the program
● Step 2: define the abstraction that captures the property we want to 

analyze
● Step 3: define the abstract semantics using the abstraction

● Abstract interpretation guarantees termination and soundness
○ Analysis always terminates even the input program does not terminate.
○ All errors will be found by the analysis (but may contain false errors).



Concrete Semantics

● A simple arithmetic/imperative language

e := ℤ | Var | e + e | e - e | e / e | input()

s := Var ← e 
   | skip | s; s
   | if0 e then s else s 
   | while (e) s 

● Analysis: range of numeric values
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Concrete Semantics

● Syntax:
e := ℤ | Var | e + e | e - e | e / e | input()

● Domains:
σ ∈ Var → Value                  v ∈ Value := ℤ                    

● Expression semantics:   ⟨e, σ⟩ ⇓ v

        ⟨𝑒1, σ⟩ ⇓ 𝑣1
        ⟨𝑒2, σ⟩ ⇓ 𝑣2
------------------------------
 ⟨𝑒1 + 𝑒2, σ⟩ ⇓ 𝑣1 + 𝑣2

⟨𝑛, σ⟩ ⇓ 𝑛

⟨𝑥, σ⟩ ⇓ σ(𝑥)

        ⟨𝑒1, σ⟩ ⇓ 𝑣1
        ⟨𝑒2, σ⟩ ⇓ 𝑣2
------------------------------
  ⟨𝑒1 - 𝑒2, σ⟩ ⇓ 𝑣1 - 𝑣2

        ⟨𝑒1, σ⟩ ⇓ 𝑣1
        ⟨𝑒2, σ⟩ ⇓ 𝑣2
------------------------------
  ⟨𝑒1 / 𝑒2, σ⟩ ⇓ 𝑣1 / 𝑣2

⟨input(), σ⟩ ⇓ read_stdin()



Concrete Semantics

● Syntax:
...  and  s := Var ← e | skip | s; s | ...

● Domains:
σ ∈ Var → Value                  v ∈ Value := ℤ                    

● Statement semantics:   ⟨s, σ⟩ ⇓ σ

          ⟨e, σ⟩ ⇓ v
---------------------------
⟨x ← e, σ⟩ ⇓ σ[x ↦ v]

     ⟨s1, σ⟩   ⇓ σ1
     ⟨s2, σ1⟩ ⇓ σ2
-------------------------
     ⟨s1; s2, σ⟩ ⇓ σ2

⟨skip, σ⟩ ⇓ σ



Concrete Semantics - Example

● program: p = x ← x + 1; y ← x * 2
● initial store: σ = [x ↦ 42]

     ⟨x, σ⟩ ⇓ 42      ⟨1, σ⟩ ⇓ 1
   ------------------------------
             ⟨x + 1, σ⟩ ⇓ 43                                               ...
    ----------------------------       -----------------------------------------
     ⟨x ← x + 1, σ⟩ ⇓ [x ↦ 43]        ⟨y ← x * 2, [x ↦ 43]⟩ ⇓ [x ↦ 43, y ↦ 86]
--------------------------------------------------------------------------------
                                   ⟨p, σ⟩ ⇓ [x ↦ 43, y ↦ 86]



Specifying Abstract Interpretation

● Step 1: define the meaning (concrete semantics) of the program
● Step 2: define the abstraction that captures the property we want to 

analyze
● Step 3: define the abstract semantics using the abstraction



Abstractions of Integers

● Property: possible values of variables in the store
● Signs

𝕊 = { +, -, 0 }

● Intervals

[lb, rb]   where lb, ub ∈ ℤ ∪{-∞, +∞}

● Other domains:
○ octagons, polyhedra, etc. 



The Sign Domain

● Signs 𝕊 = { +, -, 0, ⊤, ⊥ }
○ + for all positive integers
○ - for all negative integers
○ 0 for zero
○ ⊤ for all possible integers
○ ⊥ for not-an-integers
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σ ∈ Var → Value                  v ∈ Value := ℤ

● Abstract domains:
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The Sign Domain

● Signs 𝕊 = { +, -, 0, ⊤, ⊥ }

● Concrete domains:
σ ∈ Var → Value                  v ∈ Value := ℤ

● Abstract domains:

● Define the abstract semantics for expressions and statements 
⟨e, σ⟩ ⇓ v                 ⟨s, σ⟩ ⇓ σ

The abstraction function
α : ℤ → 𝕊

α(n) = + if n > 0

α(n) = - if n < 0

α(n) = 0 if n ≡ 0
σ ∈ Var → Value                  v ∈ Value := 𝕊



Arithmetic on the Sign Domain

● Signs 𝕊 = { +, -, 0, ⊤, ⊥ }

⊕ : 𝕊 × 𝕊 → 𝕊  ÷ : 𝕊 × 𝕊 → 𝕊

⊕ + - 0 ⊤ ⊥

+ + ⊤ + ⊤ ⊥

- ⊤ - - ⊤ ⊥

0 + - 0 ⊤ ⊥

⊤ ⊤ ⊤ ⊤ ⊤ ⊥

⊥ ⊥ ⊥ ⊥ ⊥ ⊥

÷ + - 0 ⊤ ⊥

+ + - ⊥ ⊤ ⊥

- - + ⊥ ⊤ ⊥

0 0 0 ⊥ ⊤ ⊥

⊤ ⊤ ⊤ ⊥ ⊤ ⊥

⊥ ⊥ ⊥ ⊥ ⊥ ⊥
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Specifying Abstract Interpretation

● Step 1: define the meaning (concrete semantics) of the program
● Step 2: define the abstraction that captures the property we want to 

analyze
● Step 3: define the abstract semantics using the abstraction



Specifying Abstract Interpretation

        ⟨𝑒1, σ⟩ ⇓ 𝑣1
        ⟨𝑒2, σ⟩ ⇓ 𝑣2
------------------------------
 ⟨𝑒1 + 𝑒2, σ⟩ ⇓ 𝑣1 ⊕ 𝑣2

⟨𝑛, σ⟩ ⇓ α(𝑛)

⟨𝑥, σ⟩ ⇓ σ(𝑥)

        ⟨𝑒1, σ⟩ ⇓ 𝑣1
        ⟨𝑒2, σ⟩ ⇓ 𝑣2
------------------------------
  ⟨𝑒1 - 𝑒2, σ⟩ ⇓ 𝑣1 ⊝  𝑣2⟨input(), σ⟩ ⇓ ⊤

● Define the abstract semantics for expressions and statements 
⟨e, σ⟩ ⇓ v                 ⟨s, σ⟩ ⇓ σ

          ⟨e, σ⟩ ⇓ v
---------------------------
⟨x ← e, σ⟩ ⇓ σ[x ↦ v]

   ⟨s1, σ⟩   ⇓ σ1
   ⟨s2, σ1⟩ ⇓ σ2
-----------------------
   ⟨s1; s2, σ⟩ ⇓ σ2

⟨skip, σ⟩ ⇓ σ

        ⟨𝑒1, σ⟩ ⇓ 𝑣1
        ⟨𝑒2, σ⟩ ⇓ 𝑣2
------------------------------
  ⟨𝑒1 - 𝑒2, σ⟩ ⇓ 𝑣1 ÷  𝑣2



Abstract Semantics - Example

● program: p = x ← input(); y ← 42 / x
● initial store: σ = []

                                                          ⟨42, [x ↦ ⊤]⟩ ⇓ α(42) = +         ⟨x, [x ↦ ⊤]⟩ ⇓ ⊤
                    -----------------------------------------------------

         ⟨input(), []⟩ ⇓ ⊤                                   ⟨ 42 / x, [x ↦ ⊤]⟩ ⇓ + ÷ ⊤ = ⊤
   -------------------------------        -----------------------------------------------------
     ⟨x ← input(), []⟩ ⇓ [x ↦ ⊤]            ⟨y ← 42 / x, [x ↦ ⊤]⟩ ⇓ [x ↦ ⊤, y ↦ ⊤]
----------------------------------------------------------------------------------------
                                           ⟨p, []⟩ ⇓ [x ↦ ⊤, y ↦ ⊤]



Orders and Lattices

● Partial Orders ⟨X, ⊑⟩
○ X is a set
○ ⊑ ∈ X × X is a binary ordering relation that is

■ reflexive: x ⊑ x
■ anti-symmetric: if x ⊑ y and y ⊑ x then x = y
■ transitive: if x ⊑ y and y ⊑ z then x ⊑ z

● Instances: 
⟨ℤ, ≤⟩ integers and the less-than relation is a partial order

⟨Prop, ⇒⟩ propositions and implication is a partial order



Orders and Lattices

● Lattices ⟨X, ⊑, ⊔, ⊓⟩
○ ⟨X, ⊑⟩ is a partial order
○ ⊔ : X × X → X is a binary operator to compute the least upper bound 

(LUB)
○ ⊓ : X × X → X is a binary operator to compute the greatest lower bound 

(GLB)
● Instances: 

○ ⟨ℤ, ≤, max, min⟩
integers, the less-than relation, the max, min operations

○ ⟨Prop, ⇒, ∧, ∨⟩
propositions, implication, conjunction, and disjunction



Orders and Lattices

● Complete lattices ⟨X, ⊑, ⊔, ⊓, ⊤, ⊥⟩
○ ⟨X, ⊑, ⊔, ⊓⟩ is a lattice
○ ⊤ is the upper bound for all elements in X
○ ⊥ is the lower bound for all elements in X

● Instances:
○ ⟨ℤ, ≤, max, min, ?, ?⟩
○ ⟨Prop, ⇒, ∧, ∨, True, False⟩

propositions, implication, conjunction, and disjunction, True, False



Specifying Abstract Interpretation

● Step 1: define the concrete semantics and collecting semantics
● Step 2: define the abstraction
● Step 3: define the abstract semantics using the abstraction

collecting semantics ℙ(ℤ) abstract semantics 𝕊

⊤

⊥

+               0               -



Specifying Abstract Interpretation

● Step 1: define the concrete semantics and collecting semantics
● Step 2: define the abstraction
● Step 3: define the abstract semantics using the abstraction

collecting semantics ℙ(ℤ) abstract semantics 𝕊

⊤

⊥

+               0               -
Galois connection



Derived Complete Lattices ⟨X, ⊑, ⊔, ⊓, ⊤, ⊥⟩

● ⟨ℙ(X), ⊆, ∪, ∩, ∅, X⟩
For any set X, its powerset is a complete lattice, ordered by set-inclusion, 
LUB is set-union, GLB is set-intersection, bottom is the emptyset, and top 
is X.

● Example: ℙ(ℤ)



Signs as a Complete Lattice

● Signs 𝕊 = { +, -, 0, ⊤, ⊥ }
● Forms a lattice ⟨𝕊, ⊑, ⊔, ⊓, ⊥, ⊤⟩

⊤

⊥

+               0               -



Galois Connection

● Let ⟨C, ≤⟩, ⟨A, ⊑⟩ be two partial orders, the pair of functions 
α: C → A and γ: A → C is a Galois connection if

∀ a ∈ A, c ∈ C,        c ≤ γ(a) ⇔ α(c) ⊑ a
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Galois Connection

● Let ⟨C, ≤⟩, ⟨A, ⊑⟩ be two partial orders, the pair of functions 
α: C → A and γ: A → C is a Galois connection if

∀ a ∈ A, c ∈ C,        c ≤ γ(a) ⇔ α(c) ⊑ a

● Example: conjunction and implication

Let ⟨C, ≤⟩ = ⟨Prop, ⇒⟩ and ⟨A, ⊑⟩ = ⟨Prop, ⇒⟩

α ≙ (∙ ∧ p) : Prop → Prop        γ ≙ (p ⇒ ∙) : Prop → Prop

∀ q ∈ Prop, r ∈ Prop, (r ≤ γ(q)) ⇔ (α(r) ⊑ q)

                                          (r ⇒ γ(q)) ⇔ (α(r) ⇒ q)

                                                 (r ⇒ p ⇒ q) ⇔ (r ∧ p ⇒ q)



Galois Connection is Everywhere 

x ≤ r×y  ⇔ ⌈x / r⌉ ≤ y



Galois Connection is Everywhere 

x ≤ r×y  ⇔ ⌈x / r⌉ ≤ y

GC between α ≙ ⌈∙ / r⌉ and γ ≙ r × ∙

x ≤ γ(y) ⇔ α(x) ≤ y



α : ℙ(ℤ) → 𝕊
α(∅) = ⊥
α({0}) = 0
α(X) = + if X ⊆ {z | z > 0}
α(X) = - if X ⊆ {z | z < 0}
α(X) = ⊤ otherwise

Galois Connection between ℙ(ℤ) and 𝕊 

ℙ(ℤ) 𝕊Galois connection

γ : 𝕊 → ℙ(ℤ)
γ(⊤) = ℤ
γ(+) = {z | z > 0}
γ(0) = {0}
γ(-) = {z | z < 0}
γ(⊥) = ∅

∀ a ∈ 𝕊, c ∈ ℙ(ℤ), c ⊆ γ(a) ⇔ α(c) ⊑ a



⟨s, σ⟩ ⇓ σ

Bigger Picture

ℤ

ℙ(ℤ) 𝕊

concrete 
individual values

concrete
collecting semantics

γ

α

Var → ℙ(ℤ)
γ

α
Var → 𝕊 abstract semantics

⟨s, σ⟩ ⇓ σ

not computable always terminating



Soundness of Abstract Interpretation

● Program behavior P, Abstracted behavior A, Specification S

● Soundness: P ⊆ A 
○ Analysis always over-approximate actual program behavior

● Precise analysis: A ⊆ S ⇒ P ⊆ S
● May have false positive: A ⊈ S, but actually P ⊆ S

● Unsound: A ⊆ S, but actually P ⊈ S



Next Time

● How to abstractly interpret control structures?
○ Conditional
○ While loops

● Chains, Fixpoints, and Kleene Iterations


