CS 150 APL:
Abstract Interpretation

Guannan Wei
Tufts University
Nov 13

Ensuring Correctness of Programs

e Empirical approaches
o Testing
o Debugging
o Runtime monitoring
e Formal approaches
o Deductive verification
m Use theorem prover and program logic (eg Hoare logic, etc.), manual efforts
o Model checking
m Automated, precise, but usually finite models

o Static analysis
m Automated, deals with infinite models with abstraction, but can be imprecise

Static Analysis

e What can we say about programs without running the program?

e Examples
o Buffer overflow
o Division by 0
o Null pointer
o Control-flow and points-to information
o Termination

e Abstract interpretation: the theory behind static analysis

Abstract interpretation

ABSTRACT INTERPRETATION : A UNIFIED LATTICE MODEL FOR STATIC ANALYSIS
OF PROGRAMS BY CONSTRUCTION OR APPROXIMATION OF FIXPOINTS

Patrick Cousot*and Radhia Cousot™”

Laboratoire d'Informatique, U.S.M.G., BP. 53
38041 Grenoble cedex, France

1. Introduction

A program denotes computations in some universe of
objects. Abstract interpretation of programs con-
sists in using that denotation to describe compu-
tations in another universe of abstract objects,
so that the results of abstract execution give
some informations on the actual computations. An
intuitive example (which we borrow from Sintzoff
[721) is the rule of signs. The text -1515% 17

may be understood to denote computations on the
abstract universe {(+), (=), (%)} where the se-
mantics of arithmetic operators is defined by the
rule of signs. The abstract execution =-1515%* 17
=> =(+) * (+) => (=) = (+) => (-), proves that
~1515% 17 is a negative number. Abstract interpre-
tation is concerned by a particular underlying
structure of the usual universe of computations

Abstract program properties are modeled by a com-
plete semilattice, Birkhoff[61]. Elementary pro-
gram constructs are locally interpreted by order
preserving functions which are used to associate

a system of recursive equations with a program. The
program global properties are then defined as one

of the extreme fixpoints of that system, Tarski[55]

The abstraction process is defined in section 6. It
is shown that the program properties obtained by
an abstract interpretation of a program are consis-—
tent with those obtained by a more refined inter—
pretation of that program. In particular, an ab-
stract interpretation may be shown to be consistent
with the formal semantics of the language. Levels
of abstraction are formalized by showing that con-—
sistent abstract interpretations form a lattice
(section 7). Section 8 gives a constructive defi-
nition of abstract properties of programs based on
. il P 1 .

==

POPL 1977

Patrick Cousot

Radhia Cousot

Abstract Interpretation

Industry Adoption

e Astrée - https://www.absint.com/astree/

€ Absint Advanced Analyzer for C - Astrée - Example: Scenarios (1) - o
Project Analysis Editors Tools Help

EEO2#H2 OO@® €» CN @ e

s Example: Scenarios Findings/C | Findings/F Findings/Classification Rule violations | Reachabilty = Metrics | Dataflow Control flow | Fiter
© Information
- : ol Count Name e Alarms (18 findings)
Configuration
he 18 Alarms

© Preprocessor

N 5 Failed coding rule checks

% Parser ’ 4 Data and control flow alarms

/ Analyzer - 3 Uninitialized variables

A Annotations 3 P Use of uninitialized variables

2 Invalid usage of pointers and a...

1 ® Out-of-bound array access

1 Possible overflow upon der...

2 Invalid ranges and overflows
Overflow in conversion (wi...
Overflow in arithmetic

1 Division or modulo by zero
Integer division by zero

1 Failed or invalid directives

> 2 Frrars

Results

Preprocessed | Original
» # Proc8c
v # scenarios.c

F basic_examples

/101 messages loaded:

nts

F msg1 ,

F msg2 /[call#main at astree.cfg:18.0-50.1

F registerMsg call#basic_examples at astree.cfg:26.6-22

F sendMsg - 1oop=1/100 at scenarios.c:124.3-126.5

[e ALARM (C): signed int arithmetic range [-2147483647, 2147483648] not included in [-214748364
[Project Summary Resource Monitor j e .
Errors: 3 E 7
e Pt b s Filter: | T ~ || More fiiters | 18 of 18 findings visible Show unused comme
Run-time errors: 9 Order ~ Type Category Location c

Flow anomalies: 4
Rule violations: 5
Memory locations with alarms:

12 P Alarm (A)

Use of uninitialized variables # scenarios.c:125.8-9

Data races: 0
Reached code: 86% 14 P Alarm (D) Infinite loop # scenarios.c130.4-9
Duration: 10s 4 »
006 Aoupuit |WFindings A Notreached A Datafow A Watch A Search

EARERy RNCE 5

Proved the absence of runtime errors for 132,000 lines
of C code for Airbus A340 flight control software
(2003).

https://www.absint.com/astree/

Abstract Interpretation - Industry Adoption

e NASA IKOS - https://github.com/NASA-SW-VnV/ikos

e BioSentinel spacecraft (launched in
Nov 2022)

e IKOS found 17 real bugs in software
running on BioSentinel

https://github.com/NASA-SW-VnV/ikos

Abstract Interpretation - Industry Adoption

Infer static analyzer
SPARTA static analyzer

Deployed with Meta’s continuous integration system

facebook/SPARTA 00

SPARTA is a library of software components
specially designed for building high-performance
static analyzers based on the theory of Abstract...

A 23 ®o 77 590 ¥ 49 O

Contributors Issues Stars Forks

facebook/infer

A static analyzer for Java, C, C++, and Objective-C

Ay 193

Contributors

@ 19

Used by

W 14k
Stars

% 2k
Forks

0N

Undecidability and Approximation

e Halting problem:
Can we have an analyzer that decides if a given program terminates?

Undecidability and Approximation

e Halting problem:
Can we have an analyzer that decides if a given program terminates?
e Rice’s theorem:

All interesting semantic properties are undecidable (not computable).
Proof: reduce to the Halting problem.

Undecidability and Approximation

e Halting problem:
Can we have an analyzer that decides if a given program terminates?

e Rice's theorem:

All interesting semantic properties are undecidable (not computable).
Proof: reduce to the Halting problem.

e Abstract interpretation:

We can still predict the behavior of programs, but with some loss in
precision (over-approximation).

Concrete Behaviors (Possibly infinite)

, 2(t)

Possible
" trajectories

Safety Property: cannot reach into “forbidden zones”

z(t)
Forbidden zone

Possible
" trajectories

.

Safety Property: Testing is not enough

z(t)

Forbidden zone

Possible
- | trajectories

Test of a few trajectories

.

Abstraction: over-approximate concrete behaviors

z(t)

Forbidden zone

Possible
" trajectories

Abstraction of the trajectories

Specifying Abstract Interpretation

e Step 1: define the meaning (concrete semantics) of the program

e Step 2: define the abstraction that captures the property we want to
analyze

e Step 3: define the abstract semantics using the abstraction

e Abstract interpretation guarantees termination and soundness
o Analysis always terminates even the input program does not terminate.
o All errors will be found by the analysis (but may contain false errors).

Concrete Semantics

e Asimple arithmetic/imperative language

e:=Z | Var | e+e | e-e | e/ e| input()

S °

if@ e then s else s

| skip | s; s
|
| while (e) s

e Analysis: range of numeric values

Concrete Semantics

e Asimple arithmetic/imperative language

4)
e:=Z | Var | e+e | e-e | e/ e| input()
s := Var € e
| skip | s; s)
|

if@ e then s else s
| while (e) s

e Analysis: range of numeric values

Concrete Semantics

e Syntax:

e:=Z | Var | e+e | e-e | e/ e| input()
e Domains:

c € Var - Value v € Value :=Z
e Expression semantics: {e,c) v

(n,c) 4 n (e1l,0) U vl (el,0) Uvl (e1l,0) Vvl
(e2,0) U2 (e2,0) U2 (e2,5) V12
(X, 0) Y O(X) e e s
(el +e2,0) Uvl +v2 (el -e2,6)Uvl-v2 (el [e2,6)dvl [/ v2

(input (), o) U read_stdin()

Concrete Semantics

e Syntax:

. and s := Var ¢« e | skip | s; s/
e Domains:

c € Var - Value v € Value :=Z
e Statement semantics: (s,c) Vo

(s1,6) Vol
(s2,01)d o2

(s1;s2,0) V02

--------------------------- (skip,c) U o
(x€¢eo)lo[xrvV]

Concrete Semantics - Example

® program:p=X<&Xx+Ty ¢ x*2
e initial store: 0 =[x~ 42]

x,o0)d42 (1,0)d1

(p, 0y ¥ [x~ 43,y 86]

Specifying Abstract Interpretation

e Step 1: define the meaning (concrete semantics) of the program

e Step 2: define the abstraction that captures the property we want to
analyze

e Step 3: define the abstract semantics using the abstraction

Abstractions of Integers
e Property: possible values of variables in the store
e Signs
S={+-0}
e Intervals
[Ib, rb] where Ib, ub € Z U{-o0, +0}

e Other domains:
o octagons, polyhedra, etc.

The Sign Domain

® SignSS={+1_rOrTrJ—}

©)

O O O O

+ for all positive integers
- for all negative integers
0 for zero

T for all possible integers
1 for not-an-integers

The Sign Domain
e SignsS={+-0,7, L}

e Concrete domains:
c € Var = Value v € Value := Z

e Abstract domains:
& e Var > Value v € Value:= S

The Sign Domain

e SignsS={+-07 L) The abstraction function

oa:Z=>S
e Concrete domains: a(n)=+ifn>0
c € Var = Value v € Value := Z :
a(n)=-ifn<0
e Abstract domains: a(n)=0ifn=0

& e Var > Value v € Value:= S

The Sign Domain

e SignsS={+-07, L) The abstraction function
A:Z=>8S
e Concrete domains: a(n)=+ifn>0
c € Var - Value v € Value :=Z :
a(n)=-ifn<0
e Abstract domains: a(n)=0ifn=0
& € Var > Value v € Vallie:= S

e Define the abstract semantics for expressions and statements
(e, Y UV (s, VU™

Arithmetic on the Sign Domain

® SignSS={+1_rOrTrJ—}

®:SXS—>S

® + - 0 T 1
+ + T + T 1
- T . . T 1
0 + - 0 T 1
T T T T T 1
1 1 1 1 1 1

||| |°
S =

Arithmetic on the Sign Domain

® SignSS={+1_rOrTrJ—}

®:SXS—>S

® + - 0 T 1
+ + T + T 1
- T . . T 1
0 + - 0 T 1
T T T T T 1
1 1 1 1 1 1

|||]°
S =

Specifying Abstract Interpretation

e Step 1: define the meaning (concrete semantics) of the program

e Step 2: define the abstraction that captures the property we want to
analyze

e Step 3: define the abstract semantics using the abstraction

Specifying Abstract Interpretation

e Define the abstract semantics for expressions and statements

(e, 5y UV~ (s,6Y U™
~U' N P Ea)
(n, 5y L a(n) (o1, 0 (1, 8 oA (186
{x, 5y U 6(x) (€2,8) U2 (e2,8y UvZ (€2, 8 Uv2"
{input(),5) LU T (el +e2, 8y UvTeov (el -e2,5) UvTe v el -e2, 8y UvT+ v2™
-~ <Sl,a U GT
(o)L A (2. 81 b o7
"""""""""""""" (skip,5) U G

(x € e, Lo[x~ 7] (s1;s2,5) L o2

Abstract Semantics - Example

e program:p =x < input();y ¢« 42 / x
e initial store: 0 =]

42, [x > Ty U a(42) = + X [x~ThuT

(P, [y ¥ [x =7,y =]

Orders and Lattices

e Partial Orders (X, E)
o Xisaset
o L & XxXisa binary ordering relation that is
m reflexive: x C x
m anti-symmetric:if xCyandyLCExthenx=y
m transitive: ifxEyandyCzthenxCz
e |[nstances:
(Z, <) integers and the less-than relation is a partial order

(Prop, =) propositions and implication is a partial order

Orders and Lattices

e Lattices (X, E, v, M)
o (X, L)is a partial order
o U:XxX- Xisabinary operator to compute the least upper bound
(LUB)
o M:XxX - Xisabinary operator to compute the greatest lower bound
(GLB)
e |[nstances:
o (Z, <, max, min)
integers, the less-than relation, the max, min operations
o (Prop, =, A, V)
propositions, implication, conjunction, and disjunction

Orders and Lattices

e Complete lattices (X, 5,1, m, 7, L)
o (X, E U, misa lattice
o Tisthe upper bound for all elements in X
o L isthe lower bound for all elements in X
e |[nstances:
o (%, <, max, min, ?,?
o (Prop, =, A, V, True, False)
propositions, implication, conjunction, and disjunction, True, False

Specifying Abstract Interpretation

e Step 1: define the concrete semantics and collecting semantics
e Step 2: define the abstraction
e Step 3: define the abstract semantics using the abstraction

RGO

{1 . 19} . M\
{ 1 0/1} \{o 1,9} ... + 0 =

SRR
S ~]

e {1} {0y {1} ... {9} ...

collecting semantics P(2) abstract semantics S

Specifying Abstract Interpretation

e Step 1: define the concrete semantics and collecting semantics
e Step 2: define the abstraction
e Step 3: define the abstract semantics using the abstraction

P(2).
{1 0 19} M\
«;10/1} \{019:} < + 0 -
/N /NS Galois connection \V
{10} {0,1} ... {1,9} ...
VAVAWAY. -
o GO e O i

collecting semantics P(2) abstract semantics S

Derived Complete Lattices (X, C, 1, m, 7, L)

e (PX), <, U,N, D,X)
For any set X, its powerset is a complete lattice, ordered by set-inclusion,
LUB is set-union, GLB is set-intersection, bottom is the emptyset, and top
is X.

e Example: P(z)

ON

e {-1,0,1,9} ...

{101} {019}

/\ /\

.. {10} {0,1} ... {1,9} ...

WAVAVAY,

. {1} {0y {1} ... {9} ...

\Q‘) /

Signs as a Complete Lattice

o SignSS={+,',O,TpJ—}
e Formsa lattice ¢S, C, 4, m, L, T)

Galois Connection

e Let(C, <), (A E)betwo partial orders, the pair of functions
a: C > Aandy: A > Cis a Galois connection if

VaeAce(, c<y(a) e a(c)Ca

Galois Connection
e Let(C, <), (A E)betwo partial orders, the pair of functions
a: C > Aandy: A > Cis a Galois connection if
VaeAce(, c<y(a) e a(c)Ca
e Example: conjunction and implication

Let (C, <) = (Prop, =) and (A, C) = (Prop, =)

Galois Connection
e Let(C, <), (A E)betwo partial orders, the pair of functions
a: C > Aandy: A > Cis a Galois connection if
VaeAce(, c<y(a) e a(c)Ca
e Example: conjunction and implication
Let {C, <) = (Prop, =) and (A, E) = (Prop, =)

a=(-Ap):Prop>Prop y=(p="):Prop - Prop

Galois Connection
e Let(C, <), (A E)betwo partial orders, the pair of functions
a: C > Aandy: A > Cis a Galois connection if

VaeAce(, c<y(a) e a(c)Ca

e Example: conjunction and implication
Let {C, <) = (Prop, =) and (A, E) = (Prop, =)

a=(-Ap):Prop->Prop y=(p="-):Prop - Prop

V q € Prop, r € Prop, (r<v(q)) (alr) E q)

Galois Connection
e Let(C, <), (A E)betwo partial orders, the pair of functions
a: C > Aandy: A > Cis a Galois connection if

VaeAce(, c<y(a) e a(c)Ca

e Example: conjunction and implication
Let (C, <) = (Prop, =) and (A, L) = (Prop, =)

a=(-Ap):Prop->Prop y=(p="-):Prop - Prop
V q € Prop, r € Prop, (r<v(q)) (alr) E q)
(r = y(q)) & (a(r) = q)

Galois Connection
e Let(C, <), (A E)betwo partial orders, the pair of functions
a: C > Aandy: A > Cis a Galois connection if

VaeAce(, c<y(a) e a(c)Ca

e Example: conjunction and implication
Let {C, <) = (Prop, =) and (A, E) = (Prop, =)

a=(-Ap):Prop->Prop y=(p="-):Prop - Prop

V q € Prop, r € Prop, (r<v(q)) (alr) E q)

(r=v(q)) © (a(r) = q)
r=p=>q)e(Ap=q)

Galois Connection is Everywhere

X<srxy ©[x/[/ri<gy

Galois Connection is Everywhere

X<rxy € x [rl< y Galois Connection
: Everywhere
/ o’

IS,

GC betweena=T-/rlandy=rx-

xsy(y) € ax) sy

Galois Connection between P(Z) and S

9
1
0

+ifX<c{z]|z>0}

-ifxXc{z|z<0}

T otherwise

P(Z)

<

Galois connection

>

S

VaEes,ceP@),ccy@ealc)cta

N2
ol
=

+

vvd/@

D L T N | B 1
N oN
—_——
N

\V/

o

Nmypd

11 l-"ﬁ’_.q,—n—\[’\\rl
N
N
o
e

<~<<=<=<=<<=<
e R e R

NG
Q

Bigger Picture
4 Var - @(Z} - >/Var > 'S O

concrete < Y abstract semantics
collecting semantics -
(s,6) UG
(s,0) Vo
) —
not computable S always terminating
<
N / v _ ")

P(Z

Z

concrete
individual values

Soundness of Abstract Interpretation
e Program behavior P, Abstracted behavior A, Specification S

e Soundness:P S A

o Analysis always over-approximate actual program behavior
e PreciseanalysissAS S=>PCS
e May have false positive: A4S, but actually P £ S

e Unsound:A € S, butactuallyPdS

Next Time

e How to abstractly interpret control structures?
o Conditional
o While loops

e Chains, Fixpoints, and Kleene Iterations

