
CS150 APL: Effects

Guannan Wei
guannan.wei@tufts.edu
Sept 30, 2025

Tufts University

1



Logistics

• Thursday (Oct 2): project proposal presentation (15 min)
• Sunday (Oct 5): 1-page project proposal due

• LATEX template on Canvas

2



Last time

• Universal and existential types
• Product and sum types
• Mutable references

3



Today’s topic

Control effects:

• Exceptions
• Algebraic effects
• Continuations

4



Exceptions

• try-catch in Java and many other languages

• An example in Java:

try {
// code that may throw an exception
...
throw ex;
...

} catch (Exception e) {
// handler for Exception

}

5



Exceptions

Syntax

𝑛 ∈ ℕ
𝑣 ∶∶= 𝑛 ∣ 𝜆𝑥.𝑡 values
𝑡 ∶∶= 𝑛 ∣ 𝑥 ∣ 𝜆𝑥.𝑡 ∣ 𝑡1 𝑡2 ∣ 𝑡1 ⊕ 𝑡2 terms

∣ throw 𝑣 ∣ try 𝑡1 catch 𝑥. 𝑡2

6



Exceptions

Dynamics (first attempt)

𝐸 ∶∶= □ ∣ 𝑣 𝐸 ∣ 𝐸 𝑡 ∣ 𝑣 ⊕ 𝐸 ∣ 𝐸 ⊕ 𝑡 reduction contexts
∣ try 𝐸 catch 𝑥. 𝑡

(𝜆𝑥.𝑡) 𝑣 → 𝑡[𝑥 ∶= 𝑣]
𝛽𝑣 𝑛1 ⊕ 𝑛2 → 𝑛1 + 𝑛2

Add

try 𝑣 catch 𝑥. 𝑡 → 𝑣
Return

try 𝐸[throw 𝑣] catch 𝑥. 𝑡 → 𝑡[𝑥 ∶= 𝑣]
Catch

𝑡1 → 𝑡′
1

𝐸[𝑡1] → 𝐸[𝑡′
1]

Ctx

7



Exceptions

Example:

try {
try { throw 42 } catch x. { x + 1 }

} catch y. { y + 2 }

Problem: ambiguous decomposition of E!

8



Exceptions

Example:

try {
try { throw 42 } catch x. { x + 1 }

} catch y. { y + 2 }

Problem: ambiguous decomposition of E!

8



Exceptions

Dynamics

𝐸 ∶∶= □ ∣ 𝑣 𝐸 ∣ 𝐸 𝑡 ∣ 𝑣 ⊕ 𝐸 ∣ 𝐸 ⊕ 𝑡 local contexts
𝐸ℎ ∶∶= □ ∣ 𝑣 𝐸ℎ ∣ 𝐸ℎ 𝑡 ∣ 𝑣 ⊕ 𝐸ℎ ∣ 𝐸ℎ ⊕ 𝑡 handler contexts

∣ try 𝐸ℎ catch 𝑥. 𝑡

(𝜆𝑥.𝑡) 𝑣 → 𝑡[𝑥 ∶= 𝑣]
𝛽𝑣 𝑛1 ⊕ 𝑛2 → 𝑛1 + 𝑛2

Add

try 𝑣 catch 𝑥. 𝑡 → 𝑣
Return

try 𝐸[throw 𝑣] catch 𝑥. 𝑡 → 𝑡[𝑥 ∶= 𝑣]
Catch

𝑡1 → 𝑡′
1

𝐸ℎ[𝑡1] → 𝐸ℎ[𝑡′
1]

Ctxℎ

9



Exceptions

Example:

try { try { 10+(throw 42) } catch x. { x + 1 } } catch y. { y + 2 }
/* Catch */

-> try { 42 + 1 } catch y. { y + 2 }
/* Return */

->* 43

10



Exceptions

• Error recovery: what if we want to recover from an error and continue?

11



Resumable Exceptions

• Generalization of exceptions: catch also binds a “resumption’’ that can be
invoked to resume the computation where the effect was raised.

try {
val x = throw v;
// using x
...

} catch x,k. {
...
k(v)

}

12



Algebraic Effects

• This idea is known as algebraic effects and handlers; expressive and modular
way to write effectful programs.

• Mainstream languages such as OCaml 5 have adopted effects handlers.

• Demo: the Eff language

13



Algebraic Effects

• This idea is known as algebraic effects and handlers; expressive and modular
way to write effectful programs.

• Mainstream languages such as OCaml 5 have adopted effects handlers.

• Demo: the Eff language

13



Algebraic Effects

• Expresiveness: powerful control abstraction
• nondeterminism, backtracking
• mutable states
• coroutines, async/await
• etc.

• Modularity:
• Allow flexible user-defined effect operations
• Handlers are defined separately
• Composing multiple effects and handlers is easy

14



Algebraic Effects

• A fine-grained call-by-value lambda calculus with algebraic effects and handlers
Syntax

𝑛 ∈ ℕ
𝑣 ∶∶= 𝑛 ∣ 𝑥 ∣ 𝜆𝑥.𝑡 values
𝑡 ∶∶= 𝑣 ∣ return 𝑣 ∣ 𝑣1 𝑣2 ∣ let 𝑥 = 𝑡1 in 𝑡2 computations

∣ do 𝑣 ∣ handle 𝑡 with 𝑥.𝑡1; 𝑥, 𝑘.𝑡2

15



Algebraic Effects

Dynamics

𝐹 ∶∶= □ ∣ let 𝑥 = 𝐹 in 𝑡 pure contexts
𝐸 ∶∶= □ ∣ let 𝑥 = 𝐸 in 𝑡 ∣ handle 𝐸 with 𝑥.𝑡1; 𝑥, 𝑘.𝑡2 general contexts

(𝜆𝑥.𝑡) 𝑣 → 𝑡[𝑥 ∶= 𝑣]
𝛽𝑣 let 𝑥 = return 𝑣 in 𝑡 → 𝑡[𝑥 ∶= 𝑣]

Let

handle (return 𝑣) with 𝑥.𝑡1; 𝑥, 𝑘.𝑡2 → 𝑡1[𝑥 ∶= 𝑣]
Return

𝑓 = 𝜆𝑦.handle 𝐹[return 𝑦] with 𝑥.𝑡1; 𝑥, 𝑘.𝑡2

handle 𝐹[do 𝑣] with 𝑥.𝑡1; 𝑥, 𝑘.𝑡2 → 𝑡2[𝑥 ∶= 𝑣, 𝑘 ∶= 𝑓]
Handle

16



Algebraic Effects

Example:

handle {
let x = do 2 in
let y = do 3 in
return (x + y)

} with {
x => return x
x,k => k(x * 2)

}

17



Algebraic Effects

Example:

handle {
let x = do 2 in
let y = do 3 in
return (x + y)

} with {
x => return x
x,k => k(x * 2)

}

k(x * 2)
where

x = 2
k = \z. handle {

let x = return z in
let y = do 3 in
return (x + y)

} with {
x => return x
x,k => k(x * 2)

}
18



Algebraic Effects

Example (cont’d):

handle {
let x = return 4 in
let y = do 3 in
return (x + y)

} with {
x => return x
x,k => k(x * 2)

}

handle {
let y = do 3 in
return (4 + y)

} with {
x => return x
x,k => k(x * 2)

}

19



Algebraic Effects

Further reading

• Tutorial: An Introduction to Algebraic Effects and Handlers. Matija Pretnar
https://www.eff-lang.org/handlers-tutorial.pdf

• Theory: Why “algebraic’’? Because effects can be modeled using algebraic
theories.

What is algebraic about algebraic effects and handlers? Andrej Bauer
https://arxiv.org/abs/1807.05923

• Implementation: CEK-style abstract machine for algebraic effects and handlers.

Liberating Effects with Rows and Handlers. Hillerstrom and Lindley. TyDE ’16

20

https://www.eff-lang.org/handlers-tutorial.pdf
https://arxiv.org/abs/1807.05923


Algebraic Effects and Continuations

• Effect handlers captures “delimited continuations’’ (i.e. rest of computation up to
nearest handler).

• A family of general delimited control operators:

• shift/reset (Abstracting Control, Danvy and Filinski)
• control/prompt (The theory and practice of first-class prompts, Felleisen)
• shift0/reset0 and control0/prompt0 (Shift to Control, Shan)

• You can try them in Racket!

21



Delimited Continuations

A 𝜆-calculus with shift/reset:

Syntax and dynamics

𝑡 ∶∶= ∣ 𝑥 ∣ 𝜆𝑥.𝑡 ∣ 𝑡1 𝑡2 ∣ ⟨𝑡⟩ ∣ shift 𝑘.𝑡 terms
𝐸 ∶∶= □ ∣ 𝑣 𝐸 ∣ 𝐸 𝑡 ∣ ⟨𝐸⟩ reduction contexts

(𝜆𝑥.𝑡) 𝑣 → 𝑡[𝑥 ∶= 𝑣]
𝛽𝑣 ⟨𝑣⟩ → 𝑣

Reset

𝐸 does not contain ⟨⋅⟩
⟨𝐸[shift 𝑘.𝑡]⟩ → 𝑡[𝑘 ∶= 𝜆𝑥.⟨𝐸[𝑥]⟩]

Shift
𝑡1 → 𝑡′

1
𝐸[𝑡1] → 𝐸[𝑡′

1]
Ctx

22



Delimited Continuations

• Some cool applications of algebraic effects and delimited continuations:
• Backtracking and search
• Concurrency and lightweight threads
• Probabilistic programming
• Quantum simulation

Scheme Pearl: Quantum Continuations. (Scheme workshop 2022)
• Autodifferentiation and backpropagation

Demystifying differentiable programming: shift/reset the penultimate
backpropagator (ICFP ’19)

• …

23



Delimited Continuations

Demystifying differentiable programming: shift/reset the penultimate backpropagator
(ICFP ’19) 24



First-class continuations

• We can also have undelimited first-class continuations (i.e. rest of computation up
to the program end), call/cc in Scheme.

• Such continuations are not composable:

(+ 1 (call/cc (lambda (k) (begin (k 2) (k 3)))))

• Expressiveness: call/cc with mutable state can express arbitrary monadic effects
and delimited continuations(Representing Monads, Filinski 1994).

25



Summary

• Exceptions

• Resumable exceptions (aka effect handlers)

• A family of delimited control operators

• First-class undelimited continuations

• Other considerations:

• One-shot vs multi-shot continuations
• Type systems ensure all effects are handled
• Effect polymorphism
• …

26


