CS150 APL: Effects

Guannan Wei
guannan.wei@tufts.edu

Sept 30, 2025

Tufts University

= Thursday (Oct 2): project proposal presentation (15 min)
= Sunday (Oct 5): 1-page project proposal due
= IATEX template on Canvas

= Universal and existential types
= Product and sum types
= Mutable references

Today’s topic

Control effects:

= Exceptions
= Algebraic effects
= Continuations

IIi%HH%iHHiHHHIII

= try-catch in Java and many other languages

= An example in Java:

try {
// code that may throw an exception

throw ex;

} catch (Exception e) {
// handler for Ezception

Syntax

N
n| Azt values
nlx|Axt|t ity |ty ity terms

throw v | try t; catch x. ¢,

Dynamics (first attempt)

E == 0O|vE|Et|veE|E®&t reduction contexts
| try E catchuz.t

By ADD
(Ax.t)v — t[z =] ny B ng — ny +ngy
RETURN CATCH
try v catch z. t — v try E[throw v] catch x. t — t[z := v]
t, =t
Crx

Elt,] — E[t!]

IIi%%H%iHHHHHHIII

Example:

try {
try { throw 42 } catch x. { x + 1 }
} catchy. { y+ 2}

IIi%%H%iHHHHHHIII

Example:

try {
try { throw 42 } catch x. { x + 1 }
} catchy. { y+ 2}

Problem: ambiguous decomposition of E!

Dynamics

E == O|vE|Et|veE|E&t local contexts
E, == 0O|vE,|E,t|v® E, | E,®t handler contexts
| try E}, catchx. ¢

By ADD
(Az.t) v — t[x := v ny B ng — ny +ny

RETURN CATCH
try v catch z. t » v try E[throw v] catch x. t — t[x := 0]

t; > t]
Ey[t] — Eylt]]

Crx,,

Example:

try { try { 10+(throw 42) } catch x. { x + 1 } } catch y. {y + 2}
/* Catch */

-> try {42+ 1 }catchy. {y+21}
/* Return */

->% 43

10

= Error recovery: what if we want to recover from an error and continue?

11

Resumable Exceptions

= Generalization of exceptions: catch also binds a “resumption’” that can be
invoked to resume the computation where the effect was raised.

try {
val x = throw v;
// using «

} catch x,k. {

k(v)

12

Algebraic Effects

= This idea is known as algebraic effects and handlers; expressive and modular
way to write effectful programs.

= Mainstream languages such as OCaml 5 have adopted effects handlers.

13

Algebraic Effects

= This idea is known as algebraic effects and handlers; expressive and modular
way to write effectful programs.

= Mainstream languages such as OCaml 5 have adopted effects handlers.

= Demo: the Eff language

13

Algebraic Effects

= Expresiveness: powerful control abstraction
= nondeterminism, backtracking
= mutable states
= coroutines, async/await
= etc.
= Modularity:
= Allow flexible user-defined effect operations
= Handlers are defined separately
= Composing multiple effects and handlers is easy

14

Algebraic Effects

= A fine-grained call-by-value lambda calculus with algebraic effects and handlers

Syntax
n € N
v = n|z| et values
t == wv|returnv|v,v,|let x =¢; int, computations

| dow|handle t with z.t;;x, k.t,

15

Algebraic Effects

Dynamics

F == O|letz=Fint pure contexts
E == [0O|letx=F int|handle F with x.t;;x, k.t, general contexts

LET

()\a:.t) v — t[ﬂU = U] ! let * = return v in t — t[x = v]

RETURN
handle (return v) with z.ty;x, k.ty — t;[x := 0]

f = Ay.handle F[return y| with x.t;z, k.ty
HANDLE

handle F[do v] with x.ty;x, k.ty — ty[x := v,k := f]

16

Algebraic Effects

Example:

handle {
let x = do 2 in
let y = do 3 in
return (x + y)

} with {

X => return X
x,k => k(x * 2)

17

Algebraic Effects

Example:
handle { k(x * 2)
let x = do 2 in where
let y = do 3 in x =2
return (x + y) k = \z. handle {
} with { let x = return z in
X => return x let y = do 3 in
x,k => k(x * 2) return (x + y)
b } with {
X => return x
X,k => k(x * 2)
}

18

Algebraic Effects

Example (cont'd):

handle {
let x = return 4 in
let y = do 3 in
return (x + y)

} with {

X => return X
x,k => k(x * 2)

handle {
let y = do 3 in
return (4 + y)
} with {
X => return x
X,k => k(x * 2)

19

Algebraic Effects

Further reading

= Tutorial: An Introduction to Algebraic Effects and Handlers. Matija Pretnar
https://www.eff-lang.org/handlers-tutorial.pdf

s Theory: Why “algebraic’'? Because effects can be modeled using algebraic
theories.

What is algebraic about algebraic effects and handlers? Andrej Bauer
https://arxiv.org/abs/1807.05923

= Implementation: CEK-style abstract machine for algebraic effects and handlers.

Liberating Effects with Rows and Handlers. Hillerstrom and Lindley. TyDE '16

20

https://www.eff-lang.org/handlers-tutorial.pdf
https://arxiv.org/abs/1807.05923

Algebraic Effects and Continuations

» Effect handlers captures “delimited continuations’ (i.e. rest of computation up to

nearest handler).

= A family of general delimited control operators:

= You

shift/reset (Abstracting Control, Danvy and Filinski)
control/prompt (The theory and practice of first-class prompts, Felleisen)
shift0/reset0 and controlO/prompt0 (Shift to Control, Shan)

can try them in Racket!

21

Delimited Continuations

A A-calculus with shift/reset:

Syntax and dynamics

t == |x|Axt]|tyty|(t)|shift k.t terms
E == O|vE|Et|(FE) reduction contexts
- RESET
(Az.t)v — t[z := 0] (vy = v
E does not contain (-) t; — t]
SHIFT ———— 01X
(E[shift k.t]) — t[k := \z.(E[z])] E[t,] — E[t1]

22

Delimited Continuations

= Some cool applications of algebraic effects and delimited continuations:

Backtracking and search

Concurrency and lightweight threads

Probabilistic programming

Quantum simulation

Scheme Pearl: Quantum Continuations. (Scheme workshop 2022)
Autodifferentiation and backpropagation

Demystifying differentiable programming: shift/reset the penultimate
backpropagator (ICFP '19)

23

Delimited Continuations

import scala.util.continuations._
type diff = cps[Unit]

class Num(val x: Double, var d: Double) {
def +(that: Num) = shift { (k: Num => Unit) =>
val y = new Num(x + that.x, 0.0); k(y)
this.d += y.d; that.d += y.d }
def x(that: Num) = shift { (k: Num => Unit) =>
val y = new Num(x * that.x, 0.0); k(y)
this.d += that.x *x y.d; that.d += this.x * y.d }

def grad(f: Num => Num @diff)(x: Double) = {
val x1 = new Num(x, 0.0)
reset { f(x1).d = 1.0 }
x1.d

for (x <- @ until 10) {
assert(grad(x => x + x*x#x)(x) == 1 + 3%x*x)

Demystifying differentiable programming: shift/reset the penultimate backpropagator
(ICFP '19)

First-class continuations

= We can also have undelimited first-class continuations (i.e. rest of computation up

to the program end), call/cc in Scheme.
= Such continuations are not composable:
(+ 1 (call/cc (lambda (k) (begin (k 2) (k 3)))))

= Expressiveness: call/cc with mutable state can express arbitrary monadic effects
and delimited continuations(Representing Monads, Filinski 1994).

25)

= Exceptions

Resumable exceptions (aka effect handlers)
= A family of delimited control operators
s First-class undelimited continuations

= Other considerations:

= One-shot vs multi-shot continuations
= Type systems ensure all effects are handled
= Effect polymorphism

26

