
CS150 APL: Type Systems and Effects

Guannan Wei
guannan.wei@tufts.edu
Sept 11, 2025

Tufts University

1



Last time

• Simply typed lambda calculus (STLC)
• Soundness, incompleteness
• Polymorphic lambda calculus (System F)
• Unit type

2



Today

More expressive type systems:

• Product types
• Sum types
• Existential types
• Effects
• …

3



Product type

• Product type (pair type, tuple type): 𝜏1 × 𝜏2
• E.g. struct in C but without field names

Syntax

𝑡 ∶∶= ⋯ ∣ (𝑡1, 𝑡2) ∣ fst 𝑡 ∣ snd 𝑡 terms
𝑣 ∶∶= ⋯ ∣ (𝑣1, 𝑣2) values
𝜏 ∶∶= ⋯ ∣ 𝜏1 × 𝜏2 types
𝐸 ∶∶= ⋯ ∣ (𝑣, 𝐸) ∣ (𝐸, 𝑡) ∣ fst 𝐸 ∣ snd 𝐸 reduction contexts

4



Product type

Dynamics

fst (𝑣1, 𝑣2) → 𝑣1
Fst

snd (𝑣1, 𝑣2) → 𝑣2
Snd

Statics

Γ ⊢ 𝑡1 ∶ 𝜏1 Γ ⊢ 𝑡2 ∶ 𝜏2

Γ ⊢ (𝑡1, 𝑡2) ∶ 𝜏1 × 𝜏2
Pair

Γ ⊢ 𝑡 ∶ 𝜏1 × 𝜏2

Γ ⊢ fst 𝑡 ∶ 𝜏1
Fst

Γ ⊢ 𝑡 ∶ 𝜏1 × 𝜏2

Γ ⊢ snd 𝑡 ∶ 𝜏2
Snd

5



Product type

• Can generalize to 𝑛-ary record type:

{𝑙1 ∶ 𝜏1, … , 𝑙𝑛 ∶ 𝜏𝑛}

where 𝑙𝑖 are field labels (names).

• Record can be either ordered or unordered. Useful to model objects in OOP
languages.

• Example: {name ∶ string, age ∶ nat}

6



Sum type

• Similar to a union of two types, but each the variants are tagged

• Encoding errors with option type, e.g. in SML:

datatype 'a option = NONE | SOME of 'a

case some_computation of
NONE => handle_error ()

| SOME x => use_value x

7



Sum type

Syntax

𝑡 ∶∶= ⋯ ∣ inl 𝑡 ∣ inr 𝑡 ∣ case 𝑡0 of inl 𝑥1 ⇒ 𝑡1; inr 𝑥2 ⇒ 𝑡2 terms
𝑣 ∶∶= ⋯ ∣ inl 𝑣 ∣ inr 𝑣 values
𝜏 ∶∶= ⋯ ∣ 𝜏1 + 𝜏2 types
𝐸 ∶∶= ⋯ ∣ inl 𝐸 ∣ inr 𝐸 ∣ case 𝐸 of inl 𝑥1 ⇒ 𝑡1; inr 𝑥2 ⇒ 𝑡2 reduction contexts

• inl 𝑡 constructs a value of type 𝜏1 + 𝜏2 from a value of type 𝜏1
• inr 𝑡 constructs a value of type 𝜏1 + 𝜏2 from a value of type 𝜏2
• case to consume a sum type value, need to provide handler for each variant

8



Sum type

• Example: option type

datatype 'a option = NONE | SOME of 'a

option(𝛼) ≜ unit + 𝛼

NONE ≜ Λ𝛼.inl () ∶ option(𝛼)

SOME ≜ Λ𝛼.𝜆𝑣 ∶ 𝛼.inr 𝑣 ∶ ∀𝛼.𝛼 → option(𝛼)

𝑥 safeDiv 𝑦 ≜ 𝜆𝑥.𝜆𝑦.if0 𝑦 then NONE[nat] else SOME[nat](𝑥/𝑦)

9



Sum type

Dynamics

case (inl 𝑣) of inl 𝑥1 ⇒ 𝑡1; inr 𝑥2 ⇒ 𝑡2 → 𝑡1[𝑥1 ∶= 𝑣]
Case-inl

case (inr 𝑣) of inl 𝑥1 ⇒ 𝑡1; inr 𝑥2 ⇒ 𝑡2 → 𝑡2[𝑥2 ∶= 𝑣]
Case-inr

10



Sum type

Statics

Γ ⊢ 𝑡 ∶ 𝜏1

Γ ⊢ inl 𝑡 ∶ 𝜏1 + 𝜏2
Inl

Γ ⊢ 𝑡 ∶ 𝜏2

Γ ⊢ inr 𝑡 ∶ 𝜏1 + 𝜏2
Inr

Γ ⊢ 𝑡0 ∶ 𝜏1 + 𝜏2 Γ, 𝑥1 ∶ 𝜏1 ⊢ 𝑡1 ∶ 𝜏 Γ, 𝑥2 ∶ 𝜏2 ⊢ 𝑡2 ∶ 𝜏
Γ ⊢ case 𝑡0 of inl 𝑥1 ⇒ 𝑡1; inr 𝑥2 ⇒ 𝑡2 ∶ 𝜏

Case

11



Sum type

• Can generalize to 𝑛-ary labeled variants:

⟨𝑙1 ∶ 𝜏1, … , 𝑙𝑛 ∶ 𝜏𝑛⟩

where 𝑙𝑖 are variant labels (names).

• Injection to one of the variants: inj𝑙𝑖
𝑡 ∶ ⟨𝑙1 ∶ 𝜏1, … , 𝑙𝑛 ∶ 𝜏𝑛⟩

12



Existential types

• Existential types: ∃𝛼.𝜏
• Dual to universal types (∀-quantification)

Syntax

𝑡 ∶∶= ⋯ ∣ pack 𝜏1, 𝑡 as ∃𝛼.𝜏2 ∣ unpack 𝛼, 𝑥 = 𝑡1 in 𝑡2 terms
𝑣 ∶∶= ⋯ ∣ pack 𝜏1, 𝑣 as ∃𝛼.𝜏2 values
𝜏 ∶∶= ⋯ ∣ ∃𝛼.𝜏 types
𝐸 ∶∶= ⋯ ∣ pack 𝜏1, 𝐸 as ∃𝛼.𝜏2 ∣ unpack 𝛼, 𝑥 = 𝐸 in 𝑡 reduction contexts

13



Existential types

• Useful to express abstract data types (ADTs) or module systems (e.g. in
SML/OCaml) and to hide implementation details

• Example: a counter ADT (using record type)

Counter ≜ ∃𝛼.{init ∶ 𝛼, inc ∶ 𝛼 → 𝛼, get ∶ 𝛼 → nat}

An implementation:

Impl ≜ pack nat, {init ∶ 0, inc ∶ 𝜆𝑥 ∶ nat.𝑥 + 1, get ∶ 𝜆𝑥 ∶ nat.𝑥} as Counter

A client:
unpack 𝛼, 𝑥 = Impl in

let 𝑐 = 𝑥.inc(𝑥.init) in 𝑥.get 𝑐

14



Existential types

Dynamics

unpack 𝛼, 𝑥 = (pack 𝜏1, 𝑣 as ∃𝛽.𝜏2) in 𝑡2 → 𝑡2[𝛼 ∶= 𝜏1, 𝑥 ∶= 𝑣]
UnpackPack

15



Existential types

Statics

Γ ⊢ 𝑡 ∶ 𝜏1[𝛼 ∶= 𝜏2]
Γ ⊢ pack 𝜏2, 𝑡 as ∃𝛼.𝜏1 ∶ ∃𝛼.𝜏1

Pack

Γ ⊢ 𝑡1 ∶ ∃𝛼.𝜏1 Γ, 𝛼, 𝑥 ∶ 𝜏1 ⊢ 𝑡2 ∶ 𝜏2

Γ ⊢ unpack 𝛼, 𝑥 = 𝑡1 in 𝑡2 ∶ 𝜏2
Unpack

16



Existential types

• We can Church-encode existential types using universal types in System F!

∃𝛼.𝜏 ≜ ∀𝛽.(∀𝛼.𝜏 → 𝛽) → 𝛽

See Types and Programming Languages (TAPL), Chapter 24, Pierce

17



What else?

Important features in real-world languages we haven’t covered:

• Recursive type: 𝜇𝛼.𝜏
• Can encode general recursive functions
• Useful to define inductive data types, e.g. list: 𝜇𝛼.unit + nat × 𝛼

• Subtyping: 𝜏1 <∶ 𝜏2
• Nominal vs structural type systems
• Type checking/inference

18



Propositions as types

• Curry-Howard Correspondence
• Propositions as types

• ⊤ as unit type
• ⊥ as empty type
• 𝐴 ∧ 𝐵 as 𝐴 × 𝐵
• 𝐴 ∨ 𝐵 as 𝐴 + 𝐵
• 𝐴 ⟹ 𝐵 as 𝐴 → 𝐵
• ∀𝑥.𝑃(𝑥) as Π-type
• ∃𝑥.𝑃 (𝑥) as Σ-type

• Proofs as programs; proof normalization as program evaluation

19



Propositions as types

• Very expressive system to formalize mathematics
• Languages (or proof assistants) based on dependent type theory: Coq/Rocq,

Lean, Agda, etc.
• Proper mathematicians are using these PLs to write and verify their proofs

nowadays!

20



Propositions as types

Talk: Propositions as Types by Philip Wadler

https://www.youtube.com/watch?v=IOiZatlZtGU
21

https://www.youtube.com/watch?v=IOiZatlZtGU


Effects

• What is an effect?
• Generally: anything happening during program execution that is not computing a

value from its input

• Examples:
• non-termination
• read a state, update a state, I/O
• exceptions/continuations
• non-determinism
• etc.

22



Effects

• What is an effect?
• Generally: anything happening during program execution that is not computing a

value from its input

• Examples:
• non-termination
• read a state, update a state, I/O
• exceptions/continuations
• non-determinism
• etc.

22



Mutable State

• SML-style mutable references: ref, set, get

Syntax

𝑡 ∶∶= ⋯ ∣ ref 𝑡 ∣ set 𝑡1 𝑡2 ∣ get 𝑡 ∣ 𝑙 terms
𝑙 ∈ Loc ≜ ℕ locations
𝑣 ∶∶= ⋯ ∣ 𝑙 values
𝜏 ∶∶= ⋯ ∣ ref 𝜏 types
𝐸 ∶∶= ⋯ ∣ ref 𝐸 ∣ set 𝐸 𝑡 ∣ set 𝑣 𝐸 ∣ get 𝐸 reduction contexts

23



Mutable State

• Need to extend the configuration to include a store (or heap) 𝜎 ∶ Loc ⇀ Val that
maps locations to values

Dynamics (𝑡, 𝜎) → (𝑡′, 𝜎′)

𝑙 ∉ dom(𝜎)
(ref 𝑣, 𝜎) → (𝑙, 𝜎[𝑙 ↦ 𝑣])

Ref
(set 𝑙 𝑣, 𝜎) → ((), 𝜎[𝑙 ↦ 𝑣])

Set

𝜎(𝑙) = 𝑣
(get 𝑙, 𝜎) → (𝑣, 𝜎)

Get
(𝑡, 𝜎) → (𝑡′, 𝜎′)

(𝐸[𝑡], 𝜎) → (𝐸[𝑡′], 𝜎′)
Context

24



Mutable State

• Need to statically type the store Σ ∶ Loc ⇀ Type that maps locations to types
Statics Σ, Γ ⊢ 𝑡 ∶ 𝜏

Σ, Γ ⊢ 𝑡 ∶ 𝜏
Σ, Γ ⊢ ref 𝑡 ∶ ref 𝜏

Ref
Σ, Γ ⊢ 𝑡1 ∶ ref 𝜏 Σ, Γ ⊢ 𝑡2 ∶ 𝜏

Σ, Γ ⊢ set 𝑡1 𝑡2 ∶ unit
Set

Σ, Γ ⊢ 𝑡 ∶ ref 𝜏
Σ, Γ ⊢ get 𝑡 ∶ 𝜏

Get
Σ(𝑙) = 𝜏

Σ, Γ ⊢ 𝑙 ∶ ref 𝜏
Loc

• Question: why do we need to type locations even they cannot appear in the
surface syntax?

25



Next week

• Next Tuesday (Sept 16):

A Functional Correspondence between Evaluators and Abstract Machines

• Be sure reading the paper before class! Submit a summary on Canvas before the
class.

• Next Thursday (Sept 18): paper discussion or lecture?

26


