CS150 APL: Type Systems and Effects

Guannan Wei
guannan.wei@tufts.edu

Sept 11, 2025

Tufts University

= Simply typed lambda calculus (STLC)
= Soundness, incompleteness

Polymorphic lambda calculus (System F)
= Unit type

More expressive type systems:

= Product types
= Sum types

Existential types
Effects

Product type

= Product type (pair type, tuple type): 7y X Ty
= E.g. struct in C but without field names

Syntax
t u= | (t1,ty) | fst ¢ |snd t terms
v o= | (v, 0,) values
T u= | 7 X 7o types
E : | (v, E) | (E,t) | fst E'|snd E reduction contexts

Product type

Dynamics
Fst SND
fst (vy,v9) = v snd (vq,vy) — Vg
Statics
't :my I'Ety:my I'Et:m X1y 'Et:m x1y
PAIR — " FsT — " SND
IE(t,ty) : 7y X Ty FHfstt:n 'Fsndt:mT,

Product type

= Can generalize to n-ary record type:
WAL B cee ey)
where [; are field labels (names).

= Record can be either ordered or unordered. Useful to model objects in OOP
languages.

» Example: {name : string, age : nat}

= Similar to a union of two types, but each the variants are tagged

= Encoding errors with option type, e.g. in SML:

datatype 'a option = NONE | SOME of 'a

case some_computation of
NONE => handle_error ()

| SOME x => use_value x

Syntax

5 s ~linl ¢ |inrt|casety of inl zy = ty;inr zy = t, terms

v == - |inlov|inrov values

T = |47 types

E : «|inl E|inr E | case E of inl ; = t;inr z, = t, reduction contexts

= inl ¢ constructs a value of type 7 + 75 from a value of type 7;
= inr ¢ constructs a value of type 7, + 7, from a value of type 7,
= case to consume a sum type value, need to provide handler for each variant

= Example: option type
datatype 'a option = NONE | SOME of 'a
option(a) = unit + «
NONE = Aa.inl () : option(«)
SOME = Aa.\v : a.inr v : Ya.a — option(a)

x safeDiv y = Az.\y.if0 y then NONE[nat] else SOME[nat](z/y)

Dynamics

CASE-INL
case (inl v) of inl z; = ty;inr x5 = ty — ty[x; := v

CASE-INR
case (inr v) of inl x; = ty;inr x4 = ty — ty[zy = V]

10

Statics

'kt:m 'Et:m
INL INR
'kinlt:m + 7 PEinrt:m + 7

FEty:m + 7 e, :m bt 7 Dzg:my bty T
CASE

I' - case ty of inl x; = ty;inrxy =ty : T

11

= Can generalize to n-ary labeled variants:
(I s Tqyeees by o 7))
where [, are variant labels (names).

= Injection to one of the variants: inj, t: (l; : 7y,...,1, : 7,)

12

Existential types

= Existential types: da.T
= Dual to universal types (V-quantification)

Syntax
i s - | pack 7,t as Ja.7, | unpack a,z =, int, terms
v = - | pack 7y, v as Ja.7y values
7 = | JaT types
E : -+ | pack 7, E' as Ja.7y | unpack a,x = E' in t reduction contexts

13

Existential types

= Useful to express abstract data types (ADTs) or module systems (e.g. in
SML/OCaml) and to hide implementation details

= Example: a counter ADT (using record type)

Counter = Ja.{init : v, inc : @ — «, get : @ — nat}

An implementation:

Impl = pack nat, {init : 0,inc : Az : nat.x + 1, get : Az : nat.z} as Counter

A client:
unpack o, x = Impl in

let ¢ = x.inc(x.init) in x.get ¢

14

Existential types

Dynamics

UNPACKPACK
unpack a, x = (pack 71,v as 35.75) in ty — to|a:= T, 2 := 1]

il5

Existential types

Statics

FEt:nfa:=m) ack

I' = pack 7,,t as Jo.7; + Jaey

't : 3oy Daz:mFiy:my
UNPACK

I' - unpack a,x =1, inty : 7y

16

Existential types

= We can Church-encode existential types using universal types in System F!
Ja.r = VB.(Va.r — B) = 8

See Types and Programming Languages (TAPL), Chapter 24, Pierce

17

What else?

Important features in real-world languages we haven't covered:

= Recursive type: pa.t
= Can encode general recursive functions
= Useful to define inductive data types, e.g. list: pa.unit 4 nat X «

= Subtyping: 7 <: Ty
= Nominal vs structural type systems
= Type checking/inference

18

Propositions as types

= Curry-Howard Correspondence
= Propositions as types
= T as unit type
= | as empty type
= ANBas Ax B
= AVBas A+ B
= A — BasA— B
Va.P(x) as I-type
= Jx.P(z) as X-type
= Proofs as programs; proof normalization as program evaluation

19

Propo ns as types

= Very expressive system to formalize mathematics

Languages (or proof assistants) based on dependent type theory: Coq/Rocq,
Lean, Agda, etc.

Proper mathematicians are using these PLs to write and verify their proofs
nowadays!

20

Propositions as types

Propositions as Types

Philip Wadler
University of Edinburgh

m Strange Loop

St Louis, 25 August 2015
strangelaop

Sept 25-26,2015

thestrangeloop.com

Talk: Propositions as Types by Philip Wadler

https://www.youtube.com/watch?v=10iZat|ZtGU
21

https://www.youtube.com/watch?v=IOiZatlZtGU

= What is an effect?
= Generally: anything happening during program execution that is not computing a
value from its input

22

= What is an effect?

= Generally: anything happening during program execution that is not computing a
value from its input

= Examples:
= non-termination
= read a state, update a state, 1/O
= exceptions/continuations
= non-determinism
= etc.

22

Mutable State

= SML-style mutable references: ref, set, get

Syntax

t
l
v
-
E

n= .| reft|sett;t,|gett]|l
102
€ Loc=N

|1

= e | ref T
= - |refE|set Et|setv E|getE

terms

locations

values

types

reduction contexts

23

Mutable State

= Need to extend the configuration to include a store (or heap) o : Loc — Val that
maps locations to values

Dynamics (t,0) — (t',0")

[¢ dom(o)
REF SET
(ref v,0) = (I, o[l = v]) (set lv,0) = ((), 0l = v])
o) =v GET (o) = (¢,0) CONTEXT
(get l,0) = (v,0) (E[t],0) = (E[t'],0")

24

Mutable State

= Need to statically type the store ¥ : Loc — Type that maps locations to types
Statics X, ['Ht: 7

>, I'Ht:7 Y, 't cref 7 Y, Ity
REF SET
Y, I'reft:refr 3, I"Fset ty ty @ unit
S, Dkt:refr Xl)=r71
—— GET —— Loc
Y. Ikgett:r X, :ref 7

= Question: why do we need to type locations even they cannot appear in the
surface syntax?

25)

= Next Tuesday (Sept 16):
A Functional Correspondence between Evaluators and Abstract Machines

= Be sure reading the paper before class! Submit a summary on Canvas before the
class.

= Next Thursday (Sept 18): paper discussion or lecture?

26

