CS150 APL: Type Systems

Dr. Guannan Wei
guannan.wei@tufts.edu

Sept 9, 2025

Tufts University

= How to define a programming language?

A-calculus and operational semantics

Syntax and dynamics

n € N
E == O|vE|Et|veE|E®t reduction contexts

t; — 11

v

ADD — O1X
(Az.t)v — t[x := v ny B ng — ny +ny E[t,] — EJt1]

A-calculus and operational semantics

Syntax and dynamics

n € N
E == O|vE|Et|veE|E®t reduction contexts
t, = 4
by ADD — O1X
(Az.t)v — t[x := v ny B ng — ny +ny E[t,] — EJt1]

Stuck programs

= Application of a number to another number: 1 2
» Adding a A-term with a number: (A\z.z) + 3

Type system: Motivation

Stuck programs

= Application of a number to another number: 1 2
= Adding a A-term with a number: (A\z.x) + 3

= There are well-formed (i.e. syntactically valid) programs that do not evaluate to a
value according to the dynamics (i.e. they stuck).
= We want to rule out such programs statically (i.e. before running them).

Type system

= Type system: a syntactic discipline to classify the result of terms (i.e. values)
= Well-typed programs cannot “go wrong” — Robin Milner, 1978

Simply-typed \-calculus (STLC)

Syntax
n € N
t == nlx|Azt|tity|t;Dt, terms
v o= n| Azt values
E = O|vE|Et|v®eE|E®t reduction contexts
T #= nat|7m =7, types
r == - |Tz:7 type environment

Simply-typed \-calculus (STLC)

Syntax
T == nat|7 — 7, types
[= o |0 e type environment
Statics
I(z) =7 Fz:mkFt:n
— Num — VAR ABS
I'-n:nat Fz:7 F'EXzt:m =1
PHty:m —=m FEiy:m 't :nat I+ t, : nat
App ADD

DEtytym I'-t, &ty : nat

Simply-typed \-calculus (STLC)

= Example

F=f:r—>7ra2:7 I'(f)=7—>71 F=f:r>7r,2:7 T'(x)=71
VAR

VAR
fir=ar 7 fiT =T fir=ar kT
AppP
fir=rm T fxT
ABs
firoTHEX . friT—> T
ABs

FAf A fe:(T—=7T)>T—>7T

= Annotation for argument type: Ax : 7.t (Church-style) vs Az.t (Curry-style)

Simply-typed \-calculus (STLC)

= Example: (Az.\y.x @ y) 42

Soundness of STLC

Progress

If ' =t : 7, then either ¢ is a value or there exists a term ¢, such that t — ¢,.
Preservation

fTF¢t:7andt —t, then T ¢ : 7.

Significance

= |n real programming languages, it means ruling out certain runtime errors.
= Behaviors that are not defined by the dynamic semantics (aka UB, undefined
behavior), such as dereferencing a dangling pointer, etc.

10

Incompleteness

Typically, type systems are incomplete: Not all well-behaved programs are well-typed.

Consider extension to STLC:

Syntax, dynamics, and statics
t u= - |if0t; t5 t; terms

IFO-THEN IFO-ELSE
if00t2 ty — 1o ifOnt2 ty — s
I'Ft; :nat I'Fty:r F'kty:7

CHif0t, tyty:T

IF0

= What would be a well-behaved but untypable program?
11

Simply-typed \-calculus (STLC) with division

= Can we capture all possible runtime errors with a type system?

Syntax and dynamics
t == - |t;divt, terms

Div

ny div ny — ny/ngy

12

Simply-typed \-calculus (STLC) with division

= Can we capture all possible runtime errors with a type system?

Syntax and dynamics
t = - |t;divt, terms

Div

ny div ny — ny/ngy

Options:

= Enhance the type system to rule out division by zero statically
= Needs to analyze possible numeric values, possible but would rule out many good
programs too
» Change the dynamic semantics to include runtime checks, so that n/0 — err

= Add a value representation err checked runtime errors 12
I 1 TR T | PR |

Relation to type checking/inference

= Declarative type system
= Read type judgment as a relation: (I',¢,7) € T
= Describe a set of triples (i.e. relation) of type environment, term, and type
= Can be nondeterministic (i.e. multiple rules can apply)
= Algorithmic type checking/inference
= Describe an algorithm to decide given a term ¢ if (I',¢,7) € T
= Usually syntax-directed, avoiding backtracking
= Could require type annotations from users to be decidable

i3

Polymorphism

= How to write a generic identity function that works for all types?
» FAx:7.x: 7 — 7 only defines for a specifc 7 (note that 7 is a meta variable
here).

14

Polymorphism

= How to write a generic identity function that works for all types?
» FAx:7.x: 7 — 7 only defines for a specifc 7 (note that 7 is a meta variable

here).

= Polymorphism: enables writing generic code that works for values of different

types
= Example: traverse a list but you don't care about the type of elements in the list,
such as map/fold function in functional programming languages
= Generics in Java, C#, etc.

14

Polymorphism

= System F (also called the polymorphic A-calculus) extends STLC with universal
types (aka. parametric polymorphism).

= Idea: introduce universal quantification over types.

= Just as we have \-terms that abstract over terms, we have A-terms that abstract

over types.

ii5

Syntax

H 3 e « 3

N

nlx|Ae:Tt|t ity |t; Dty | At |t T terms
n|Ax:71.t| Aot values
O|vE|Et|lveE|E®t|ET reduction contexts
nat | 7y, = 7 | a | Va.r types

Ahz:7 |« type environment

16

Dynamics

Az : T.t)v — t[z := 0] & (Aat) T — tla := 7] o

= Example:

type application (Aa.Ax : a.x) nat — (Az : a.x)[« := nat] = Az : nat.x

17

Statics

Nakt:r I'Ft:Vam
TABS TAppP
I'FAat:Va.r Lhtry:nla:i=1]

18

Example: Church-encoded Booleans

Type of Booleans: Va.ao — a — «
» True: Aot : a\f:at

False: AaAt: aAf:a.f

if t, then ty else t5: X =t X ty 14

19

Example: Church-encoded Booleans
= Example: if true then 1 else 2
= (Aa Xt :a\f:at)natl2
— (At : nat.Af :nat.t) 12
— (Af :nat.l) 2

— 1

20

= Unit type
= Product type
= Sum type

21

= Syntax
-] O terms
= 10 values
e | unit types
= Dynamics: no reduction
= Statics:
——— UnIT
' ():unit

22

