
CS150 APL: Type Systems

Dr. Guannan Wei
guannan.wei@tufts.edu
Sept 9, 2025

Tufts University

1



Last time

• How to define a programming language?

2



𝜆-calculus and operational semantics

Syntax and dynamics

𝑛 ∈ ℕ
𝑡 ∶∶= 𝑛 ∣ 𝑥 ∣ 𝜆𝑥.𝑡 ∣ 𝑡1 𝑡2 ∣ 𝑡1 ⊕ 𝑡2 terms

𝐸 ∶∶= □ ∣ 𝑣 𝐸 ∣ 𝐸 𝑡 ∣ 𝑣 ⊕ 𝐸 ∣ 𝐸 ⊕ 𝑡 reduction contexts

(𝜆𝑥.𝑡) 𝑣 → 𝑡[𝑥 ∶= 𝑣]
𝛽𝑣 𝑛1 ⊕ 𝑛2 → 𝑛1 + 𝑛2

Add
𝑡1 → 𝑡′

1
𝐸[𝑡1] → 𝐸[𝑡′

1]
Ctx

Stuck programs

• Application of a number to another number: 1 2
• Adding a 𝜆-term with a number: (𝜆𝑥.𝑥) + 3

3



𝜆-calculus and operational semantics

Syntax and dynamics

𝑛 ∈ ℕ
𝑡 ∶∶= 𝑛 ∣ 𝑥 ∣ 𝜆𝑥.𝑡 ∣ 𝑡1 𝑡2 ∣ 𝑡1 ⊕ 𝑡2 terms

𝐸 ∶∶= □ ∣ 𝑣 𝐸 ∣ 𝐸 𝑡 ∣ 𝑣 ⊕ 𝐸 ∣ 𝐸 ⊕ 𝑡 reduction contexts

(𝜆𝑥.𝑡) 𝑣 → 𝑡[𝑥 ∶= 𝑣]
𝛽𝑣 𝑛1 ⊕ 𝑛2 → 𝑛1 + 𝑛2

Add
𝑡1 → 𝑡′

1
𝐸[𝑡1] → 𝐸[𝑡′

1]
Ctx

Stuck programs

• Application of a number to another number: 1 2
• Adding a 𝜆-term with a number: (𝜆𝑥.𝑥) + 3

3



Type system: Motivation

Stuck programs

• Application of a number to another number: 1 2
• Adding a 𝜆-term with a number: (𝜆𝑥.𝑥) + 3

• There are well-formed (i.e. syntactically valid) programs that do not evaluate to a
value according to the dynamics (i.e. they stuck).

• We want to rule out such programs statically (i.e. before running them).

4



Type system

• Type system: a syntactic discipline to classify the result of terms (i.e. values)
• Well-typed programs cannot “go wrong”. – Robin Milner, 1978

5



Simply-typed 𝜆-calculus (STLC)

Syntax

𝑛 ∈ ℕ
𝑡 ∶∶= 𝑛 ∣ 𝑥 ∣ 𝜆𝑥.𝑡 ∣ 𝑡1 𝑡2 ∣ 𝑡1 ⊕ 𝑡2 terms
𝑣 ∶∶= 𝑛 ∣ 𝜆𝑥.𝑡 values

𝐸 ∶∶= □ ∣ 𝑣 𝐸 ∣ 𝐸 𝑡 ∣ 𝑣 ⊕ 𝐸 ∣ 𝐸 ⊕ 𝑡 reduction contexts
𝜏 ∶∶= nat ∣ 𝜏1 → 𝜏2 types
Γ ∶∶= ⋅ ∣ Γ, 𝑥 ∶ 𝜏 type environment

6



Simply-typed 𝜆-calculus (STLC)
Syntax

𝜏 ∶∶= nat ∣ 𝜏1 → 𝜏2 types
Γ ∶∶= ⋅ ∣ Γ, 𝑥 ∶ 𝜏 type environment

Statics

Γ ⊢ 𝑛 ∶ nat
Num

Γ(𝑥) = 𝜏
Γ ⊢ 𝑥 ∶ 𝜏

Var
Γ, 𝑥 ∶ 𝜏1 ⊢ 𝑡 ∶ 𝜏2

Γ ⊢ 𝜆𝑥.𝑡 ∶ 𝜏1 → 𝜏2
Abs

Γ ⊢ 𝑡1 ∶ 𝜏1 → 𝜏2 Γ ⊢ 𝑡2 ∶ 𝜏1

Γ ⊢ 𝑡1 𝑡2 ∶ 𝜏2
App

Γ ⊢ 𝑡1 ∶ nat Γ ⊢ 𝑡2 ∶ nat

Γ ⊢ 𝑡1 ⊕ 𝑡2 ∶ nat
Add

7



Simply-typed 𝜆-calculus (STLC)

• Example

Γ = 𝑓 ∶ 𝜏 → 𝜏, 𝑥 ∶ 𝜏 Γ(𝑓) = 𝜏 → 𝜏
𝑓 ∶ 𝜏 → 𝜏, 𝑥 ∶ 𝜏 ⊢ 𝑓 ∶ 𝜏 → 𝜏

Var
Γ = 𝑓 ∶ 𝜏 → 𝜏, 𝑥 ∶ 𝜏 Γ(𝑥) = 𝜏

𝑓 ∶ 𝜏 → 𝜏, 𝑥 ∶ 𝜏 ⊢ 𝑥 ∶ 𝜏
Var

𝑓 ∶ 𝜏 → 𝜏, 𝑥 ∶ 𝜏 ⊢ 𝑓 𝑥 ∶ 𝜏
App

𝑓 ∶ 𝜏 → 𝜏 ⊢ 𝜆𝑥. 𝑓 𝑥 ∶ 𝜏 → 𝜏
Abs

⊢ 𝜆𝑓. 𝜆𝑥. 𝑓 𝑥 ∶ (𝜏 → 𝜏) → 𝜏 → 𝜏
Abs

• Annotation for argument type: 𝜆𝑥 ∶ 𝜏.𝑡 (Church-style) vs 𝜆𝑥.𝑡 (Curry-style)

8



Simply-typed 𝜆-calculus (STLC)

• Example: (𝜆𝑥.𝜆𝑦.𝑥 ⊕ 𝑦) 42

9



Soundness of STLC

Progress

If Γ ⊢ 𝑡 ∶ 𝜏 , then either 𝑡 is a value or there exists a term 𝑡2 such that 𝑡 → 𝑡2.

Preservation

If Γ ⊢ 𝑡 ∶ 𝜏 and 𝑡 → 𝑡′, then Γ ⊢ 𝑡′ ∶ 𝜏 .

Significance

• In real programming languages, it means ruling out certain runtime errors.
• Behaviors that are not defined by the dynamic semantics (aka UB, undefined

behavior), such as dereferencing a dangling pointer, etc.

10



Incompleteness

Typically, type systems are incomplete: Not all well-behaved programs are well-typed.

Consider extension to STLC:

Syntax, dynamics, and statics

𝑡 ∶∶= ⋯ ∣ if0 𝑡1 𝑡2 𝑡3 terms

… if0 0 𝑡2 𝑡3 → 𝑡2
If0-then

if0 𝑛 𝑡2 𝑡3 → 𝑡3
If0-else

Γ ⊢ 𝑡1 ∶ nat Γ ⊢ 𝑡2 ∶ 𝜏 Γ ⊢ 𝑡3 ∶ 𝜏
Γ ⊢ if0 𝑡1 𝑡2 𝑡3 ∶ 𝜏

If0

• What would be a well-behaved but untypable program?
11



Simply-typed 𝜆-calculus (STLC) with division

• Can we capture all possible runtime errors with a type system?

Syntax and dynamics

𝑡 ∶∶= ⋯ ∣ 𝑡1 div 𝑡2 terms

… 𝑛1 div 𝑛2 → 𝑛1/𝑛2
Div

Options:

• Enhance the type system to rule out division by zero statically
• Needs to analyze possible numeric values, possible but would rule out many good

programs too
• Change the dynamic semantics to include runtime checks, so that 𝑛/0 → 𝑒𝑟𝑟

• Add a value representation 𝑒𝑟𝑟 checked runtime errors
• Runtime overhead

12



Simply-typed 𝜆-calculus (STLC) with division

• Can we capture all possible runtime errors with a type system?

Syntax and dynamics

𝑡 ∶∶= ⋯ ∣ 𝑡1 div 𝑡2 terms

… 𝑛1 div 𝑛2 → 𝑛1/𝑛2
Div

Options:

• Enhance the type system to rule out division by zero statically
• Needs to analyze possible numeric values, possible but would rule out many good

programs too
• Change the dynamic semantics to include runtime checks, so that 𝑛/0 → 𝑒𝑟𝑟

• Add a value representation 𝑒𝑟𝑟 checked runtime errors
• Runtime overhead

12



Relation to type checking/inference

• Declarative type system
• Read type judgment as a relation: (Γ, 𝑡, 𝜏) ∈ T

• Describe a set of triples (i.e. relation) of type environment, term, and type
• Can be nondeterministic (i.e. multiple rules can apply)

• Algorithmic type checking/inference
• Describe an algorithm to decide given a term 𝑡 if (Γ, 𝑡, 𝜏) ∈ T

• Usually syntax-directed, avoiding backtracking
• Could require type annotations from users to be decidable

13



Polymorphism

• How to write a generic identity function that works for all types?
• ⊢ 𝜆𝑥 ∶ 𝜏.𝑥 ∶ 𝜏 → 𝜏 only defines for a specifc 𝜏 (note that 𝜏 is a meta variable

here).

• Polymorphism: enables writing generic code that works for values of different
types

• Example: traverse a list but you don’t care about the type of elements in the list,
such as map/fold function in functional programming languages

• Generics in Java, C#, etc.

14



Polymorphism

• How to write a generic identity function that works for all types?
• ⊢ 𝜆𝑥 ∶ 𝜏.𝑥 ∶ 𝜏 → 𝜏 only defines for a specifc 𝜏 (note that 𝜏 is a meta variable

here).

• Polymorphism: enables writing generic code that works for values of different
types

• Example: traverse a list but you don’t care about the type of elements in the list,
such as map/fold function in functional programming languages

• Generics in Java, C#, etc.

14



Polymorphism

• System F (also called the polymorphic 𝜆-calculus) extends STLC with universal
types (aka. parametric polymorphism).

• Idea: introduce universal quantification over types.
• Just as we have 𝜆-terms that abstract over terms, we have Λ-terms that abstract

over types.

15



System F

Syntax

𝑛 ∈ ℕ
𝑡 ∶∶= 𝑛 ∣ 𝑥 ∣ 𝜆𝑥 ∶ 𝜏.𝑡 ∣ 𝑡1 𝑡2 ∣ 𝑡1 ⊕ 𝑡2 ∣ Λ𝛼.𝑡 ∣ 𝑡 𝜏 terms
𝑣 ∶∶= 𝑛 ∣ 𝜆𝑥 ∶ 𝜏.𝑡 ∣ Λ𝛼.𝑡 values

𝐸 ∶∶= □ ∣ 𝑣 𝐸 ∣ 𝐸 𝑡 ∣ 𝑣 ⊕ 𝐸 ∣ 𝐸 ⊕ 𝑡 ∣ 𝐸 𝜏 reduction contexts
𝜏 ∶∶= nat ∣ 𝜏1 → 𝜏2 ∣ 𝛼 ∣ ∀𝛼.𝜏 types
Γ ∶∶= ⋅ ∣ Γ, 𝑥 ∶ 𝜏 ∣ Γ, 𝛼 type environment

16



System F

Dynamics

… (𝜆𝑥 ∶ 𝜏.𝑡) 𝑣 → 𝑡[𝑥 ∶= 𝑣]
𝛽𝑣 (Λ𝛼.𝑡) 𝜏 → 𝑡[𝛼 ∶= 𝜏]

𝛽Λ

• Example:

type application (Λ𝛼.𝜆𝑥 ∶ 𝛼.𝑥) nat → (𝜆𝑥 ∶ 𝛼.𝑥)[𝛼 ∶= nat] ≡ 𝜆𝑥 ∶ nat.𝑥

17



System F

Statics

…
Γ, 𝛼 ⊢ 𝑡 ∶ 𝜏

Γ ⊢ Λ𝛼.𝑡 ∶ ∀𝛼.𝜏
TAbs

Γ ⊢ 𝑡 ∶ ∀𝛼.𝜏1

Γ ⊢ 𝑡 𝜏2 ∶ 𝜏1[𝛼 ∶= 𝜏2]
TApp

18



System F

Example: Church-encoded Booleans

• Type of Booleans: ∀𝛼.𝛼 → 𝛼 → 𝛼
• True: Λ𝛼.𝜆𝑡 ∶ 𝛼.𝜆𝑓 ∶ 𝛼.𝑡
• False: Λ𝛼.𝜆𝑡 ∶ 𝛼.𝜆𝑓 ∶ 𝛼.𝑓
• if 𝑡1 then 𝑡2 else 𝑡3 ∶ 𝑋 ≜ 𝑡1 𝑋 𝑡2 𝑡3

19



System F

Example: Church-encoded Booleans

• Example: if true then 1 else 2

= (Λ𝛼.𝜆𝑡 ∶ 𝛼.𝜆𝑓 ∶ 𝛼.𝑡) nat 1 2

→ (𝜆𝑡 ∶ nat.𝜆𝑓 ∶ nat.𝑡) 1 2

→ (𝜆𝑓 ∶ nat.1) 2

→ 1

20



Datatypes

• Unit type
• Product type
• Sum type

21



Unit type

• Syntax

𝑡 ∶∶= ⋯ ∣ () terms
𝑣 ∶∶= ⋯ ∣ () values
𝜏 ∶∶= ⋯ ∣ unit types

• Dynamics: no reduction
• Statics:

Γ ⊢ () ∶ unit
Unit

22


