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Last time

• Logistics update: paper reading/discussion can be selected from advanced topics
in textbooks

• Defining a programming language

• Syntax
• Dynamic semantics
• Static semantics
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Last time: operational semantics

Syntax of the 𝜆-calculus:

𝑛 ∈ ℕ
𝑡 ∶∶= 𝑛 ∣ 𝑥 ∣ 𝜆𝑥.𝑡 ∣ 𝑡1 𝑡2 terms

Many flavors of operational semantics:

• Structural operational semantics (i.e. small-step semantics)
• Contextual reduction semantics
• Abstract machines
• Natural semantics (i.e. big-step semantics)
• Evaluators
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Last time: Call-by-value

Structural operational semantics

(𝜆𝑥.𝑡) 𝑣 → 𝑡[𝑥 ∶= 𝑣]
𝛽𝑣

𝑡1 → 𝑡′
1

𝑡1 𝑡2 → 𝑡′
1 𝑡2

App1
𝑡2 → 𝑡′

2
𝑣 𝑡2 → 𝑣 𝑡′

2
App2

Reduction semantics

𝐸 ∶∶= □ ∣ 𝑣 𝐸 ∣ 𝐸 𝑡 reduction contexts

(𝜆𝑥.𝑡) 𝑣 → 𝑡[𝑥 ∶= 𝑣]
𝛽𝑣

𝑡1 → 𝑡′
1

𝐸[𝑡1] → 𝐸[𝑡′
1]

Ctx
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Last time: Call-by-name

Structural operational semantics

(𝜆𝑥.𝑡1) 𝑡2 → 𝑡1[𝑥 ∶= 𝑡2]
𝛽

𝑡1 → 𝑡′
1

𝑡1 𝑡2 → 𝑡′
1 𝑡2

App

Reduction semantics

• Question: define the evaluation context for CBN.
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Last time: Call-by-name

Structural operational semantics

(𝜆𝑥.𝑡1) 𝑡2 → 𝑡1[𝑥 ∶= 𝑡2]
𝛽

𝑡1 → 𝑡′
1

𝑡1 𝑡2 → 𝑡′
1 𝑡2

App

Reduction semantics

𝐸 ∶∶= □ ∣ ��HH𝑣 𝐸 ∣ 𝐸 𝑡 reduction contexts

(𝜆𝑥.𝑡1) 𝑡2 → 𝑡1[𝑥 ∶= 𝑡2]
𝛽

𝑡1 → 𝑡′
1

𝐸[𝑡1] → 𝐸[𝑡′
1]

Ctx
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Some properties

• Decomposition is unique
• Given 𝑡, there exists only one 𝐸 and (𝜆𝑥.𝑡) 𝑣 such that 𝑡 = 𝐸[(𝜆𝑥.𝑡) 𝑣]
• Uniqueness of decomposition implies the determinism of evaluation

• Equivalence between SOS and reduction semantics
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From reduction semantics to abstract machines

Given 𝑡, find an 𝐸 and 𝑡1 such that 𝑡 = 𝐸[𝑡1], if 𝑡1 → 𝑡′
1, plug 𝑡′

1 into 𝐸 to obtain
𝐸[𝑡′

1].

• It postulates 𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑒 ∶ Term → (Ctx, Term) and
𝑝𝑙𝑢𝑔𝑖𝑛 ∶ (Ctx, Term) → Term (meta)-functions.

• They need to search for the innermost redex (𝜆𝑥.𝑡) 𝑣 in the AST and reconstruct
the AST replacing □ (complexity: both 𝑂(height(𝑡))).

• Neither a faithful description of an “implementation”, nor can be used as an
efficient one.
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The CC abstract machine

• Idea: materialize the search of redex by maintaining a pair of focused term and its
context, and directly manipulate context.

• CC machine stands for “control string”-“context” machine

CC Machine: ⟨𝑡, 𝐸⟩ →𝑐𝑐 ⟨𝑡′, 𝐸′⟩

𝐸 ∶∶= □ ∣ 𝑣 𝐸 ∣ 𝐸 𝑡 reduction contexts

⟨𝑡1 𝑡2, 𝐸⟩ →𝑐𝑐 ⟨𝑡1, 𝐸[(□ 𝑡2)]⟩ if 𝑡1 not value [cc-app1]
⟨𝑣 𝑡2, 𝐸⟩ →𝑐𝑐 ⟨𝑡2, 𝐸[(𝑣 □)]⟩ if 𝑡2 not value [cc-app2]

⟨(𝜆𝑥.𝑡) 𝑣, 𝐸⟩ →𝑐𝑐 ⟨𝑡[𝑥 ∶= 𝑣], 𝐸⟩ [cc-𝛽]
⟨𝑣, 𝐸[(□ 𝑡)]⟩ →𝑐𝑐 ⟨𝑣 𝑡, 𝐸⟩ [cc-use1]

⟨𝑣2, 𝐸[(𝑣1 □)]⟩ →𝑐𝑐 ⟨𝑣1 𝑣2, 𝐸⟩ [cc-use2]
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The CC abstract machine

• Example in class:

((𝜆𝑓.𝜆𝑥.𝑓 𝑥) (𝜆𝑦.𝑦)) 1
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Simplifying the CC machine

CC Machine: ⟨𝑡, 𝐸⟩ →𝑐𝑐 ⟨𝑡′, 𝐸′⟩

𝐸 ∶∶= □ ∣ 𝑣 𝐸 ∣ 𝐸 𝑡 reduction contexts

⟨𝑡1 𝑡2, 𝐸⟩ →𝑐𝑐 ⟨𝑡1, 𝐸[(□ 𝑡2)]⟩ if 𝑡1 not value [cc-app1]
⟨𝑣 𝑡2, 𝐸⟩ →𝑐𝑐 ⟨𝑡2, 𝐸[(𝑣 □)]⟩ if 𝑡2 not value [cc-app2]

⟨(𝜆𝑥.𝑡) 𝑣, 𝐸⟩ →𝑐𝑐 ⟨𝑡[𝑥 ∶= 𝑣], 𝐸⟩ [cc-𝛽]
⟨𝑣, 𝐸[(□ 𝑡)]⟩ →𝑐𝑐 ⟨𝑣 𝑡, 𝐸⟩ [cc-use1]

⟨𝑣2, 𝐸[(𝑣1 □)]⟩ →𝑐𝑐 ⟨𝑣1 𝑣2, 𝐸⟩ [cc-use2]

• What is the rule used after cc-use1?

• What is the rule used after cc-use2?
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The Simplified CC abstract machine

SCC Machine: ⟨𝑡, 𝐸⟩ →𝑠𝑐𝑐 ⟨𝑡′, 𝐸′⟩

𝐸 ∶∶= □ ∣ 𝑣 𝐸 ∣ 𝐸 𝑡 reduction contexts

⟨𝑡1 𝑡2, 𝐸⟩ →𝑠𝑐𝑐 ⟨𝑡1, 𝐸[(□ 𝑡2)]⟩ [scc-app1]
⟨𝑣, 𝐸[(□ 𝑡)]⟩ →𝑠𝑐𝑐 ⟨𝑡, 𝐸[(𝑣 □)]⟩ [scc-app2]

⟨𝑣, 𝐸[((𝜆𝑥.𝑡) □)]⟩ →𝑠𝑐𝑐 ⟨𝑡[𝑥 ∶= 𝑣], 𝐸⟩ [scc-𝛽]
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From Contexts to Continuations

SCC Machine: ⟨𝑡, 𝐸⟩ →𝑠𝑐𝑐 ⟨𝑡′, 𝐸′⟩

𝐸 ∶∶= □ ∣ 𝑣 𝐸 ∣ 𝐸 𝑡 reduction contexts

⟨𝑡1 𝑡2, 𝐸⟩ →𝑠𝑐𝑐 ⟨𝑡1, 𝐸[(□ 𝑡2)]⟩ [scc-app1]
⟨𝑣, 𝐸[(□ 𝑡)]⟩ →𝑠𝑐𝑐 ⟨𝑡, 𝐸[(𝑣 □)]⟩ [scc-app2]

⟨𝑣, 𝐸[((𝜆𝑥.𝑡) □)]⟩ →𝑠𝑐𝑐 ⟨𝑡[𝑥 ∶= 𝑣], 𝐸⟩ [scc-𝛽]

• SCC machine still needs the “decompose” and “plugin” meta-functions
• But, also observe that context 𝐸 is used as a stack:

• scc-app1 “pushes” a new (□ 𝑡2) frame to the top of context 𝐸
• scc-app2 “peeks” the top frame of 𝐸 and replace it
• scc-beta “pops” the top frame of 𝐸
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From Contexts to Continuations

• Idea: use a list-like data structure to represent contexts
• CK machine stands for “control-string”-“continuation” machine

Continuation

𝜅 ∶∶= halt
∣ fun(𝑣, 𝜅) hold the value at the function position
∣ arg(𝑡, 𝜅) hold the term at the argument position

Or, in a programming language, such as Standard ML
datatype cont = Halt

| Fun of value * cont
| Arg of term * cont
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From Contexts to Continuations

• Idea: use a list-like data structure to represent contexts
• CK machine stands for “control-string”-“continuation” machine

Continuation

𝜅 ∶∶= halt
∣ fun(𝑣, 𝜅) hold the value at the function position
∣ arg(𝑡, 𝜅) hold the term at the argument position

• Context, continuations, stack: what should be done after evaluating the current
expression

Continuation as stack, explicitly

𝑓 ∶∶= fun(𝑣) ∣ arg(𝑡) stack frames
𝜅 ∶∶= halt ∣ 𝑓 ∶∶ 𝜅 continuation/stack
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The CK Machine

Continuation

𝜅 ∶∶= halt
∣ fun(𝑣, 𝜅) hold the value at the function position
∣ arg(𝑡, 𝜅) hold the term at the argument position

CK Machine: ⟨𝑡, 𝜅⟩ →𝑐𝑘 ⟨𝑡′, 𝜅′⟩

⟨𝑡1 𝑡2, 𝜅⟩ →𝑐𝑘 ⟨𝑡1, arg(𝑡2, 𝜅)⟩ [ck-app1]
⟨𝑣, arg(𝑡, 𝜅)⟩ →𝑐𝑘 ⟨𝑡, fun(𝑣, 𝜅)⟩ [ck-app2]

⟨𝑣, fun(𝜆𝑥.𝑡, 𝜅)⟩ →𝑐𝑘 ⟨𝑡[𝑥 ∶= 𝑣], 𝜅⟩ [ck-𝛽]
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On Substitution

⟨𝑣, fun(𝜆𝑥.𝑡, 𝜅)⟩ →𝑐𝑘 ⟨t[x ∶= v], 𝜅⟩

• Eager textual substitution:
• Needs to traverse the term’s AST and find the free occurrences of 𝑥 in 𝑡 to replace

with 𝑣.
• But an actual implementation would not perform substitutions.
• Caveat: if 𝑣 is not closed (i.e. containing free variables), then substitution needs to

be capturing avoiding.

• Alternative 1: don’t substitute eagerly, but keep track of the binding values in the
syntax of the calculus (explicit substitution).

• Alternative 2: don’t substitute eagerly, but keep track of the binding values at
the meta-level (environment).
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The CEK abstract machine

• Idea: a partial mapping (i.e. environment) from variables to their values

𝑣 ∈ Value ∶∶= 𝑛 ∣ 𝜆𝑥.𝑡 values
𝜌 ∈ Env ∶∶= Var ⇀ (Value × Env) environment

𝜅 ∈ Cont ∶∶= halt ∣ fun(𝑣, 𝜌, 𝜅) ∣ arg(𝑡, 𝜌, 𝜅) continuation

CEK Machine: ⟨𝑡, 𝜌, 𝜅⟩ →𝑐𝑒𝑘 ⟨𝑡′, 𝜌′, 𝜅′⟩

⟨𝑥, 𝜌, 𝜅⟩ →𝑐𝑒𝑘 ⟨𝑣, 𝜌′, 𝜅⟩ if 𝜌(𝑥) = (𝑣, 𝜌′) [cek-var]
⟨𝑡1 𝑡2, 𝜌, 𝜅⟩ →𝑐𝑒𝑘 ⟨𝑡1, 𝜌, arg(𝑡2, 𝜌, 𝜅)⟩ [cek-app1]

⟨𝑣, 𝜌, arg(𝑡, 𝜌′, 𝜅)⟩ →𝑐𝑒𝑘 ⟨𝑡, 𝜌′, fun(𝑣, 𝜌, 𝜅)⟩ [cek-app2]
⟨𝑣, 𝜌, fun(𝜆𝑥.𝑡, 𝜌′, 𝜅)⟩ →𝑐𝑒𝑘 ⟨𝑡, 𝜌′[𝑥 ↦ (𝑣, 𝜌)], 𝜅⟩ [cek-app3]
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The CEK abstract machine

• Example in class: extend the CEK machine with arithmetics 𝑡1 + 𝑡2

• Example in class:

((𝜆𝑓.𝜆𝑥.𝑓 𝑥) (𝜆𝑤.𝑤 + 1)) 2
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The CEK abstract machine

• Closure = Value × Env

The environment provides values for free variables in the value (thus “closes” the
value).

• Lexical scoping: free variables bind in the environment at the time a function is
defined

• Dynamic scoping: free variables bind in the environment at the time a function is
called (very few languages in this way)
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Natural Semantics

• So far, all semantics executes with discrete steps
• These steps relate intermediate terms/states
• We can observe intermediate states during evaluation
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Natural Semantics

• Alternative: directly relating the initial term and final value

Natural semantics: (𝑡, 𝜌) ⇓ 𝑣

𝜌(𝑥) = 𝑣
(𝑥, 𝜌) ⇓ 𝑣 (𝜆𝑥.𝑡, 𝜌) ⇓ (𝜆𝑥.𝑡, 𝜌)

(𝑡1, 𝜌) ⇓ (𝜆𝑥.𝑡, 𝜌′) (𝑡2, 𝜌) ⇓ 𝑣2 (𝑡, 𝜌′[𝑥 ↦ 𝑣2]) ⇓ 𝑣
(𝑡1 𝑡2, 𝜌) ⇓ 𝑣
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Natural Semantics

• What if the program does not terminate (i.e. diverging)?

• What if the langauge has some concurrency primitives?
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Evaluator

• Now read ⇓ as a function: ⇓ (𝑡, 𝜌) = 𝑣
• Directly correspond to a recursive, direct-style evaluator, implementing the natural

semantics

def eval(t: Term, env: Map[Var, Closure]): Closure =
t match

case Var(x) => env(x)
case App(t1, t2) =>

val Closure(Lam(x, t), env1) = eval(t1, env)
val v2 = eval(t2, env)
eval(t, env1 + (x -> v2))

case Lam(x, t) =>
Closure(Lam(x, t), env)
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Summary

Different ways of specifying semantics, describing different level of execution

• Structural operatioanal semantics (SOS): purely term rewriting
• Reduction semantics: evaluation strategy defined by contexts
• Abstract machines: more mechanical and efficient
• Natural semantics: relating the initial term and final result
• Direct-style evaluator: direct implementation of natural semantics

Some exercises:

• Extend reduction semantics with arithmetic operations
• Implement the compose/plugin function for reduction semantics
• Implement the CC/SCC/CEK machine and extend it with numbers and arithmetic

operations
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Further reading

• Are there call-by-name abstract machines?

Yes, look at Krivine’s machine.

• Does the CEK machine correspond to an evaluator?

A functional correspondence between evaluators and abstract machines. PPDP
’03.

• What if our language imperative features (e.g. assignment, mutation, etc.)?

Look at CESK machine (“S” for store/heap).
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