CS150 Adv Prog Lang: Dynamic Semantics

Guannan Wei
guannan.wei@tufts.edu

Sept 4, 2025

Tufts University

= Logistics update: paper reading/discussion can be selected from advanced topics
in textbooks

= Defining a programming language

= Syntax
= Dynamic semantics
= Static semantics

Last time: operational semantics

Syntax of the A-calculus:

n € N
t == nlzx|Azt|t t, terms

Many flavors of operational semantics:

= Structural operational semantics (i.e. small-step semantics)
= Contextual reduction semantics

= Abstract machines

= Natural semantics (i.e. big-step semantics)

= Evaluators

Last time: Call-by-value

Structural operational semantics

t, — 1 ty — 1o
A —————— Apprl ————— APP2
(Ax.t)v — t[x := v tity =t Ly v, — vih
Reduction semantics
E == O|vE|FEt reduction contexts
t; =t
¥ —— CO1x
(Ax.t)v — t[z := v E[t,] — E[t]]

Last time: Call-by-name

Structural operational semantics

t; = t]
ﬂ - -

Reduction semantics

= Question: define the evaluation context for CBN.

Last time: Call-by-name

Structural operational semantics

t; = t]
B ———— AppP
Reduction semantics
E == 0O|>»E|FEt reduction contexts
t; > t]
B ——— Orx

Some properties

= Decomposition is unique
= Given t, there exists only one E and (Az.t) v such that ¢t = E[(Az.t) v]
= Uniqueness of decomposition implies the determinism of evaluation

= Equivalence between SOS and reduction semantics

From reduction semantics to abstract machines

Given t, find an F and ¢, such that t = E[t,], if t; — t{, plug t] into E to obtain
E[t1].

= |t postulates decompose : Term — (Ctx, Term) and
plugin : (Ctx, Term) — Term (meta)-functions.

From reduction semantics to abstract machines

Given t, find an F and ¢, such that t = E[t,], if t; — t{, plug t] into E to obtain
E[t1].

= |t postulates decompose : Term — (Ctx, Term) and
plugin : (Ctx, Term) — Term (meta)-functions.

= They need to search for the innermost redex (Az.t) v in the AST and reconstruct
the AST replacing O (complexity: both O(height(?))).

From reduction semantics to abstract machines

Given t, find an F and ¢, such that t = E[t,], if t; — t{, plug t] into E to obtain
E[t1].

» It postulates decompose : Term — (Ctx, Term) and
plugin : (Ctx, Term) — Term (meta)-functions.
= They need to search for the innermost redex (Az.t) v in the AST and reconstruct

the AST replacing O (complexity: both O(height(?))).

= Neither a faithful description of an “implementation”, nor can be used as an

efficient one.

The CC abstract machine

= |dea: materialize the search of redex by maintaining a pair of focused term and its
context, and directly manipulate context.

[T}

= CC machine stands for “control string”-"context” machine

CC Machine: (t,E) —.. (t',E")

E == O|vE|Et reduction contexts
(ty to, E) —.. (t1, E[(Oty)]) if t; not value [cc-appl]
(vity, E) —.. (ty, E[(vO)]) if ty not value [cc-app2]
(Azt) v, E) — (tlz:=0],E) [cc-5]
(v, E[(O%)]) —. (vt E) [cc-usel]
(vg, E[(vy D)) e (vy 03, E) [cc-use?]

The CC abstract machine

= Example in class:

(AfAz.fx) (Ayy)) 1

10

Simplifying the CC machine

CC Machine: (t,E) —_. (t',E")

E == O|vE|Et reduction contexts
(t; to, E) —.. (ty, E[(Oty)]) if t; not value [cc-appl]
(vity, E) —.. (ty, E[(vO)]) if ty not value [cc-app2]
(Azt) v, B) = (i[z:=1], E) [cc-A]
(v, E[(O t)]) e (V1 E) [cc-usel]
(v, El(v; D)) —¢e (01 02, E) [cc-use2]

= What is the rule used after cc-usel?

11

Simplifying the CC machine

CC Machine: (t,E) —_. (t',E")

E == O|vE|Et reduction contexts
(t; to, E) —.. (ty, E[(Oty)]) if t; not value [cc-appl]
(vity, E) —.. (ty, E[(vO)]) if ty not value [cc-app2]
(Azt) v, B) = (i[z:=1], E) [cc-A]
(v, E[(O t)]) e (V1 E) [cc-usel]
(v, El(v; D)) —¢e (01 02, E) [cc-use2]

= What is the rule used after cc-usel?
= What is the rule used after cc-use2?

11

The Simplified CC abstract machine

SCC Machine: (t,E) —, .. (t',E")
E == O|vE|FEt reduction contexts
(ty ty, E) (t;, E[(0 ty)]) [scc-appl]

%SCC
(0, B0 1) =g (GEwD)]) [scc-app2]
(0, E[(Az.t) D)) —rsee (tlz =10], E) [sce-f]

12

From Contexts to Continuations

SCC Machine: (t,E) —,.. (t',E’)

scc

E == O|vE|Et reduction contexts

(t1 to, E) —gee (t1, E[(Ot)]) [scc-appl]
(0, B[(ON]) —yee GE((vDO)]) [scc-app2]
(v, E[(Az.t) O)]) —yee (tz:=0],E) [scc-f]

= SCC machine still needs the “decompose” and “plugin” meta-functions
= But, also observe that context FE is used as a stack:

= scc-appl “pushes” a new (O t,) frame to the top of context F

= scc-app2 “peeks” the top frame of ' and replace it

= scc-beta “pops” the top frame of E/

13

From Contexts to Continuations

= |dea: use a list-like data structure to represent contexts

= CK machine stands for “control-string”-"“continuation” machine
Continuation
Kk == halt
| fun(v,x) hold the value at the function position
| arg(t,k) hold the term at the argument position

14

From Contexts to Continuations

= |dea: use a list-like data structure to represent contexts

= CK machine stands for “control-string”-"“continuation” machine
Continuation
Kk == halt
| fun(v,x) hold the value at the function position
| arg(t,k) hold the term at the argument position

Or, in a programming language, such as Standard ML

datatype cont = Halt
| Fun of value * cont

| Arg of term * cont

14

From Contexts to Continuations

= |dea: use a list-like data structure to represent contexts

= CK machine stands for “control-string”-"“continuation” machine

Continuation
k == halt
| fun(v,x) hold the value at the function position
| arg(t,k) hold the term at the argument position

= Context, continuations, stack: what should be done after evaluating the current

expression
Continuation as stack, explicitly

f == fun(v) | arg(t) stack frames
k == halt| f:=k continuation/stack
15

The CK Machine

Continuation

= halt
| fun(v,k) hold the value at the function position
| arg(t,k) hold the term at the argument position

R

CK Machine: (t,k) —, (t', k')

(t1 to, k) —e (ty,arg(ty, k) [ck-appl]
(v,arg(t, k) — (t,fun(v, K)) [ck-app2]
(v,fun(\x.t,K)) —. (tx:=v],k) [ck-O]

16

On Substitution

(v, fun(Az.t, K)) = (t[x := V], K)

= Eager textual substitution:
= Needs to traverse the term’s AST and find the free occurrences of x in t to replace
with v.
= But an actual implementation would not perform substitutions.
= Caveat: if v is not closed (i.e. containing free variables), then substitution needs to
be capturing avoiding.

17

On Substitution

(v, fun(Az.t, K)) = (t[x := V], K)

= Eager textual substitution:
= Needs to traverse the term’s AST and find the free occurrences of x in t to replace
with v.
= But an actual implementation would not perform substitutions.
= Caveat: if v is not closed (i.e. containing free variables), then substitution needs to
be capturing avoiding.

= Alternative 1: don't substitute eagerly, but keep track of the binding values in the
syntax of the calculus (explicit substitution).
= Alternative 2: don't substitute eagerly, but keep track of the binding values at
the meta-level (environment).
17

The CEK abstract machine

= Idea: a partial mapping (i.e. environment) from variables to their values

v € Value == n |zt values
p € Env = Var — (Value x Env) environment
k € Cont == halt|fun(v,p, k) | arg(t,p,k) continuation

CEK Machine: (t,p, k) — o1 (t', 0" K)

o) = ()) = () et
(ty t2,psK) —eer (t1:p)arg(ts, py K)) [cek-app1]
<Ua P arg(ta W ’i)> cek <tv W fun(va P K“)> [cek-app2]
(v, p,fun(Az.t, 0", K)) —eer (t 0 [T (v, p)], K) [cek-app3]

18

The CEK abstract machine

= Example in class: extend the CEK machine with arithmetics ¢; + ¢,
= Example in class:

(AfAz.f z) Aww+1)) 2

19

The CEK abstract machine

= Closure = Value x Env

The environment provides values for free variables in the value (thus “closes” the

value).

= Lexical scoping: free variables bind in the environment at the time a function is
defined

= Dynamic scoping: free variables bind in the environment at the time a function is

called (very few languages in this way)

20

Natural Semantics

= So far, all semantics executes with discrete steps
= These steps relate intermediate terms/states
= We can observe intermediate states during evaluation

21

Natural Semantics

= Alternative: directly relating the initial term and final value

Natural semantics: (¢,p) || v

p(z) =v
(,p) b (Az.t,p) I (Az.t, p)

(tlvp) ‘U’ (Axtvp,> (t2,p) il) (t,p’[l‘ = U2]> U v
(tytg,p) $v

22

Natural Semantics

= What if the program does not terminate (i.e. diverging)?

= What if the langauge has some concurrency primitives?

23

Evaluator

= Now read | as a function: | (¢t,p) = v

= Directly correspond to a recursive, direct-style evaluator, implementing the natural
semantics

def eval(t: Term, env: Map[Var, Closure]): Closure =
t match

case Var(x) => env(x)

case App(tl, t2) =>
val Closure(Lam(x, t), envl) = eval(tl, env)
val v2 = eval(t2, env)
eval(t, envl + (x -> v2))

case Lam(x, t) =>

Closure(Lam(x, t), env)

24

Different ways of specifying semantics, describing different level of execution

= Structural operatioanal semantics (SOS): purely term rewriting
= Reduction semantics: evaluation strategy defined by contexts

= Abstract machines: more mechanical and efficient

= Natural semantics: relating the initial term and final result

= Direct-style evaluator: direct implementation of natural semantics

25)

Different ways of specifying semantics, describing different level of execution

= Structural operatioanal semantics (SOS): purely term rewriting

= Reduction semantics: evaluation strategy defined by contexts

= Abstract machines: more mechanical and efficient

= Natural semantics: relating the initial term and final result

= Direct-style evaluator: direct implementation of natural semantics

Some exercises:

= Extend reduction semantics with arithmetic operations

= Implement the compose/plugin function for reduction semantics

= Implement the CC/SCC/CEK machine and extend it with numbers and arithmetic
operations

25)

Further reading

= Are there call-by-name abstract machines?
Yes, look at Krivine's machine.
= Does the CEK machine correspond to an evaluator?

A functional correspondence between evaluators and abstract machines. PPDP
'03.

= What if our language imperative features (e.g. assignment, mutation, etc.)?

Look at CESK machine (“S" for store/heap).

26

References

= Programming Languages and Lambda Calculi, Ch6 and Ch7

https://users.cs.utah.edu/~mflatt/past-
courses/cs7520/public_html/s06 /notes. pdf

= Control operators, the SECD-machine, and the -calculus. Matthias Felleisen,
Daniel P. Friedman

= Definitional Interpreters for Higher-Order Programming Languages. John Reynolds

27

https://users.cs.utah.edu/~mflatt/past-courses/cs7520/public_html/s06/notes.pdf
https://users.cs.utah.edu/~mflatt/past-courses/cs7520/public_html/s06/notes.pdf

