
CS150 Special Topic: Advanced Programming Languages

Guannan Wei
guannan.wei@tufts.edu
Sept 2, 2025

Tufts University

1



About Me

• Assistant Professor, Department of Computer Science

• Postdoc, INRIA/ENS-PSL, France

• PhD in Computer Science, Purdue University

• Research: programming languages, formal methods, software engineering

• Web: https://continuation.passing.style

2

https://continuation.passing.style


Why CS 150 Advanced
Programming Languages?



Why CS 150 Advanced Programming Languages?

• Get an idea of what PL research looks like

• Acquire necessary skills to understand PL research results
• Prepare for PhD study, or just for fun

• Work on a serious research project

• Develop something new and interesting
• Could be open ended, or potentially lead to a publication

• Communicate scientific progress/results

• Identify exciting ideas, and understand their importance and contribution
• Explain your ideas and findings through talks and technical writing
• Get feedback

3



Why CS 150 Advanced Programming Languages?

• Get an idea of what PL research looks like

• Acquire necessary skills to understand PL research results
• Prepare for PhD study, or just for fun

• Work on a serious research project

• Develop something new and interesting
• Could be open ended, or potentially lead to a publication

• Communicate scientific progress/results

• Identify exciting ideas, and understand their importance and contribution
• Explain your ideas and findings through talks and technical writing
• Get feedback

3



Why CS 150 Advanced Programming Languages?

• Get an idea of what PL research looks like

• Acquire necessary skills to understand PL research results
• Prepare for PhD study, or just for fun

• Work on a serious research project

• Develop something new and interesting
• Could be open ended, or potentially lead to a publication

• Communicate scientific progress/results

• Identify exciting ideas, and understand their importance and contribution
• Explain your ideas and findings through talks and technical writing
• Get feedback

3



Format of this course

This is a research-oriented course.

• Lecture
• Paper discussion
• Project
• No assignment and no exams

4



What is research?



What is research?

• From my Master advisor Matt Might

The illustrated guide to a Ph.D.
https://matt.might.net/articles/phd-school-in-pictures/

5

https://matt.might.net/articles/phd-school-in-pictures/


Imagine a circle that contains all of human knowledge:

6



By the time you finish elementary school, you know a little:

7



By the time you finish high school, you know a bit more:

8



With a bachelor’s degree, you gain a specialty:

9



A master’s degree deepens that specialty:

10



Reading research papers takes you to the edge of human knowledge:

11



Once you’re at the boundary, you focus:

12



You push at the boundary for a few years:

13



Until one day, the boundary gives way:

14



And, that dent you’ve made is called a Ph.D.:

15



Of course, the world looks different to you now:

16



Don’t forget the big picture:

17



Format of this course

Now let’s go back to the format of this course:
• Lecture
• Paper discussion
• Project

18



Logistics - Lectures

• Review some important and fundamental topics
• Goal: fill the gap between CS105 and research papers you would read
• Topics covered:

• Operational semantics
• Type/effect systems
• Metatheory
• Transformation and optimization
• Formal methods
• …

19



Logistics - Paper discussion

• Each student is expected to present 2-3 papers and lead the discussion
• What is the problem that motivates this work?
• What is the key idea of the paper?
• What are the important technical details?
• How can you/others improve this work?
• How can you use it in your own projects?
• Demo if possible, and other important related works

• For audiences:
• Read the paper and write a summary (half page) before the discussion
• Summarize contribution, strengths, and weaknesses

20



Logistics - Paper discussion

• Each student is expected to present 2-3 papers and lead the discussion
• What is the problem that motivates this work?
• What is the key idea of the paper?
• What are the important technical details?
• How can you/others improve this work?
• How can you use it in your own projects?
• Demo if possible, and other important related works

• For audiences:
• Read the paper and write a summary (half page) before the discussion
• Summarize contribution, strengths, and weaknesses

20



Logistics - Paper discussion

• Presenter chooses the paper (at least) 1 week before

• A list of papers (that I find interesting) on the course website

• Where to find more papers?
• SIGPLAN conferences/PACMPL journal: POPL, PLDI, ICFP, OOPSLA
• Journals:

• Transactions on Programming Languages and Systems (TOPLAS)
• Journal of Functional Programming (JFP)

• Adjacent fields:
• Logics, verification, semantics (SIGLOG): LICS, CAV, ICALP, FSCD, etc.
• Software engineering (SIGSOFT): ICSE, FSE, etc.

• Some symposiums/workshops are good too

21



Logistics - Paper discussion

• Presenter chooses the paper (at least) 1 week before

• A list of papers (that I find interesting) on the course website

• Where to find more papers?
• SIGPLAN conferences/PACMPL journal: POPL, PLDI, ICFP, OOPSLA
• Journals:

• Transactions on Programming Languages and Systems (TOPLAS)
• Journal of Functional Programming (JFP)

• Adjacent fields:
• Logics, verification, semantics (SIGLOG): LICS, CAV, ICALP, FSCD, etc.
• Software engineering (SIGSOFT): ICSE, FSE, etc.

• Some symposiums/workshops are good too

21



Logistics - Project

• You learn the most by building something, and programming is fun!

• Project ideas

• Design and implement a tiny language with some new/interesting feature
• Implement an optimization
• Build a static analysis tool
• Domain specific language
• Explore the intersection of PL and another field (e.g., AI, security)
• Talk to me :)

22



Logistics - Project

• Proposal
• 1-page proposal
• Week 5: proposal presentation (15 min)
• Others give feedback

• Final report
• 4-page report (acmart double-column format)
• Week 14: presentation (25 min)

• Artifact
• Code, tests, proofs, document, etc.

23



Logistics - Grading

• Participation: 10%
• Paper discussion: 30%
• Project: 60%
• There is no exam.

24



Logistics - Misc

• Office hour: by appointment

• Course website: https://continuation.passing.style/teaching/cs150-fall25/
• Tentative schedule
• Google Sheet to sign up for presentation slots
• More resources on writing/presenting papers

• Homework
• Start looking for interesting papers you’d like to present
• Start thinking about your project ideas

25

https://continuation.passing.style/teaching/cs150-fall25/


Questions?



What is PL research?



What is PL research?

• Design and build a programming language

• Ensure that programs meet their specifications

• Make programs faster

• Build tools that improve programmer productivity

• …

26



How to define a programming language?

Let’s go back to the fundamentals:

• Syntax
• Concrete syntax
• Abstract syntax

• Semantics
• Dynamic semantics: what can we say about the program’s behavior at run-time
• Static semantics: what can we say about the program’s behavior at compile-time

27



𝜆-Calculus

• Syntax

𝑛 ∈ ℕ natural numbers
𝑡 ∶∶= 𝑛 numbers

∣ 𝑥 variables
∣ 𝜆𝑥.𝑡 abstraction
∣ 𝑡1 𝑡2 application

28



Different ways to defined its semantics

• Operational semantics: the meaning of the program is defined by its execution.
• Structural operational semantics (i.e. small-step semantics)
• Contextual reduction semantics
• Abstract machines
• Natural semantics (i.e. big-step semantics)
• Evaluators

• Denotational semantics
• Axiomatic semantics

29



Structural operational semantics (SOS)

𝑛 ∈ ℕ
𝑡 ∶∶= 𝑛 ∣ 𝑥 ∣ 𝜆𝑥.𝑡 ∣ 𝑡1 𝑡2 terms
𝑣 ∶∶= 𝑛 ∣ 𝜆𝑥.𝑡 values

Call-by-value (CBV)

(𝜆𝑥.𝑡) 𝑣 → 𝑡[𝑥 ∶= 𝑣]
𝛽𝑣

𝑡1 → 𝑡′
1

𝑡1 𝑡2 → 𝑡′
1 𝑡2

App1
𝑡2 → 𝑡′

2
𝑣 𝑡2 → 𝑣 𝑡′

2
App2

30



Structural operational semantics (SOS)

• CBV example

(𝜆𝑓.𝜆𝑥.𝑓 𝑥)((𝜆𝑥.𝑥)(𝜆𝑦.𝑦))

31



Structural operational semantics (SOS)

Call-by-value (CBV)

(𝜆𝑥.𝑡) 𝑣 → 𝑡[𝑥 ∶= 𝑣]
𝛽𝑣

𝑡1 → 𝑡′
1

𝑡1 𝑡2 → 𝑡′
1 𝑡2

App1
𝑡2 → 𝑡′

2
𝑣 𝑡2 → 𝑣 𝑡′

2
App2

Call-by-name (CBN)

(𝜆𝑥.𝑡1) 𝑡2 → 𝑡1[𝑥 ∶= 𝑡2]
𝛽

𝑡1 → 𝑡′
1

𝑡1 𝑡2 → 𝑡′
1 𝑡2

App

32



Structural operational semantics (SOS)

• What about call-by-need (e.g. lazy evaluation in Haskell)?
• Call-by-need = call-by-name + sharing
• A call-by-need lambda calculus. Ariola et al. POPL ’95

33



From SOS to contextual reduction semantics

Call-by-value (CBV)

(𝜆𝑥.𝑡) 𝑣 → 𝑡[𝑥 ∶= 𝑣]
𝛽𝑣

𝑡1 → 𝑡′
1

𝑡1 𝑡2 → 𝑡′
1 𝑡2

App1
𝑡2 → 𝑡′

2
𝑣 𝑡2 → 𝑣 𝑡′

2
App2

• Some properties:
• Evaluates from left to right
• Deterministic

• Observe that App1 and App2 are structural congruence rules
• There are something not changed before/after the step
• Can we make it more compact?

34



Contextual reduction semantics

• An alternative to structural operational semantics (Felleisen and Hieb, 1989;
Wright and Felleisen, 1992)

• Define reduction contexts

Intuition: specify where and when a reduction could happen; context = surrounding
invariant terms

• Define the head reduction rule

Intuition: the actual computation (e.g. beta)

• Side note:

“This Felleisen stuff is all syntax, not semantics.” – Albert Meyer, 1988
https://www.cs.cmu.edu/~popl-interviews/felleisen.html

35

https://www.cs.cmu.edu/~popl-interviews/felleisen.html


Contextual reduction semantics

• An alternative to structural operational semantics (Felleisen and Hieb, 1989;
Wright and Felleisen, 1992)

• Define reduction contexts

Intuition: specify where and when a reduction could happen; context = surrounding
invariant terms

• Define the head reduction rule

Intuition: the actual computation (e.g. beta)

• Side note:

“This Felleisen stuff is all syntax, not semantics.” – Albert Meyer, 1988
https://www.cs.cmu.edu/~popl-interviews/felleisen.html

35

https://www.cs.cmu.edu/~popl-interviews/felleisen.html


Contextual reduction semantics

𝑡 ∶∶= 𝑛 ∣ 𝑥 ∣ 𝜆𝑥.𝑡 ∣ 𝑡1 𝑡2 terms
𝑣 ∶∶= 𝑛 ∣ 𝜆𝑥.𝑡 values

Call-by-value (CBV)

𝐸 ∶∶= □ ∣ 𝑣 𝐸 ∣ 𝐸 𝑡 reduction contexts

(𝜆𝑥.𝑡) 𝑣 → 𝑡[𝑥 ∶= 𝑣]
𝛽𝑣

𝑡1 → 𝑡′
1

𝐸[𝑡1] → 𝐸[𝑡′
1]

Ctx

• 𝐸 specifies left-to-right evaluation order

36



Contextual reduction semantics

• A term is decomposed to a reduction context 𝐸 and a redex 𝑡1:

𝑡 = 𝐸[𝑡1]

• Focus on 𝑡1, which reduces to 𝑡2:

𝑡1 → 𝑡2

• Plug in 𝑡2 back to context 𝐸:

𝐸[𝑡1] → 𝐸[𝑡2]

37



Contextual reduction semantics

• CBV example

((𝜆𝑥.𝑥)(𝜆𝑦.𝑦))(𝜆𝑓.𝜆𝑥.𝑓 𝑥)

38



Contextual reduction semantics

𝑡 ∶∶= 𝑛 ∣ 𝑥 ∣ 𝜆𝑥.𝑡 ∣ 𝑡1 𝑡2 terms
𝑣 ∶∶= 𝑛 ∣ 𝜆𝑥.𝑡 values

Call-by-name (CBN)

• Question: define the evaluation context for CBN.

39


	Why CS 150 Advanced Programming Languages?
	What is research?
	Questions?
	What is PL research?

