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Logistics & Recap

• Project 1 and 2 are graded
• Visit my office hours if you have questions about your grades

• What have we learned so far?
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A Taste Of MiniScala

A MiniScala function to compute x to the power of y:
def pow(x: Int, y: Int): Int =
if (y == 0) 1 // pow(x, 0) == 1
else if (even(y)) {
val t = pow(x, y / 2) // pow(x, 2z) = pow(pow(x, z), 2)
t * t

} else {
x * pow(x, y - 1) // pow(x, z + 1) = x * pow(x, z)

}
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A Taste Of MiniScala

Say “Hello’’:
val arr = new Array[Int](5);
arr(0) = 'H'; arr(1) = 'e'; arr(2) = 'l'; arr(3) = 'l'; arr(4) = 'o';

var i = 0;
while (i < 5) {
putchar(arr(i));
i = i + 1

};

0
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A Taste Of MiniScala

Our implementation of MiniScala is already quite powerful.

• We can do essentially everything we can do in C
• Missing features (structs, strings): can be implemented as arrays

What are still missing?

• Higher level features: nested first-class functions, objects
• Code quality: optimizations
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Intermediate Representations

• Intermediate representations (IR) or intermediate languages are the data
structures used by the compiler to represent the program being compiled.

• Choosing a good IR is crucial, as many analyses and transformations (e.g.
optimizations) are substantially easier to perform on some IRs than on others.

• Some non-trivial compilers actually use several IRs during the compilation process,
and they tend to become more low-level as the code approaches its final form.
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Compiler Architecture

We also have interpreters for the AST representation, the CPS IR, and the ASM
language. 7



Intermediate Representations

The revised MiniScala compiler manipulates a total of four languages:

1) MiniScala the source language – the surface language in which programs are
written,

2) MiniScala/AST – the parsed and desugared ASTs of MiniScala,
3) MiniScala/CPS – the main intermediate language, on which optimizations are

performed,
4) ASM is the assembly language of the target (virtual) machine.

• There are interpreters for the last three languages, which are useful to check that
a program behaves in the same way as it is undergoes transformation.

• These interpreters also serve as the semantics for their languages.
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IR #1: MiniScala/CPS - A Functional IR

A functional IR is an intermediate representation that is close to a (very) simple
functional programming language. Typical functional IRs have the following
characteristics:

• all primitive operations (e.g. arithmetic operations) are performed on atomic
values (variables or constants),

• the result of these operations is always named,
• variables cannot be re-assigned.

We will be using a CPS-based functional IR called MiniScala/CPS.

Some of these characteristics are shared with more mainstream IRs, like SSA used in
GCC and LLVM.
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Continuation-Passing Style (CPS)
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Continuation-Passing Style (CPS)

What is continuation-passing style (CPS)?

A programming style or program representation where control is made explicit by
passing “the rest of the computation” as an extra argument to functions.

Why compiling to CPS?

• CPS makes control flow explicit, which simplifies many analyses and
transformations.

• Uniform representation of control flow: function calls, returns, jumps, exceptions,
etc. are all represented uniformly as continuation invocations.
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Uses of Continuations

Continuations are used for several purposes in our compiler for MiniScala/CPS:

1) They represent code blocks which can be “jumped to” from several locations.
2) They represent the code to execute after a function call.
3) Control transfer is represented as invoking continuations.

Every function gets a continuation as argument, which it must invoke with its return
value.
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Code Example

To illustrate the differences between the various IRs, we will use a program fragment to
compute and print the greatest common divisor (GCD) of 2016 and 714.

The MiniScala version of that fragment could be:
def gcd(x: Int, y: Int): Unit =
if (y == 0)
printInt(x)

else
gcd(y, y % x);

gcd(2016, 714)
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GCD in MiniScala/CPS

The MiniScala/CPS version of the GCD program fragment looks as follows:

// source code
def gcd(x: Int, y: Int): Unit =
if (y == 0)
printInt(x)

else
gcd(y, x % y);

gcd(2016, 714)

// CPS IR
def𝑓 gcd(c, x, y) = {

def𝑐 ct() = { printInt(c, x) };
def𝑐 cf() = {
val𝑝 t = x % y;
gcd(c, y, t);

}
val𝑙 z = 0;
if (y == z) ct() else cf()

};
def𝑐 ce(x) = { val𝑙 z = 0; halt(z) };
val𝑙 x = 2016; val𝑙 y = 714;
gcd(ce, x, y)
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Local Continuations

A crucial notion in MiniScala/CPS is that of local continuation.

A local continuation is similar to a (local) function but with the following restrictions:

• continuations are not “first class citizens”: they cannot be stored in variables or
passed as arbitrary arguments. The only exception being the return continuation
(described later),

• continuations never return, and must therefore be invoked in tail position only.

These restrictions enable continuations to be compiled much more efficiently than
normal functions. This is the only reason why continuations exist as a separate
construct.
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MiniScala/CPS Grammar

• The grammar of MiniScala/CPS is defined as follows:
N ::= name
L ::= integer, character, boolean or unit literal
T ::= val𝑙 N = L; T

| val𝑝 N = P(N, ...); T
| def𝑐 N(N, ...) = { T }; T
| def𝑓 N(N, ...) = { T }; T
| N(N, ...)
| if (N C N) N() else N()
| halt(N)

P ::= '+' | '-' | '*' | '/' | '%' | ...
C ::= '<' | '<=' | '==' | '!=' | '>=' | '>'
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MiniScala/CPS Local Bindings

• Bind the name n to the literal value l in expression e:
val𝑙 n = l; e

The literal value can be an integer, a character, a boolean or the unit value.

• Bind the name n to the result of the application of primitive p to the value of n1,
… in expression e:
val𝑝 n = p(n1, ...); e

The primitive p cannot be a logical (i.e. boolean) primitive, as such primitives are
only meant to be used in conditional expressions - see later.
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MiniScala/CPS Functions

• Define functions f1, … with arguments n1,1, … and return continuation c1, … in
expression e.
def𝑓 f1(c1, n1,1, ...) = { e1 }; def𝑓f2 = ...; ...; e

The functions can be mutually recursive. The return continuation c1 takes a
single argument: the return value. Applying it is interpreted as returning from the
function.

• Apply function f to return continuation c and arguments n1, …
f(c, n1, ...)

The name c must either be bound by an enclosing def𝑐 or be the name of the
return continuation of the current function.
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MiniScala/CPS Local Continuations

• Define local continuations c1 with arguments n1, … and body e1 in e:
def𝑐 c1(n1, ...) = { e1 }; e

Interpretation: like a local function that never returns. e could contain other
continuation definitions too.

• Apply continuation c to the value of n1, …
c(n1, ...)

The name c must either be bound by an enclosing def𝑐 or be the name of the
return continuation of the current function.

• If c is a local continuation, c (^^.) can be seen as a jump with arguments.
• If c refers to the current return continuation, c (^^.) can be seen as a return from

the current function, with the given return value.
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MiniScala/CPS Control Constructs

• Test whether the condition p is true for the value of n1 and n2, then apply
continuation ct if it is, or cf if it isn’t.
if (n1 p n2) ct() else cf()

Both continuation ct and cf must have no parameter. The primitive p must be a
logical primitive.

Note: if is a branching form of continuation invocation for parameterless
continuations. It is therefore a conditional version of c().

• Halts program execution:
halt(n)

Exit with the value bound to n (which must be an integer).
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MiniScala/CPS Syntactic Sugar

To make MiniScala/CPS programs easier to read and write, we allow to use the postfix
and infix notations for the primitive operations.

val𝑙 t = 1;
val𝑝 x = -t + t

is equivalent to the actual representation:
val𝑙 t = 1;
val𝑝 mt = -t;
val𝑝 x = +(mt, t)
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Scopes of Continuation

The scoping rules of MiniScala/CPS are mostly the “obvious ones”. The only exception
is the rule for continuation variables, which are not visible in nested functions!

For example, in the following code:
def𝑐 c0(r) = { printInt(ce, r); }
def𝑓 f(c1, x) = {

val𝑝 t = x + x;
c1(t)

}

c0 is not visible in the body of f!

This guarantees that continuations are truly local to the function that defines them,
and can therefore be compiled efficiently.
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GCD in MiniScala/CPS

The MiniScala/CPS version of the GCD program fragment looks as follows:

// source code
def gcd(x: Int, y: Int): Unit =
if (y == 0)
printInt(x)

else
gcd(y, x % y);

gcd(2016, 714)

// CPS IR
def𝑓 gcd(c, x, y) = {

def𝑐 ct() = { printInt(c, x) };
def𝑐 cf() = {
val𝑝 t = x % y;
gcd(c, y, t);

}
val𝑙 z = 0;
if (y == z) ct() else cf()

};
def𝑐 ce(x) = { val𝑙 z = 0; halt(z) };
val𝑙 x = 2016; val𝑙 y = 714;
gcd(ce, x, y)
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Translating MiniScala to MiniScala/CPS

The translation from MiniScala/AST to MiniScala/CPS is specified as a function
denoted by J⋅K taking two arguments:

1) T, the MiniScala/AST term to be translated,
2) C, the context, a MiniScala/CPS term containing a hole into which a name bound

to the value of the translated term has to be plugged.

This function is written in a “mixfix” notation, as follows:JTK C

The translation function must return a MiniScala/CPS term.
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Translation Context

The translation context is a MiniScala/CPS term representing the partial translation of
the MiniScala expression surrounding the one being translated.

• This term contains a single hole, written □, representing the currently unknown
name that will be bound to the value of the expression being translated.

• The hole of a context C must eventually be filled with some name n, written as
C[n].

For example, f(□)[m] denotes plugging name m into the context f(□),
resulting in the term f(m).
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Context Representation

Translation rules often build contexts that include other contexts. One (fictional)
example to translate application e1(e2) could be:Je1K (Je2K □(□))

In such situations, using the anonymous hole (□) is ambiguous. To resolve the
ambiguity, we represent contexts as meta-functions taking a single (named) argument.
The above is therefore written as:Je1K 𝜆v1(Je2K 𝜆v2(v1(v2)))

where v1/v2 is the variable in the meta-variable representing the translation result of
e1/e2.

With such a representation of contexts, filling the hole of context C with name n is
performed by meta-function application, written C[n].
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The Translation In Scala

In Scala (our meta-language of the MiniScala project), the translation function J⋅K is
defined as a function with the following signature:
def MiniScalaToCPS(t: MSTree, c: Symbol => CPSTree): CPSTree

In the body of that function, plugging the context c with a name (i.e. a Symbol)
bound to a Scala value named n is performed by Scala function application:
c(n)

To clarify the presentation, MiniScala terms appear in orange, MiniScala/CPS terms in
purple, and meta-terms in black.
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MiniScala/AST to MiniScala/CPS Translation (1)

Note: in the following expressions, all underlined names are fresh.JnK C = C[n]
where n is an identifier for immutable variable

JlK C = val𝑙 n = l; C[n]
where l is a literal

J val n1 = e1; e K C =Je1K(𝜆v (val𝑝 n1 = id(v); JeK C))

J var n1 = e1; e K C =
val𝑙 s = 1;
val𝑝 n1 = block-alloc-var(s);
val𝑙 z = 0;Je1K(𝜆v (val𝑝 d = block-set(n1, z, v); JeK C))
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MiniScala/AST to MiniScala/CPS Translation (2)

J n1 = e1 K C =
val𝑙 z = 0;Je1K(𝜆v (val𝑝 d = block-set(n1, z, v); C[v] ))

JnK C =
val𝑙 z = 0;
val𝑝 v = block-get(n, z); C[v]
where n is an identifier for mutable variable

J def f1(n1,1: _, ...) = e1; def ^^. ; eK C =
def𝑓 f1(c, n1,1, ...) = {Je1K(𝜆v(c(v)))
};
def𝑓 ^^.;JeK C
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MiniScala/AST to MiniScala/CPS Translation (3)

J e(e1, e2, ...) K C =JeK(𝜆v(Je1K(𝜆v1(Je2K(𝜆v2(...
def𝑐 c(r) = { C[r] };
v(c, v1, v2 ...)))))))

J if (p(e1, ...)) e2 else e3 K C =
def𝑐 c(r) = { C[r] };
def𝑐 ct() = { Je2K(𝜆v2(c(v2))) };
def𝑐 cf() = { Je3K(𝜆v3(c(v3))) };Je1K(𝜆v1(... (if (p(v1 ...)) ct else cf)))
where p is a logical primitive
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MiniScala/AST to MiniScala/CPS Translation (4)

J if (e1) e2 else e3 K C =
def𝑐 c(r) = { C[r] };
def𝑐 ct() = { Je2K(𝜆v2(c(v2))) };
def𝑐 cf() = { Je3K(𝜆v3(c(v3))) };
val𝑙 f = false;Je1K(𝜆v1(if (v1 ^= f) ct else cf))

J while (e1) e2; e3 K C =
def𝑐 loop() = {
def𝑐 c() = { Je3K C };
def𝑐 ct() = { Je2K(𝜆v(loop())) };
val𝑙 f = false;Je1K(𝜆v(if (v ^= f) ct else c))

};
loop()
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MiniScala/AST to MiniScala/CPS Translation (5)

J p( e1, e2, ...) K C =J if (p(e1, e2, ...)) true else false K C
where p is a logical primitive

J p( e1, e2, ...) K C =
left as an exercise
where p is not a logical primitive
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Initial Context

In which context should a complete program be translated?

The simplest answer is a context that halts execution with an exit code of 0 (no error),
that is:

𝜆v(val𝑙 z = 0; halt(z))

An alternative would be to do something with the value v produced by the whole
program, e.g. use it as the exit code instead of 0, print it, etc.
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Example

Let 𝑘0 be the initial context 𝜆v(val𝑙 z = 0; halt(z)).J f(g(1, 2)) K 𝑘0
{ f(g(1, 2)) is a function application }
= JfK(𝜆v(Jg(1, 2)K(𝜆v1

def𝑐 c1(r) = { 𝑘0[r] };
v(c1, v1))))

= ???
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Where Are We?

Take-home exercise: translate the MiniScala gcd function using the rules we have
seen so far.

Today we have seen:

• A transformation from MiniScala to its CPS intermediate representation.
• Project 4 will ask you to implement (part of) the transformation.

Next time:

• Improve the CPS translation to produce better code!
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