
CS107: Functions and Arrays

Guannan Wei
guannan.wei@tufts.edu
February 3, 2026
Spring 2026

Tufts University

1

Recap

What did we learn last time?

• Type checking/inference
• Adding functions to our language

2

Let’s Add Functions - Interpreter

What does a function call mean?

// LetRec(List(
def f(x: Int) = { // FunDef("f", List(Arg("x", IntType)), UnknownType,
x + 1 // Prim("+", Ref("x"), Lit(1))

}; //)),
f(1) // App(Ref("f"), List(Lit(1)))

//)

def f(x: Int) = { g(x) + 1 };
def g(x: Int): Int = 2 * x;
f(1 + 1)

def f(x: Int): Int = { g(x) + 1 };
def g(x: Int): Int = if (x == 0) 0 else f(x-1);
f(1)

3

Let’s Add Functions - Interpreter

What does a function call mean?
// LetRec(List(

def f(x: Int) = { // FunDef("f", List(Arg("x", IntType)), UnknownType,
x + 1 // Prim("+", Ref("x"), Lit(1))

}; //)),
f(1) // App(Ref("f"), List(Lit(1)))

//)

def f(x: Int) = { g(x) + 1 };
def g(x: Int): Int = 2 * x;
f(1 + 1)

def f(x: Int): Int = { g(x) + 1 };
def g(x: Int): Int = if (x == 0) 0 else f(x-1);
f(1)

3

Let’s Add Functions - Interpreter

What does a function call mean?
// LetRec(List(

def f(x: Int) = { // FunDef("f", List(Arg("x", IntType)), UnknownType,
x + 1 // Prim("+", Ref("x"), Lit(1))

}; //)),
f(1) // App(Ref("f"), List(Lit(1)))

//)

def f(x: Int) = { g(x) + 1 };
def g(x: Int): Int = 2 * x;
f(1 + 1)

def f(x: Int): Int = { g(x) + 1 };
def g(x: Int): Int = if (x == 0) 0 else f(x-1);
f(1)

3

Let’s Add Functions - Interpreter

What does a function call mean?
// LetRec(List(

def f(x: Int) = { // FunDef("f", List(Arg("x", IntType)), UnknownType,
x + 1 // Prim("+", Ref("x"), Lit(1))

}; //)),
f(1) // App(Ref("f"), List(Lit(1)))

//)

def f(x: Int) = { g(x) + 1 };
def g(x: Int): Int = 2 * x;
f(1 + 1)

def f(x: Int): Int = { g(x) + 1 };
def g(x: Int): Int = if (x == 0) 0 else f(x-1);
f(1)

3

Let’s Add Functions - Interpreter

abstract class Val
case class Cst(x: Any) extends Val
case class Func(args: List[String], fbody: Exp, env: Env) extends Val

def eval(exp: Exp)(env: Env): Val = exp match
case LetRec(funs, body) =>
val funcs: List[(String, Val)] = funs.map {
case f@FunDef(n, _, _, _) => (n, eval(f)(env))

}
eval(body)(env.withVals(funcs))

case FunDef(name, args, rte, fbody) => ...
case App(f, args) => ...

4

Let’s Add Functions - Interpreter

abstract class Val
case class Cst(x: Any) extends Val
case class Func(args: List[String], fbody: Exp, env: Env) extends Val

def eval(exp: Exp)(env: Env): Val = exp match
case LetRec(funs, body) =>
val funcs: List[(String, Val)] = funs.map {
case f@FunDef(n, _, _, _) => (n, eval(f)(env))

}
eval(body)(env.withVals(funcs))

case FunDef(name, args, rte, fbody) => ...
case App(f, args) => ...

4

Let’s Add Functions - Interpreter

abstract class Val
case class Cst(x: Any) extends Val
case class Func(args: List[String], fbody: Exp, env: Env) extends Val

def eval(exp: Exp)(env: Env): Val = exp match
case LetRec(funs, body) =>
val funcs: List[(String, Val)] = funs.map {
case f@FunDef(n, _, _, _) => (n, eval(f)(env))

}
eval(body)(env.withVals(funcs))

case FunDef(name, args, rte, fbody) =>
Func(args.map(arg => arg.name), fbody, env)

case App(f, args) => ...

5

Let’s Add Functions - Interpreter

abstract class Val
case class Cst(x: Any) extends Val
case class Func(args: List[String], fbody: Exp, env: Env) extends Val

def eval(exp: Exp)(env: Env): Val = exp match
case LetRec(funs, body) =>
val funcs: List[(String, Val)] = funs.map {
case f@FunDef(n, _, _, _) => (n, eval(f)(env))

}
eval(body)(env.withVals(funcs))

case FunDef(name, args, rte, fbody) =>
Func(args.map(arg => arg.name), fbody, env)

case App(f, args) => ...

What about recursive functions?

6

Let’s Add Functions - Interpreter

abstract class Val
case class Cst(x: Any) extends Val
case class Func(args: List[String], fbody: Exp, env: Env) extends Val

def eval(exp: Exp)(env: Env): Val = exp match
case LetRec(funs, body) =>
val funcs: List[(String, Val)] = funs.map {
case f@FunDef(n, _, _, _) => (n, eval(f)(env))

}
funcs.foreach {
case (_, f@Func(_, _, _)) => f.withVals(funcs)

}
eval(body)(env.withVals(funcs))

case FunDef(name, args, rte, fbody) =>
Func(args.map(arg => arg.name), fbody, env)

case App(f, args) => ...

7

Let’s Add Functions - Interpreter

abstract class Val
case class Cst(x: Any) extends Val
case class Func(args: List[String], fbody: Exp, env: Env) extends Val

def eval(exp: Exp)(env: Env): Val = exp match
case LetRec(funs, body) =>
val funcs: List[(String, Val)] = funs.map {
case f@FunDef(n, _, _, _) => (n, eval(f)(env))

}
funcs.foreach {
case (_, f@Func(_, _, _)) => f.withVals(funcs)

}
eval(body)(env.withVals(funcs))

case FunDef(name, args, rte, fbody) =>
Func(args.map(arg => arg.name), fbody, env)

case App(f, args) =>
val eargs = args.map(arg => eval(arg)(env))
val Func(fargs, fbody, fenv) = eval(f)(env)
eval(fbody)(fenv.withVals(fargs.zip(eargs))) 8

Let’s Add Functions - Semantics

• Argument names must be distinct. Arguments behave like immutable variables.

• Functions can be recursive (even mutually recursive).
• Function application is left associative, i.e. f (1)(3) will be parsed as

App (App ("f", 1), 3).
• We don’t allow overloading, i.e. a function cannot have the same name that

another one even with different arguments.
• We allow functions to be stored in variables, used as parameters and returns from

other functions.

9

Let’s Add Functions - Semantics

• Argument names must be distinct. Arguments behave like immutable variables.
• Functions can be recursive (even mutually recursive).

• Function application is left associative, i.e. f (1)(3) will be parsed as
App (App ("f", 1), 3).

• We don’t allow overloading, i.e. a function cannot have the same name that
another one even with different arguments.

• We allow functions to be stored in variables, used as parameters and returns from
other functions.

9

Let’s Add Functions - Semantics

• Argument names must be distinct. Arguments behave like immutable variables.
• Functions can be recursive (even mutually recursive).
• Function application is left associative, i.e. f (1)(3) will be parsed as

App (App ("f", 1), 3).

• We don’t allow overloading, i.e. a function cannot have the same name that
another one even with different arguments.

• We allow functions to be stored in variables, used as parameters and returns from
other functions.

9

Let’s Add Functions - Semantics

• Argument names must be distinct. Arguments behave like immutable variables.
• Functions can be recursive (even mutually recursive).
• Function application is left associative, i.e. f (1)(3) will be parsed as

App (App ("f", 1), 3).
• We don’t allow overloading, i.e. a function cannot have the same name that

another one even with different arguments.

• We allow functions to be stored in variables, used as parameters and returns from
other functions.

9

Let’s Add Functions - Semantics

• Argument names must be distinct. Arguments behave like immutable variables.
• Functions can be recursive (even mutually recursive).
• Function application is left associative, i.e. f (1)(3) will be parsed as

App (App ("f", 1), 3).
• We don’t allow overloading, i.e. a function cannot have the same name that

another one even with different arguments.
• We allow functions to be stored in variables, used as parameters and returns from

other functions.

9

Let’s Add Functions - Type Conformance

case class FunType(args: List[(String,Type)], rte: Type) extends Type

A function type is well-formed if all of its argument types and its return type are
well-formed.

A function type tp conforms to type pt if all of the following hold:

1) pt is a function type or UnknownType
2) pt has the same number of arguments as tp

3) the type of pt argument #n conforms to the type of tp argument #n (note the
inversion)

4) the return type of tp conforms to the return type of pt

10

Let’s Add Functions - Type Conformance

case class FunType(args: List[(String,Type)], rte: Type) extends Type

A function type is well-formed if all of its argument types and its return type are
well-formed.

A function type tp conforms to type pt if all of the following hold:

1) pt is a function type or UnknownType
2) pt has the same number of arguments as tp

3) the type of pt argument #n conforms to the type of tp argument #n (note the
inversion)

4) the return type of tp conforms to the return type of pt

10

Let’s Add Functions - Type Conformance - Examples

Example:

• (Int, Boolean) ^> Int conforms to ??? (result: (Int, Boolean) ^> Int)
• Int ^> Int conforms to Int ^> Int
• Int ^> Int does not conform to Boolean - rule #1
• ??? ^> Int conforms to Int ^> Int (result: Int ^> Int)
• Int ^> Boolean does not conform to Int ^> Int - rule #4
• ??? ^> Boolean conforms to Int ^> ??? (result: Int ^> Boolean)
• Int ^> Int does not conform to ??? ^> Int - rule #3

11

Let’s Add Functions - Type Checking

Now let’s talk about inference rules!

Γ, 𝑥1 ∶ 𝑇1, … , 𝑥𝑛 ∶ 𝑇𝑛 ⊢ fb ∶ 𝑇
Γ ⊢ FunDef(𝑓, 𝑥1, … , 𝑥𝑛, 𝑇 , fb) ∶ (𝑇1, … , 𝑇𝑛) ^> 𝑇

fundef

Γ, 𝑓1 ∶ FT1, … , 𝑓𝑛 ∶ FT𝑛 ⊢ 𝑓1 ∶ FT1
⋮

Γ, 𝑓1 ∶ FT1, … , 𝑓𝑛 ∶ FT𝑛 ⊢ 𝑓𝑛 ∶ FT𝑛
Γ, 𝑓1 ∶ FT1, … , 𝑓𝑛 ∶ FT𝑛 ⊢ 𝑏 ∶ 𝑇

Γ ⊢ LetRec(𝑓1, … , 𝑓𝑛, 𝑏) ∶ 𝑇
letrec

12

Let’s Add Functions - Type Checking

Now let’s talk about inference rules!

Γ, 𝑥1 ∶ 𝑇1, … , 𝑥𝑛 ∶ 𝑇𝑛 ⊢ fb ∶ 𝑇
Γ ⊢ FunDef(𝑓, 𝑥1, … , 𝑥𝑛, 𝑇 , fb) ∶ (𝑇1, … , 𝑇𝑛) ^> 𝑇

fundef

Γ, 𝑓1 ∶ FT1, … , 𝑓𝑛 ∶ FT𝑛 ⊢ 𝑓1 ∶ FT1
⋮

Γ, 𝑓1 ∶ FT1, … , 𝑓𝑛 ∶ FT𝑛 ⊢ 𝑓𝑛 ∶ FT𝑛
Γ, 𝑓1 ∶ FT1, … , 𝑓𝑛 ∶ FT𝑛 ⊢ 𝑏 ∶ 𝑇

Γ ⊢ LetRec(𝑓1, … , 𝑓𝑛, 𝑏) ∶ 𝑇
letrec

12

Let’s Add Functions - Type Checking

Γ ⊢ 𝑓 ∶ (𝑇1, … , 𝑇𝑛) ^> 𝑇
Γ ⊢ 𝑎1 ∶ 𝑇1

⋮
Γ ⊢ 𝑎𝑛 ∶ 𝑇𝑛

Γ ⊢ App(𝑓, List(𝑎1, … , 𝑎𝑛)) ∶ 𝑇
app

13

Compilation - Calling Conventions

One of the main concepts we have been using so far is convention.

Our compiler only generates code that uses registers sp and above and which puts the
result in sp.

Thus, we can keep intermediate results and know which memory locations are available
at any given point.

14

Compilation - Calling Conventions

How should we call a function from any point in the program without losing data?

Example:
def f(x: Int) = 1+x;

val y = f(1);
val z = f(2);
y + z

15

Compilation - Calling Conventions

Example:
def f(x: Int) = 1+x;

val y = f(1);
val z = f(2);
y + z

main program
main:
...
call f
...
...
call f
...
...

generated function
f:
...
...

16

Compilation - Calling Conventions

Example:
def f(x: Int) = 1+x;

val y = f(1);
val z = f(2);
y + z

main program
main:
...
call f
...
...
call f
...
...

generated function
f:
mov $1, reg0 where is value of x?
mov $2, reg1
...
...

17

Compilation - Calling Conventions

Example:
def f(x: Int) = 1+x;

val y = f(1);
val z = f(2);
y + z

main program
main:
...
call f
...
...
call f
...
...

generated function
f:
mov $1, reg0 where is value of x?
mov $2, reg1
...
... where should we return?

18

Compilation - Calling Conventions

Example:
def f(x: Int) = 1+x;

val y = f(1);
val z = f(2);
y + z

main program
main:
...
call f
... where the value is stored?
...
call f
...
...

generated function
f:
mov $1, reg0 where is value of x?
mov $2, reg1
...
ret where should we return?

19

Compilation - Calling Conventions

Example:
def f(x: Int) = 1+x;

val y = f(1);
val z = f(2);
y + z

main program
main:
...
call f
... where the value is stored?
...
call f
...
...

generated function
f:
mov $1, reg0 where is value of x?
mov $2, reg1
...
ret where should we return?

20

Compilation - Calling Convention

Calling convention: how functions receive parameters from their caller and how they
return a result.

Mostly the System V AMD64 ABI (used on Linux, Mac OS, BSD, etc.) calling
convention:

• Argument passing: % rdi , % rsi , % rdx , % rcx , %r8, %r9

• Return: use call and ret

• call pushes the instruction pointer on the stack, and jumps to the label
• ret pops the return address from the stack and jumps to it
• Corollary: we need to reset the stack before calling ret

• Return value will be saved in % rax

• Before calling a function, all intermediate values will be saved on the stack
• After the call, they need to be restored from the stack

21

Compilation - Calling Convention

Calling convention: how functions receive parameters from their caller and how they
return a result.

Mostly the System V AMD64 ABI (used on Linux, Mac OS, BSD, etc.) calling
convention:

• Argument passing: % rdi , % rsi , % rdx , % rcx , %r8, %r9
• Return: use call and ret

• call pushes the instruction pointer on the stack, and jumps to the label
• ret pops the return address from the stack and jumps to it
• Corollary: we need to reset the stack before calling ret

• Return value will be saved in % rax

• Before calling a function, all intermediate values will be saved on the stack
• After the call, they need to be restored from the stack

21

Compilation - Calling Convention

Calling convention: how functions receive parameters from their caller and how they
return a result.

Mostly the System V AMD64 ABI (used on Linux, Mac OS, BSD, etc.) calling
convention:

• Argument passing: % rdi , % rsi , % rdx , % rcx , %r8, %r9
• Return: use call and ret

• call pushes the instruction pointer on the stack, and jumps to the label

• ret pops the return address from the stack and jumps to it
• Corollary: we need to reset the stack before calling ret

• Return value will be saved in % rax

• Before calling a function, all intermediate values will be saved on the stack
• After the call, they need to be restored from the stack

21

Compilation - Calling Convention

Calling convention: how functions receive parameters from their caller and how they
return a result.

Mostly the System V AMD64 ABI (used on Linux, Mac OS, BSD, etc.) calling
convention:

• Argument passing: % rdi , % rsi , % rdx , % rcx , %r8, %r9
• Return: use call and ret

• call pushes the instruction pointer on the stack, and jumps to the label
• ret pops the return address from the stack and jumps to it

• Corollary: we need to reset the stack before calling ret

• Return value will be saved in % rax

• Before calling a function, all intermediate values will be saved on the stack
• After the call, they need to be restored from the stack

21

Compilation - Calling Convention

Calling convention: how functions receive parameters from their caller and how they
return a result.

Mostly the System V AMD64 ABI (used on Linux, Mac OS, BSD, etc.) calling
convention:

• Argument passing: % rdi , % rsi , % rdx , % rcx , %r8, %r9
• Return: use call and ret

• call pushes the instruction pointer on the stack, and jumps to the label
• ret pops the return address from the stack and jumps to it
• Corollary: we need to reset the stack before calling ret

• Return value will be saved in % rax

• Before calling a function, all intermediate values will be saved on the stack
• After the call, they need to be restored from the stack

21

Compilation - Calling Convention

Calling convention: how functions receive parameters from their caller and how they
return a result.

Mostly the System V AMD64 ABI (used on Linux, Mac OS, BSD, etc.) calling
convention:

• Argument passing: % rdi , % rsi , % rdx , % rcx , %r8, %r9
• Return: use call and ret

• call pushes the instruction pointer on the stack, and jumps to the label
• ret pops the return address from the stack and jumps to it
• Corollary: we need to reset the stack before calling ret

• Return value will be saved in % rax

• Before calling a function, all intermediate values will be saved on the stack
• After the call, they need to be restored from the stack

21

Compilation - Calling Convention

Calling convention: how functions receive parameters from their caller and how they
return a result.

Mostly the System V AMD64 ABI (used on Linux, Mac OS, BSD, etc.) calling
convention:

• Argument passing: % rdi , % rsi , % rdx , % rcx , %r8, %r9
• Return: use call and ret

• call pushes the instruction pointer on the stack, and jumps to the label
• ret pops the return address from the stack and jumps to it
• Corollary: we need to reset the stack before calling ret

• Return value will be saved in % rax

• Before calling a function, all intermediate values will be saved on the stack

• After the call, they need to be restored from the stack

21

Compilation - Calling Convention

Calling convention: how functions receive parameters from their caller and how they
return a result.

Mostly the System V AMD64 ABI (used on Linux, Mac OS, BSD, etc.) calling
convention:

• Argument passing: % rdi , % rsi , % rdx , % rcx , %r8, %r9
• Return: use call and ret

• call pushes the instruction pointer on the stack, and jumps to the label
• ret pops the return address from the stack and jumps to it
• Corollary: we need to reset the stack before calling ret

• Return value will be saved in % rax

• Before calling a function, all intermediate values will be saved on the stack
• After the call, they need to be restored from the stack

21

Compilation - Calling Convention

Example:
def f(x: Int) = 1+x;

val y = f(1);
val z = f(2);
y + z

Your compiler in project 3 should generate
code similar to this:

main program
main:
pushq %rbp
movq %rsp, %rbp
movq $1, %rdi
call f
movq %rax, %rdi
movq $2, %rsi
pushq %rdi
movq %rsi, %rdi
call f
popq %rdi
movq %rax, %rsi
movq %rdi, %rdx
movq %rsi, %rcx
addq %rcx, %rdx
movq %rdx, %rsi
movq %rsi, %rdi
movq %rdi, %rax
movq %rbp, %rsp
popq %rbp
ret

generated function
f:

pushq %rbp
movq %rsp, %rbp
movq $1, %rsi
movq %rdi, %rdx
addq %rdx, %rsi
movq %rsi, %rax
movq %rbp, %rsp
popq %rbp
ret

Argument passing: % rdi , % rsi , % rdx , % rcx , %r8, %r9
22

Let’s Add Arrays

We are going to use Scala syntax, but we are not (yet) going to handle objects.

The array will behave more like a C array; the length needs to be remembered.
val arr = new Array[Int](4 + 5);

val arr: Array[Int] = new Array[Int](4 + 5);

23

Let’s Add Arrays

We are going to use Scala syntax, but we are not (yet) going to handle objects.

The array will behave more like a C array; the length needs to be remembered.
val arr = new Array[Int](4 + 5);

val arr: Array[Int] = new Array[Int](4 + 5);

23

Let’s Add Arrays - Syntax

<type> ::= <ident> | <type> '=>' <type> // '=>' is right associative
| '('[<type>[','<type>]*]')' '=>' <type>
| 'Array['<type>']' // array type

<atom> ::= <number> | <bool> | <ident> | '()' | '('<simp>')'
<tight> ::= <atom>['('[<simp>[','<simp>]*]')']*['('<simp>')''=' <simp>]

| '{'<exp>'}'
<uatom> ::= [<op>]<tight> // Previously atom
<simp> ::= ... // same as before

| 'new' 'Array' '[' <type> ']' '('<simp>')' // array constructor
<exp> ::= ... // same as before
<arg> ::= <ident>':'<type>
<prog> ::=

['def'<ident>'('[<arg>[','<arg>]*]')'[':' <type>] '=' <simp>';']* <exp>

24

Let’s Add Arrays - Syntax

Scala array read syntax:
arr(1)

Wait a minute! Is this a function application?

Array write syntax:
arr(1) = 5

The operations on arrays are primitive operations:

• " block - get "

• " block - set "

25

Let’s Add Arrays - Syntax

Scala array read syntax:
arr(1)

Wait a minute! Is this a function application?

Array write syntax:
arr(1) = 5

The operations on arrays are primitive operations:

• " block - get "

• " block - set "

25

Let’s Add Arrays - Syntax

Scala array read syntax:
arr(1)

Wait a minute! Is this a function application?

Array write syntax:
arr(1) = 5

The operations on arrays are primitive operations:

• " block - get "

• " block - set "

25

Let’s Add Arrays - AST

case class Prim(op: String, args: List[Exp]) extends Exp

case class ArrayDec(size: Exp, tp: Type) extends Exp

It is the parser’s job to translate arr (i) = v to
Prim (" block - set ", List (arr , i, v)), and the semantic analyzer’s job to
translate arr (i) to Prim (" block - get ", List (arr , i)).

26

Let’s Add Arrays - AST

case class Prim(op: String, args: List[Exp]) extends Exp

case class ArrayDec(size: Exp, tp: Type) extends Exp

It is the parser’s job to translate arr (i) = v to
Prim (" block - set ", List (arr , i, v)), and the semantic analyzer’s job to
translate arr (i) to Prim (" block - get ", List (arr , i)).

26

Let’s Add Arrays - AST

case class Prim(op: String, args: List[Exp]) extends Exp

case class ArrayDec(size: Exp, tp: Type) extends Exp

It is the parser’s job to translate arr (i) = v to
Prim (" block - set ", List (arr , i, v)), and the semantic analyzer’s job to
translate arr (i) to Prim (" block - get ", List (arr , i)).

26

Let’s Add Arrays - Semantic Analysis

case class ArrayType(tp: Type) extends Type

How do we know if an array is well-formed?

If tp is well-formed!

27

Let’s Add Arrays - Semantic Analysis

case class ArrayType(tp: Type) extends Type

How do we know if an array is well-formed?

If tp is well-formed!

27

Let’s Add Arrays - Semantic Analysis

An array type tp conforms to type pt if:

• pt is an array type, and
• inner type tp conforms to pt inner type.

28

Let’s Add Arrays – Semantic Analysis

An array type tp can be converted to a type pt if all of the following hold:

• pt is a function type with one argument
• the function argument’s type conforms to Int type
• the inner type of tp conforms to the return type of pt

In other words, Array[𝑇] can be converted to Int ^> 𝑇 (i.e., how you would read an
array).

29

Let’s Add Arrays – Semantic Analysis

An array type tp can be converted to a type pt if all of the following hold:

• pt is a function type with one argument
• the function argument’s type conforms to Int type
• the inner type of tp conforms to the return type of pt

In other words, Array[𝑇] can be converted to Int ^> 𝑇 (i.e., how you would read an
array).

29

Let’s Add Arrays - Semantic Analysis

Inference rules:

Γ ⊢ size ∶ Int
Γ ⊢ ArrayDec(size, 𝑇) ∶ Array[𝑇]

arraydec

Γ ⊢ arr ∶ Array[𝑇] Γ ⊢ 𝑖 ∶ Int
Γ ⊢ Prim("block-get", List(arr, 𝑖)) ∶ 𝑇

arrayget

Γ ⊢ arr ∶ Array[𝑇] Γ ⊢ 𝑖 ∶ Int Γ ⊢ 𝑣 ∶ 𝑇
Γ ⊢ Prim("block-set", List(arr, 𝑖, 𝑣)) ∶ Unit

arrayset

30

Let’s Add Arrays - Semantic Analysis

Inference rules:

Γ ⊢ size ∶ Int
Γ ⊢ ArrayDec(size, 𝑇) ∶ Array[𝑇]

arraydec

Γ ⊢ arr ∶ Array[𝑇] Γ ⊢ 𝑖 ∶ Int
Γ ⊢ Prim("block-get", List(arr, 𝑖)) ∶ 𝑇

arrayget

Γ ⊢ arr ∶ Array[𝑇] Γ ⊢ 𝑖 ∶ Int Γ ⊢ 𝑣 ∶ 𝑇
Γ ⊢ Prim("block-set", List(arr, 𝑖, 𝑣)) ∶ Unit

arrayset

30

Let’s Add Arrays - Interpreter

abstract class Val
case class Cst(x: Any) extends Val

def eval(exp: Exp)(env: Env): Val = exp match {
case ArrayDec(size, _) =>
val Cst(s: Int) = eval(size)(env) // Why is this safe?
Cst(new Array[Any](s))

case Prim("block-get", args) => ??? // left as exercise
case Prim("block-set", args) => ??? // left as exercise

}

31

Let’s Add Arrays - Compiler

Where do we want to store our arrays?

We will use the heap. The heap is permanent, i.e., not erased once a function call is
over (unlike the stack and local variables).

Therefore the heap is used as persistent storage.

32

Let’s Add Arrays - Compiler

Where do we want to store our arrays?

We will use the heap. The heap is permanent, i.e., not erased once a function call is
over (unlike the stack and local variables).

Therefore the heap is used as persistent storage.

32

Let’s Add Arrays - Compiler

When the (compiled) program launches, the OS maps a memory space for our stack.
Thus, we can access the memory location stored in registers, e.g.:

mov $4, -8(%rsp)

To have access to the heap, we call malloc in bootstrap .c and pass the pointer to
our main function as the first argument.
char* heap = malloc(SIZE);
entry_point(heap);
free(heap);

33

Let’s Add Arrays - Compiler

Where is this pointer going to be saved?

A global variable: heap . This address represents the first memory address that we are
allowed to use.

So, how do we allocate an array (ArrayDec)?

Subsequent array allocations must not overlap!

34

Let’s Add Arrays - Compiler

Where is this pointer going to be saved?

A global variable: heap . This address represents the first memory address that we are
allowed to use.

So, how do we allocate an array (ArrayDec)?

Subsequent array allocations must not overlap!

34

Let’s Add Arrays - Compiler

Initially:
[byte0, byte1, byte2, byte3, ..., byteN]
^
|
heap

35

Let’s Add Arrays - Compiler

Now we want to allocate an array arr1 of size 4 (each element is 8 bytes):
[byte0, byte1, byte2, byte3, ..., byte32, byteN]
^ ^
| |

arr1 heap

36

Let’s Add Arrays - Compiler

We assume % rax contains the address of the array we want to access.

How to write to a memory location:
movq $1, (%rax) # write one in the first element of the array

How to read from a memory location?

movq (%rax), %rax # read the first element of the array
and store it in %rax

Shortcuts for arrays:
movq heap, %rax
movq $3, %rcx
movq (%rax, %rcx, 8), %rax # read the 3rd (stored in %rcx)

element of the array and store it in %rax

Read content M[R[% rax] + R[% rcx]*8] into % rax ; see more in x64 Cheat Sheet.

37

Let’s Add Arrays - Compiler

We assume % rax contains the address of the array we want to access.

How to write to a memory location:
movq $1, (%rax) # write one in the first element of the array

How to read from a memory location?
movq (%rax), %rax # read the first element of the array

and store it in %rax

Shortcuts for arrays:
movq heap, %rax
movq $3, %rcx
movq (%rax, %rcx, 8), %rax # read the 3rd (stored in %rcx)

element of the array and store it in %rax

Read content M[R[% rax] + R[% rcx]*8] into % rax ; see more in x64 Cheat Sheet.

37

Let’s Add Arrays - Compiler

We assume % rax contains the address of the array we want to access.

How to write to a memory location:
movq $1, (%rax) # write one in the first element of the array

How to read from a memory location?
movq (%rax), %rax # read the first element of the array

and store it in %rax

Shortcuts for arrays:
movq heap, %rax
movq $3, %rcx
movq (%rax, %rcx, 8), %rax # read the 3rd (stored in %rcx)

element of the array and store it in %rax

Read content M[R[% rax] + R[% rcx]*8] into % rax ; see more in x64 Cheat Sheet. 37

Where Are We?

Today, we learned the following:

• Type checking functions
• Interpreting functions
• Calling conventions
• Adding arrays

38

