CS107: Type Checking/Inference and Functions

Guannan Wei
guannan.wei@tufts.edu
Jan 29, 2026

Spring 2026

Tufts University

What did we learn last time?

What did we learn last time?

= Compiling mutable variables and loops
= Syntax sugar
= Introduced type systems

Inference Rules

Typing judgments ' - ¢ : T assert that in the environment I", the expression e is of
type T

Inference Rules

Typing judgments ' - ¢ : T assert that in the environment I", the expression e is of
type T

Inference rules specify how we can form typing judgments:

conditionl condition?2

NAME OF THE RULE
conclusion

If all conditions can be proven true then the conclusion is true.

Inference Rules

1) Lit: ¢ is an Int, b is a Boolean

Ik Lit(é) : Int INT I'F Lit(b) : Boolean BOOLEAN
I'FLit(()) : Unit UnNIT

We call inference rules without conditions axioms.

Inference Rules

1) Lit: ¢ is an Int, b is a Boolean

Ik Lit(é) : Int INT I'F Lit(b) : Boolean BOOLEAN
['FLit(()): Unit UNIT

We call inference rules without conditions axioms.

2) Unary: op e {"+", "-"}

I'e:Int
I' - Unary(op,e) : Int

INTUNOP

Inference Rules

3) Prim:
0 0p€{||+||' ||_||’ Il*ll’ II/II}
™ bope{ll=ll’ "i", "S", "2", |I<Il, |I>|I
I'-e;: Int I'ey: Int I'-e;: Int I'-ey: Int
- INTOP BOOLOP
' Prim(op, eq,ey) : Int '+ Prim(bop, e, e,) : Boolean

Inference Rules

4) Immutable variables

Fl_el:Tl F,$1T1|_€21T2 F(l‘):T
LET —— REF
't Let(z, T}, eq,e5) : Ty I'+Ref(z): T

Prove that the following program is of type Boolean

val x: Int = 3; x == 4

Prove that the following program is of type Boolean
val x: Int = 3; x == 4

Let(x, Int, Lit(3), Prim("=", Ref(x), Lit(4)))

Prove that the following program is of type Boolean
val x: Int = 3; x == 4

0 Let(x, Int, Lit(3), Prim("=", Ref(x), Lit(4))) : Boolean

Prove that the following program is of type Boolean
val x: Int = 3; x == 4

LET
0 Let(x, Int, Lit(3), Prim("=", Ref(x), Lit(4))) : Boolean

Prove that the following program is of type Boolean
val x: Int = 3; x == 4

0k Lit(3): Int x: IntF Prim("=", Ref(x), Lit(4)) : Boolean

LET
0 Let(x, Int, Lit(3), Prim("=", Ref(x), Lit(4))) : Boolean

10

Prove that the following program is of type Boolean
val x: Int = 3; x == 4

INT
0+ Lit(3) : Int x: Int - Prim("=", Ref(x), Lit(4)) : Boolean

LET
0+ Let(x, Int, Lit(3), Prim("=", Ref(x), Lit(4))) : Boolean

11

Prove that the following program is of type Boolean
val x: Int = 3; x == 4

x : Int - Ref(x) : Int x: Inthk Lit(4) : Int
INT BOOLOP
0 F Lit(3) : Int x: Int - Prim("=", Ref(x), Lit(4)) : Boolean

LET
0+ Let(x, Int, Lit(3), Prim("=", Ref(x), Lit(4))) : Boolean

12

Prove that the following program is of type Boolean
val x: Int = 3; x == 4

(x : Int)(x) = Int

REF
x : Int - Ref(x) : Int x: Intk Lit(4) : Int
INT BOOLOP
0 FLit(3): Int x: IntF Prim("=", Ref(x), Lit(4)) : Boolean
LET
0 Let(x, Int, Lit(3), Prim("=", Ref(x), Lit(4))) : Boolean

13

Prove that the following program is of type Boolean
val x: Int = 3; x == 4

(x : Int)(x) = Int

REF INT
x : Int - Ref(x) : Int x : Int Lit(4) : Int
INT BOOLOP
0 FLit(3): Int x: Int F Prim("=", Ref(x), Lit(4)) : Boolean
LET
0 Let(x, Int, Lit(3), Prim("=", Ref(x), Lit(4))) : Boolean

There is no more statement to prove! That means our initial statement was true.

14

Type Checking and Type Inference

Prove that the following program is of type Boolean

val x = 3; X == 4

Recall the grammar:

<exp> ::= 'val' <ident> [':' <type>] '=' <simp>';'<exp>

15

Type Checking and Type Inference

Prove that the following program is of type Boolean

val x = 3; X == 4

Recall the grammar:

<exp> ::= 'val' <dident> [':' <type>] '=' <simp>';'<exp>
We write 7?7 for the placeholder/unknown type.
Let(x, ???, Lit(3), Prim("=", Ref(x), Lit(4)))

Can we still do it?

15

Type Checking and Type Inference

Prove that the following program is of type Boolean

val x = 3; X == 4

We write 7?7 for the placeholder/unknown type.

0F Lit(3):??? x: 22?2 F Prim("=", Ref(x), Lit(4)) : Boolean

LET
0+ Let(x, 222, Lit(3), Prim("=", Ref(x), Lit(4))) : Boolean

Can we still do it?

16

Type Checking and Type Inference

Prove that the following program is of type Boolean

val x = 3; X == 4

We write 7?7 for the placeholder/unknown type.

INT
0 Lit(3):??? x: 7?7 - Prim("=", Ref(x), Lit(4)) : Boolean

LET
0+ Let(x, 222, Lit(3), Prim("=", Ref(x), Lit(4))) : Boolean

Can we still do it? Yes, as only one rule can be applied to Lit(3).

17

Type Checking and Type Inference

Prove that the following program is of type Boolean

val x = 3; X == 4

We write 7?7 for the placeholder/unknown type.

INT
) FLit(3): Int x: Int - Prim("=", Ref(x), Lit(4)) : Boolean

LET
0 Let(x, Int, Lit(3), Prim("=", Ref(x), Lit(4))) : Boolean

Can we still do it? Yes, as only the rule INT can be applied to Lit(3). This determines
the instantiation of 7?7 with type Int.

18

Type Checking and Type Inference

The type checking/inference step will be part of the semantic analyzer.

Key idea: types represent abstract values, and inference rules are the set of operations
on these values.

The implementation of type checking/inference will structurally similar to the

interpreter eval.

19

Type Checking and Type Inference

We add a Type field in our AST now:

abstract class Type

case class BaseType(tp: String) extends Type
val IntType = BaseType("Int")

val BoolType = BaseType("Boolean")

val UnitType = BaseType("Unit")

object UnknownType extends Type

abstract class Exp {

// ... Position

var tp: Type = UnknownType

def withType(pt: Type) = { tp = pt; this }
I

The type checker will have to resolve the type of each node.

20

Type Checking and Type Inference

We are going to define two main functions:

The first is going to try to infer the type of exp in environment env. Type pt is a
“suggestion” on what the type should be, but can be ignored. It returns an AST
equivalent to exp with all types resolved.

def typeInfer(exp: Exp, pt: Type)(env: Env): Exp

21

Inference Example

Example:

typeInfer(
Let(x, UnknownType, Lit(3), Prim("==", Ref(x), Lit(4))),
UnknownType // We don't have information at first

) (emptyEnv)

will return

Let(x, IntType,
Lit(3), /* tp == IntType */
Prim("==",
Ref(x), /* tp == IntType */
Lit(4) /* tp == IntType */
) /* tp == BoolType */
) /* tp == BoolType */

22

Type Checking and Type Inference

The second is going to infer the type of exp and verify that it conforms to type pt.
It also returns an equivalent AST with all types resolved.

def typeCheck(exp: Exp, pt: Type)(env: Env): Exp

23

Type Checking and Type Inference

The second is going to infer the type of exp and verify that it conforms to type pt.
It also returns an equivalent AST with all types resolved.

def typeCheck(exp: Exp, pt: Type)(env: Env): Exp

We need to define what “T1 conforms to T2" means.

23

Type Checking and Type Inference

The second is going to infer the type of exp and verify that it conforms to type pt.
It also returns an equivalent AST with all types resolved.

def typeCheck(exp: Exp, pt: Type)(env: Env): Exp

We need to define what “T1 conforms to T2"” means.
T1 conforms to T2 if:

= T1 ==T2, or

23

Type Checking and Type Inference

The second is going to infer the type of exp and verify that it conforms to type pt.
It also returns an equivalent AST with all types resolved.

def typeCheck(exp: Exp, pt: Type)(env: Env): Exp
We need to define what “T1 conforms to T2"” means.
T1 conforms to T2 if:

= T1 ==T2, or
= T2 is UnknownType

23

Implementation

// Check if 'tp' is well-formed. For now that means that 'tp'
// is not unknown
def typeWellFormed(tp: Type)(env: Env): Type = ...

// Check if 'tp' conforms to 'pt' and return the more precise type
// The returned type should also be well-formed
def typeConforms(tp: Type, pt: Type)(env: Env): Type = ...

def typeCheck(exp: Exp, pt: Type)(env: Env): Exp = {
// First infer
val nexp = typeInfer(exp, pt)(env)
val rtp = typeConforms(nexp.tp, pt)(env)
nexp.withType(rtp)

24

Implementation

def typeInfer(exp: Exp, pt: Type)(env: Env): Exp = exp match
case Lit(i: Int) => ???
case Let(x, tp, rhs, body) => ???
case ... => ...

25

Implementation

def typeInfer(exp: Exp, pt: Type)(env: Env): Exp = exp match
case Lit(i: Int) => ??? // Rule [Int]
case Let(x, tp, rhs, body) => ??? // Rule [Let]
case ... => ...

26

Implementation

def typeInfer(exp: Exp, pt: Type)(env: Env): Exp = exp match {
case Lit(i: Int) => exp.withType(IntType) // No conditions
case Let(x, tp, rhs, body) => // Rule [Let]
if (env.isDefined(x)) warn("reuse of variable name", exp.pos)

// Left condition: env + rhs: tp
val nrhs = typeCheck(rhs, tp)(env)

// Right condition: env, x:nrhs.tp + body: pt (pt may be UnknownType)
val nbody = typeCheck(body, pt)(env.withVal(x, nrhs.tp))

// Conclusion
Let(x, nrhs.tp, nrhs, nbody).withType(nbody.tp)
case ... => ...

I

27

Inference Rules (cont’d)

5) if:

I' = ¢, : Boolean I'ke : T I'Fey: T
I'EIf(cy,eq,e9): T

IF

6) Mutable variables

I'e : Ty Dz:T) Fey: T,
I' - varDec(z, T}, eq,ey) : T

VARDEC

I' - varAssign(z,ey) : T

VARASSIGN

28

Inference Rules (cont’d)

7) while

I' = ¢, : Boolean I'-ey:Unit I'Eey: Ty
I'FWhile(cq, eq,eq) : Th

WHILE

29

Interpretation With Types

abstract class Val
case class Cst(x: Any) extends Val

def eval(exp)(env: Env): Val = exp match {
case Lit(i: Int) => Cst(i)
case Prim(op, 1, r) => evalPrim(op) (eval(l)(env), eval(r)(env))
// ...

+

def evalPrim(op: String) (1: Val, r: Val) = (op, 1, r) match {
case ("+" , Cst(x: Int), Cst(y: Int)) => Cst(x + vy)
case ("==", Cst(x: Int), Cst(y: Int)) => Cst(x == y)
// ...

¥

30

Compilation With Types

Assembly code does not have types. We need to make an “implementation” decision

on how to represent the new types.

= Boolean: 0 or 1, but we still use the full register.

31

Compilation With Types

Assembly code does not have types. We need to make an “implementation” decision

on how to represent the new types.

= Boolean: 0 or 1, but we still use the full register.
= Unit: There are no operations using Unit, but for the ease of implementation, we
still use the full register, and just let it hold uninitialized bits.

31

Compilation With Types

Implementation of the operators:

val x = 1 == 4;

32

Compilation With Types

Implementation of the operators:

val x = 1 == 4;

We could use jumps: one branch sets 0, the other sets 1.

32

Compilation With Types

Implementation of the operators:

val x = 1 == 4;
We could use jumps: one branch sets 0, the other sets 1.

but X86 offers us a shortcut:
set<op> %al # set %al if flags validate <op>
like jump, there are: sete, setne, setl, etc.

movbq %al, %rax # transform the byte into the full register

32

Compilation With Types

We also have to modify our compilation for the If statements.

def trans(exp: Exp, sp: Int)(env: Env) = exp match {
case If(cond, tBranch, eBranch) =>
trans(cond, sp)(env) // now reg at sp will contain 0 or 1
transJumpIfTrue(sp) ("if")
// ...

What code would transJumpIfTrue generate?

33

Compilation With Types

We also have to modify our compilation for the If statements.

def trans(exp: Exp, sp: Int)(env: Env) = exp match {
case If(cond, tBranch, eBranch) =>
trans(cond, sp)(env) // now reg at sp will contain 0 or 1
transJumpIfTrue(sp) ("if")
// ...

What code would transJumpIfTrue generate?

cmp ${regs(sp)}, $1 # INVALID syntax, only registers allowed.
je $label

33

Compilation With Types

We also have to modify our compilation for the If statements.

def trans(exp: Exp, sp: Int)(env: Env) = exp match {
case If(cond, tBranch, eBranch) =>

trans(cond, sp)(env) // now reg at sp will contain 0 or 1
transJumpIfTrue(sp) ("if")
// ...

What code would transJumpIfTrue generate?

cmp ${regs(sp)}, $1 # INVALID syntax, only registers allowed.
je $label

test ${regs(sp)}, ${regs(sp)}
jnz $label

test S, T sets the flags accordingly to S & T: So if sp contains 1: 1 & 1 == 0 so

we jump (jnz). If sp contains 0: 8 & 8 = 0, then we don't jump.
33

Growing the Language

What is still missing in our language?

34

Growing the Language

What is still missing in our language?
def f(x: Int) = x + 3

def g() = 2

def h(x: Int, y: Boolean): Int = {
val z = if (y) {
x + 1
} else {
x -1
17§
Z * X

F

def k(f: Int => Int): Int = f(0)

34

Let’s Add Functions - Syntax

<type> = <ident> | <type> '=>' <type> // '=>' is right associative
| (' [<type>[", '<type>]*]')' '=>' <type>

<atom> = <number> | <bool> | <ident> | '()"
| "('<simp>')"’

<tight> ::= <atom>['('[<simp>["', '<simp>]*]')"']*
| "{'<exp>'}"'

<uatom> = [<op>]<tight> // Previously atom

<simp> 2 coa0 // same as before

<exp> =[N // same as before

<arg> = <ident>':'<type>

<prog> =

['def'<ident>'('[<arg>[", '<arg>]*]")'[':"' <type>] '=' <simp>';']*x <exp>

85

Let’s Add Functions - AST

case class FunType(args: List[(String,Type)], rte: Type) extends Type

36

Let’s Add Functions - AST

case class FunType(args: List[(String,Type)], rte: Type) extends Type

case class Arg(name: String, atp: Type, pos: Position)
case class FunDef(name: String, args: List[Arg], rte: Type, fbody: Exp)
extends Exp

36

Let’s Add Functions - AST

case class FunType(args: List[(String,Type)], rte: Type) extends Type

case class Arg(name: String, atp: Type, pos: Position)
case class FunDef(name: String, args: List[Arg], rte: Type, fbody: Exp)
extends Exp

case class LetRec(funs: List[Exp], body: Exp) extends Exp
case class App(fun: Exp, args: List[Exp]) extends Exp

36

// LetRec(List(
def f(x: Int) = { // FunDef("f", List(Arg("x", IntType)), UnknownType,

X + 1 // Prim("+", Ref("x"), Lit(1))
Y /7)),
(1) // App(Ref("f"), List(Lit(1)))
//)

37

Further Reading

» Types and Programming Languages, Benjamin C.

Pierce, 2002, MIT Press Types and

Programming

» Bidirectional Typechecking, Jana Dunfield, Neel |
Krishnaswami, ACM Computing Surveys, 2019

= Propositions as Types, Philip Walder, Communication
of ACM, 2015. Youtube vidoe:
https://www.youtube.com/watch?v=10iZat|ZtGU

38

https://www.youtube.com/watch?v=IOiZatlZtGU

Where Are We?

= We foramlized type checking/inference in our language. We discussed the
implementation of the type checker.

= We started to introduce function grammar and talked about function types.

39

Where Are We?

= We foramlized type checking/inference in our language. We discussed the
implementation of the type checker.

= We started to introduce function grammar and talked about function types.

Questions?

39

