
CS107: Type Checking/Inference and Functions

Guannan Wei
guannan.wei@tufts.edu
Jan 29, 2026
Spring 2026

Tufts University

1

Recap

What did we learn last time?

• Compiling mutable variables and loops
• Syntax sugar
• Introduced type systems

2

Recap

What did we learn last time?

• Compiling mutable variables and loops
• Syntax sugar
• Introduced type systems

2

Inference Rules

Typing judgments Γ ⊢ 𝑒 ∶ 𝑇 assert that in the environment Γ, the expression 𝑒 is of
type 𝑇 .

Inference rules specify how we can form typing judgments:

condition1 condition2 …
conclusion

name of the rule

If all conditions can be proven true then the conclusion is true.

3

Inference Rules

Typing judgments Γ ⊢ 𝑒 ∶ 𝑇 assert that in the environment Γ, the expression 𝑒 is of
type 𝑇 .

Inference rules specify how we can form typing judgments:

condition1 condition2 …
conclusion

name of the rule

If all conditions can be proven true then the conclusion is true.

3

Inference Rules

1) Lit: 𝑖 is an Int, 𝑏 is a Boolean

Γ ⊢ Lit(𝑖) ∶ Int int Γ ⊢ Lit(𝑏) ∶ Boolean boolean

Γ ⊢ Lit(()) ∶ Unit Unit

We call inference rules without conditions axioms.

2) Unary: op ∈ {"+", "-"}

Γ ⊢ 𝑒 ∶ Int
Γ ⊢ Unary(op, 𝑒) ∶ Int

intunop

4

Inference Rules

1) Lit: 𝑖 is an Int, 𝑏 is a Boolean

Γ ⊢ Lit(𝑖) ∶ Int int Γ ⊢ Lit(𝑏) ∶ Boolean boolean

Γ ⊢ Lit(()) ∶ Unit Unit

We call inference rules without conditions axioms.

2) Unary: op ∈ {"+", "-"}

Γ ⊢ 𝑒 ∶ Int
Γ ⊢ Unary(op, 𝑒) ∶ Int

intunop

4

Inference Rules

3) Prim:

• op ∈ {"+", "-", "*", "/"}
• bop ∈ {"^=", "^=", "^=", "^=", "<", ">"}

Γ ⊢ 𝑒1 ∶ Int Γ ⊢ 𝑒2 ∶ Int
Γ ⊢ Prim(op, 𝑒1, 𝑒2) ∶ Int

intop
Γ ⊢ 𝑒1 ∶ Int Γ ⊢ 𝑒2 ∶ Int

Γ ⊢ Prim(bop, 𝑒1, 𝑒2) ∶ Boolean
boolop

5

Inference Rules

4) Immutable variables

Γ ⊢ 𝑒1 ∶ 𝑇1 Γ, 𝑥 ∶ 𝑇1 ⊢ 𝑒2 ∶ 𝑇2

Γ ⊢ Let(𝑥, 𝑇1, 𝑒1, 𝑒2) ∶ 𝑇2
let

Γ(𝑥) = 𝑇
Γ ⊢ Ref(𝑥) ∶ 𝑇

ref

6

Examples

Prove that the following program is of type Boolean
val x: Int = 3; x == 4

Let(x, Int, Lit(3), Prim("^=", Ref(x), Lit(4)))

7

Examples

Prove that the following program is of type Boolean
val x: Int = 3; x == 4

Let(x, Int, Lit(3), Prim("^=", Ref(x), Lit(4)))

7

Examples

Prove that the following program is of type Boolean
val x: Int = 3; x == 4

∅ ⊢ Let(x, Int, Lit(3), Prim("^=", Ref(x), Lit(4))) ∶ Boolean

8

Example

Prove that the following program is of type Boolean
val x: Int = 3; x == 4

∅ ⊢ Let(x, Int, Lit(3), Prim("^=", Ref(x), Lit(4))) ∶ Boolean
let

9

Examples

Prove that the following program is of type Boolean
val x: Int = 3; x == 4

∅ ⊢ Lit(3) ∶ Int x ∶ Int ⊢ Prim("^=", Ref(x), Lit(4)) ∶ Boolean

∅ ⊢ Let(x, Int, Lit(3), Prim("^=", Ref(x), Lit(4))) ∶ Boolean
let

10

Examples

Prove that the following program is of type Boolean
val x: Int = 3; x == 4

∅ ⊢ Lit(3) ∶ Int
int

x ∶ Int ⊢ Prim("^=", Ref(x), Lit(4)) ∶ Boolean

∅ ⊢ Let(x, Int, Lit(3), Prim("^=", Ref(x), Lit(4))) ∶ Boolean
let

11

Examples

Prove that the following program is of type Boolean
val x: Int = 3; x == 4

∅ ⊢ Lit(3) ∶ Int
int

x ∶ Int ⊢ Ref(x) ∶ Int x ∶ Int ⊢ Lit(4) ∶ Int

x ∶ Int ⊢ Prim("^=", Ref(x), Lit(4)) ∶ Boolean
boolop

∅ ⊢ Let(x, Int, Lit(3), Prim("^=", Ref(x), Lit(4))) ∶ Boolean
let

12

Examples

Prove that the following program is of type Boolean
val x: Int = 3; x == 4

∅ ⊢ Lit(3) ∶ Int
int

(x ∶ Int)(x) = Int

x ∶ Int ⊢ Ref(x) ∶ Int
ref

x ∶ Int ⊢ Lit(4) ∶ Int

x ∶ Int ⊢ Prim("^=", Ref(x), Lit(4)) ∶ Boolean
boolop

∅ ⊢ Let(x, Int, Lit(3), Prim("^=", Ref(x), Lit(4))) ∶ Boolean
let

13

Examples

Prove that the following program is of type Boolean
val x: Int = 3; x == 4

∅ ⊢ Lit(3) ∶ Int
int

(x ∶ Int)(x) = Int

x ∶ Int ⊢ Ref(x) ∶ Int
ref

x ∶ Int ⊢ Lit(4) ∶ Int
int

x ∶ Int ⊢ Prim("^=", Ref(x), Lit(4)) ∶ Boolean
boolop

∅ ⊢ Let(x, Int, Lit(3), Prim("^=", Ref(x), Lit(4))) ∶ Boolean
let

There is no more statement to prove! That means our initial statement was true.
14

Type Checking and Type Inference

Prove that the following program is of type Boolean
val x = 3; x == 4

Recall the grammar:
<exp> ::= 'val' <ident> [':' <type>] '=' <simp>';'<exp>

| ...

We write ??? for the placeholder/unknown type.

Let(x, ???, Lit(3), Prim("^=", Ref(x), Lit(4)))

Can we still do it?

15

Type Checking and Type Inference

Prove that the following program is of type Boolean
val x = 3; x == 4

Recall the grammar:
<exp> ::= 'val' <ident> [':' <type>] '=' <simp>';'<exp>

| ...

We write ??? for the placeholder/unknown type.

Let(x, ???, Lit(3), Prim("^=", Ref(x), Lit(4)))

Can we still do it?

15

Type Checking and Type Inference

Prove that the following program is of type Boolean
val x = 3; x == 4

We write ??? for the placeholder/unknown type.

∅ ⊢ Lit(3) ∶ ??? x ∶ ??? ⊢ Prim("^=", Ref(x), Lit(4)) ∶ Boolean

∅ ⊢ Let(x, ???, Lit(3), Prim("^=", Ref(x), Lit(4))) ∶ Boolean
let

Can we still do it?

16

Type Checking and Type Inference

Prove that the following program is of type Boolean
val x = 3; x == 4

We write ??? for the placeholder/unknown type.

∅ ⊢ Lit(3) ∶ ???
int

x ∶ ??? ⊢ Prim("^=", Ref(x), Lit(4)) ∶ Boolean

∅ ⊢ Let(x, ???, Lit(3), Prim("^=", Ref(x), Lit(4))) ∶ Boolean
let

Can we still do it? Yes, as only one rule can be applied to Lit(3).

17

Type Checking and Type Inference

Prove that the following program is of type Boolean
val x = 3; x == 4

We write ??? for the placeholder/unknown type.

∅ ⊢ Lit(3) ∶ Int
int

x ∶ Int ⊢ Prim("^=", Ref(x), Lit(4)) ∶ Boolean

∅ ⊢ Let(x, Int, Lit(3), Prim("^=", Ref(x), Lit(4))) ∶ Boolean
let

Can we still do it? Yes, as only the rule int can be applied to Lit(3). This determines
the instantiation of ??? with type Int.

18

Type Checking and Type Inference

The type checking/inference step will be part of the semantic analyzer.

Key idea: types represent abstract values, and inference rules are the set of operations
on these values.

The implementation of type checking/inference will structurally similar to the
interpreter eval .

19

Type Checking and Type Inference

We add a Type field in our AST now:
abstract class Type
case class BaseType(tp: String) extends Type
val IntType = BaseType("Int")
val BoolType = BaseType("Boolean")
val UnitType = BaseType("Unit")
object UnknownType extends Type

abstract class Exp {
// ... Position
var tp: Type = UnknownType
def withType(pt: Type) = { tp = pt; this }

}

The type checker will have to resolve the type of each node.

20

Type Checking and Type Inference

We are going to define two main functions:

The first is going to try to infer the type of exp in environment env . Type pt is a
“suggestion” on what the type should be, but can be ignored. It returns an AST
equivalent to exp with all types resolved.
def typeInfer(exp: Exp, pt: Type)(env: Env): Exp

21

Inference Example

Example:
typeInfer(
Let(x, UnknownType, Lit(3), Prim("==", Ref(x), Lit(4))),
UnknownType // We don't have information at first

)(emptyEnv)

will return
Let(x, IntType,
Lit(3), /* tp == IntType */
Prim("==",
Ref(x), /* tp == IntType */
Lit(4) /* tp == IntType */

) /* tp == BoolType */
) /* tp == BoolType */

22

Type Checking and Type Inference

The second is going to infer the type of exp and verify that it conforms to type pt.
It also returns an equivalent AST with all types resolved.

def typeCheck(exp: Exp, pt: Type)(env: Env): Exp

We need to define what “T1 conforms to T2” means.

T1 conforms to T2 if:

• T1 == T2, or
• T2 is UnknownType

23

Type Checking and Type Inference

The second is going to infer the type of exp and verify that it conforms to type pt.
It also returns an equivalent AST with all types resolved.

def typeCheck(exp: Exp, pt: Type)(env: Env): Exp

We need to define what “T1 conforms to T2” means.

T1 conforms to T2 if:

• T1 == T2, or
• T2 is UnknownType

23

Type Checking and Type Inference

The second is going to infer the type of exp and verify that it conforms to type pt.
It also returns an equivalent AST with all types resolved.

def typeCheck(exp: Exp, pt: Type)(env: Env): Exp

We need to define what “T1 conforms to T2” means.

T1 conforms to T2 if:

• T1 == T2, or

• T2 is UnknownType

23

Type Checking and Type Inference

The second is going to infer the type of exp and verify that it conforms to type pt.
It also returns an equivalent AST with all types resolved.

def typeCheck(exp: Exp, pt: Type)(env: Env): Exp

We need to define what “T1 conforms to T2” means.

T1 conforms to T2 if:

• T1 == T2, or
• T2 is UnknownType

23

Implementation

// Check if 'tp' is well-formed. For now that means that 'tp'
// is not unknown
def typeWellFormed(tp: Type)(env: Env): Type = ...

// Check if 'tp' conforms to 'pt' and return the more precise type
// The returned type should also be well-formed
def typeConforms(tp: Type, pt: Type)(env: Env): Type = ...

def typeCheck(exp: Exp, pt: Type)(env: Env): Exp = {
// First infer
val nexp = typeInfer(exp, pt)(env)
val rtp = typeConforms(nexp.tp, pt)(env)
nexp.withType(rtp)

}

24

Implementation

def typeInfer(exp: Exp, pt: Type)(env: Env): Exp = exp match
case Lit(i: Int) => ???
case Let(x, tp, rhs, body) => ???
case ... => ...

25

Implementation

def typeInfer(exp: Exp, pt: Type)(env: Env): Exp = exp match
case Lit(i: Int) => ??? // Rule [Int]
case Let(x, tp, rhs, body) => ??? // Rule [Let]
case ... => ...

26

Implementation

def typeInfer(exp: Exp, pt: Type)(env: Env): Exp = exp match {
case Lit(i: Int) => exp.withType(IntType) // No conditions
case Let(x, tp, rhs, body) => // Rule [Let]
if (env.isDefined(x)) warn("reuse of variable name", exp.pos)

// Left condition: env ⊢ rhs: tp
val nrhs = typeCheck(rhs, tp)(env)

// Right condition: env, x:nrhs.tp ⊢ body: pt (pt may be UnknownType)
val nbody = typeCheck(body, pt)(env.withVal(x, nrhs.tp))

// Conclusion
Let(x, nrhs.tp, nrhs, nbody).withType(nbody.tp)

case ... => ...
}

27

Inference Rules (cont’d)

5) if:

Γ ⊢ 𝑐1 ∶ Boolean Γ ⊢ 𝑒1 ∶ 𝑇 Γ ⊢ 𝑒2 ∶ 𝑇
Γ ⊢ If(𝑐1, 𝑒1, 𝑒2) ∶ 𝑇

if

6) Mutable variables

Γ ⊢ 𝑒1 ∶ 𝑇1 Γ, 𝑥 ∶ 𝑇1 ⊢ 𝑒2 ∶ 𝑇2

Γ ⊢ VarDec(𝑥, 𝑇1, 𝑒1, 𝑒2) ∶ 𝑇2
vardec

Γ(𝑥) = 𝑇1 Γ ⊢ 𝑒1 ∶ 𝑇1

Γ ⊢ VarAssign(𝑥, 𝑒1) ∶ 𝑇1
varassign

28

Inference Rules (cont’d)

7) while

Γ ⊢ 𝑐1 ∶ Boolean Γ ⊢ 𝑒1 ∶ Unit Γ ⊢ 𝑒2 ∶ 𝑇2

Γ ⊢ While(𝑐1, 𝑒1, 𝑒2) ∶ 𝑇2
while

29

Interpretation With Types

abstract class Val
case class Cst(x: Any) extends Val

def eval(exp)(env: Env): Val = exp match {
case Lit(i: Int) => Cst(i)
case Prim(op, l, r) => evalPrim(op)(eval(l)(env), eval(r)(env))
// ...

}
def evalPrim(op: String)(l: Val, r: Val) = (op, l, r) match {
case ("+" , Cst(x: Int), Cst(y: Int)) => Cst(x + y)
case ("==", Cst(x: Int), Cst(y: Int)) => Cst(x == y)
// ...

}

30

Compilation With Types

Assembly code does not have types. We need to make an “implementation” decision
on how to represent the new types.

• Boolean: 0 or 1, but we still use the full register.

• Unit: There are no operations using Unit, but for the ease of implementation, we
still use the full register, and just let it hold uninitialized bits.

31

Compilation With Types

Assembly code does not have types. We need to make an “implementation” decision
on how to represent the new types.

• Boolean: 0 or 1, but we still use the full register.
• Unit: There are no operations using Unit, but for the ease of implementation, we

still use the full register, and just let it hold uninitialized bits.

31

Compilation With Types

Implementation of the operators:
val x = 1 == 4;

We could use jumps: one branch sets 0, the other sets 1.

but X86 offers us a shortcut:
set<op> %al # set %al if flags validate <op>

like jump, there are: sete, setne, setl, etc.
movbq %al, %rax # transform the byte into the full register

32

Compilation With Types

Implementation of the operators:
val x = 1 == 4;

We could use jumps: one branch sets 0, the other sets 1.

but X86 offers us a shortcut:
set<op> %al # set %al if flags validate <op>

like jump, there are: sete, setne, setl, etc.
movbq %al, %rax # transform the byte into the full register

32

Compilation With Types

Implementation of the operators:
val x = 1 == 4;

We could use jumps: one branch sets 0, the other sets 1.

but X86 offers us a shortcut:
set<op> %al # set %al if flags validate <op>

like jump, there are: sete, setne, setl, etc.
movbq %al, %rax # transform the byte into the full register

32

Compilation With Types

We also have to modify our compilation for the If statements.
def trans(exp: Exp, sp: Int)(env: Env) = exp match {
case If(cond, tBranch, eBranch) =>
trans(cond, sp)(env) // now reg at sp will contain 0 or 1
transJumpIfTrue(sp)("if")
// ...

What code would transJumpIfTrue generate?

cmp ${regs(sp)}, $1 # INVALID syntax, only registers allowed.
je $label

test ${regs(sp)}, ${regs(sp)}
jnz $label

test S, T sets the flags accordingly to S & T: So if sp contains 1: 1 & 1 ^= 0 so
we jump (jnz). If sp contains 0: 0 & 0 ^= 0, then we don’t jump.

33

Compilation With Types

We also have to modify our compilation for the If statements.
def trans(exp: Exp, sp: Int)(env: Env) = exp match {
case If(cond, tBranch, eBranch) =>
trans(cond, sp)(env) // now reg at sp will contain 0 or 1
transJumpIfTrue(sp)("if")
// ...

What code would transJumpIfTrue generate?
cmp ${regs(sp)}, $1 # INVALID syntax, only registers allowed.
je $label

test ${regs(sp)}, ${regs(sp)}
jnz $label

test S, T sets the flags accordingly to S & T: So if sp contains 1: 1 & 1 ^= 0 so
we jump (jnz). If sp contains 0: 0 & 0 ^= 0, then we don’t jump.

33

Compilation With Types

We also have to modify our compilation for the If statements.
def trans(exp: Exp, sp: Int)(env: Env) = exp match {
case If(cond, tBranch, eBranch) =>
trans(cond, sp)(env) // now reg at sp will contain 0 or 1
transJumpIfTrue(sp)("if")
// ...

What code would transJumpIfTrue generate?
cmp ${regs(sp)}, $1 # INVALID syntax, only registers allowed.
je $label

test ${regs(sp)}, ${regs(sp)}
jnz $label

test S, T sets the flags accordingly to S & T: So if sp contains 1: 1 & 1 ^= 0 so
we jump (jnz). If sp contains 0: 0 & 0 ^= 0, then we don’t jump.

33

Growing the Language

What is still missing in our language?

def f(x: Int) = x + 3

def g() = 2

def h(x: Int, y: Boolean): Int = {
val z = if (y) {
x + 1

} else {
x - 1

};
z * x

}

def k(f: Int => Int): Int = f(0)

34

Growing the Language

What is still missing in our language?
def f(x: Int) = x + 3

def g() = 2

def h(x: Int, y: Boolean): Int = {
val z = if (y) {
x + 1

} else {
x - 1

};
z * x

}

def k(f: Int => Int): Int = f(0)

34

Let’s Add Functions - Syntax

<type> ::= <ident> | <type> '=>' <type> // '=>' is right associative
| '('[<type>[','<type>]*]')' '=>' <type>

<atom> ::= <number> | <bool> | <ident> | '()'
| '('<simp>')'

<tight> ::= <atom>['('[<simp>[','<simp>]*]')']*
| '{'<exp>'}'

<uatom> ::= [<op>]<tight> // Previously atom
<simp> ::= ... // same as before
<exp> ::= ... // same as before
<arg> ::= <ident>':'<type>
<prog> ::=

['def'<ident>'('[<arg>[','<arg>]*]')'[':' <type>] '=' <simp>';']* <exp>

35

Let’s Add Functions - AST

case class FunType(args: List[(String,Type)], rte: Type) extends Type

case class Arg(name: String, atp: Type, pos: Position)
case class FunDef(name: String, args: List[Arg], rte: Type, fbody: Exp)
extends Exp

case class LetRec(funs: List[Exp], body: Exp) extends Exp
case class App(fun: Exp, args: List[Exp]) extends Exp

36

Let’s Add Functions - AST

case class FunType(args: List[(String,Type)], rte: Type) extends Type

case class Arg(name: String, atp: Type, pos: Position)
case class FunDef(name: String, args: List[Arg], rte: Type, fbody: Exp)
extends Exp

case class LetRec(funs: List[Exp], body: Exp) extends Exp
case class App(fun: Exp, args: List[Exp]) extends Exp

36

Let’s Add Functions - AST

case class FunType(args: List[(String,Type)], rte: Type) extends Type

case class Arg(name: String, atp: Type, pos: Position)
case class FunDef(name: String, args: List[Arg], rte: Type, fbody: Exp)
extends Exp

case class LetRec(funs: List[Exp], body: Exp) extends Exp
case class App(fun: Exp, args: List[Exp]) extends Exp

36

Example

// LetRec(List(
def f(x: Int) = { // FunDef("f", List(Arg("x", IntType)), UnknownType,
x + 1 // Prim("+", Ref("x"), Lit(1))

}; //)),
f(1) // App(Ref("f"), List(Lit(1)))

//)

37

Further Reading

• Types and Programming Languages, Benjamin C.
Pierce, 2002, MIT Press

• Bidirectional Typechecking, Jana Dunfield, Neel
Krishnaswami, ACM Computing Surveys, 2019

• Propositions as Types, Philip Walder, Communication
of ACM, 2015. Youtube vidoe:
https://www.youtube.com/watch?v=IOiZatlZtGU

38

https://www.youtube.com/watch?v=IOiZatlZtGU

Where Are We?

• We foramlized type checking/inference in our language. We discussed the
implementation of the type checker.

• We started to introduce function grammar and talked about function types.

Questions?

39

Where Are We?

• We foramlized type checking/inference in our language. We discussed the
implementation of the type checker.

• We started to introduce function grammar and talked about function types.

Questions?

39

