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Recap

What did we learn last time?

• Syntax error vs semantic error
• Better error reporting
• Interpreting and compiling conditionals
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Current Grammar

The grammar so far:
<op> ::= ['+' | '-' | '*' | '/']+
<bop> ::= '==' | '!=' | '<' | '>' | '<=' | '>='
<atom> ::= <number>

| <ident>
| '('<simp>')'
| '{'<exp>'}'

<uatom> ::= [<op>]<atom>
<cond> ::= <simp><bop><simp>
<simp> ::= <uatom>[<op><uatom>]*

| 'if' '('<cond>')' <simp> 'else' <simp>
<exp> ::= <simp>

| 'val' <ident> '=' <simp>';' <exp>
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Quiz

Is this valid syntax?

1)
if (3 == 5) {
2

} * 4 else 8

2)
if (3 == 2)
val x = 3; x

else
5

Answer: 1) Yes 2) No: val x = 3; x is not a simple expression
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Missing Features

• What are still missing from our language?

• Let’s add mutable variables!
<op> ::= ['+' | '-' | '*' | '/']+
<bop> ::= '==' | '!=' | '<' | '>' | '<=' | '>='
<atom> ::= <number>

| <ident>
| '('<simp>')'
| '{'<exp>'}'

<uatom> ::= [<op>]<atom>
<cond> ::= <simp><bop><simp>
<simp> ::= <uatom>[<op><uatom>]*

| 'if' '('<cond>')' <simp> 'else' <simp>
| <ident> '=' <simp> // new

<exp> ::= <simp>
| 'val' <ident> '=' <simp>';' <exp>
| 'var' <ident> '=' <simp>';' <exp> // new

5



Missing Features

• What are still missing from our language?

• Let’s add mutable variables!
<op> ::= ['+' | '-' | '*' | '/']+
<bop> ::= '==' | '!=' | '<' | '>' | '<=' | '>='
<atom> ::= <number>

| <ident>
| '('<simp>')'
| '{'<exp>'}'

<uatom> ::= [<op>]<atom>
<cond> ::= <simp><bop><simp>
<simp> ::= <uatom>[<op><uatom>]*

| 'if' '('<cond>')' <simp> 'else' <simp>
| <ident> '=' <simp> // new

<exp> ::= <simp>
| 'val' <ident> '=' <simp>';' <exp>
| 'var' <ident> '=' <simp>';' <exp> // new

5



Example

Example:
var x = 2;
x = x * x
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Let’s Add Mutable Variables - AST

New AST nodes:
case class VarDec(name: String, value: Exp, body: Exp) extends Exp
case class VarAssign(name: String, value: Exp) extends Exp
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Let’s Add Mutable Variables - Semantics

We can only assign to mutable variables, i.e. declared with var ( VarDec )

type Value = Int

def eval(exp: Exp)(env: ValueEnv): Val = exp match
// previous cases omitted
case VarDec(x, rhs, body) =>
val v = eval(rhs)(env)
eval(body)(env.withVar(x, v))

case VarAssign(x, rhs) =>
val v = eval(rhs)(env)
env.updateVar(x, v)

• What would be the value of assignment?
• Unit or the assigned value
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Let’s Add Loops - Syntax

• Let’s then add loops!

<op> ::= ['+' | '-' | '*' | '/']+
<bop> ::= '==' | '!=' | '<' | '>' | '<=' | '>='
<atom> ::= <number>

| <ident>
| '('<simp>')'
| '{'<exp>'}'

<uatom> ::= [<op>]<atom>
<cond> ::= <simp><bop><simp>
<simp> ::= <uatom>[<op><uatom>]*

| 'if' '('<cond>')' <simp> 'else' <simp>
| <ident> '=' <simp>

<exp> ::= <simp>
| 'val' <ident> '=' <simp> ';' <exp>
| 'var' <ident> '=' <simp> ';' <exp>
| 'while' '(' <cond> ')' <simp> ';' <exp> // new
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Let’s Add Loops - AST

// Already defined
case class Cond(op: String, lop: Exp, rop: Exp) extends Exp

// New definition
case class While(cond: Cond, lbody: Exp, body: Exp) extends Exp
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Let’s Add Loops - Semantics

• Implementing while in the interpreter using Scala’s while :
type Value = Int

def eval(exp: Exp)(env: ValueEnv): Val = exp match
// previous cases omitted
case While(Cond(op, l, r), lbody, body) =>
while (evalCond(op)(eval(l)(env), eval(r)(env))) {
eval(lbody)(env)

}
eval(body)(env)

• Note that the ValueEnv is mutable, so changes in the loop body persist.
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x86 Flags And Jump

Recap: how to compile conditionals?
trans(If(Cond("==", 1, 0), 2, 3), 0)(Map())

# begin code generated
movq $1, %rbx # generate code that compute l, stored in %rbx
movq $0, %rcx # generate code that compute r, stored in %rcx
cmpq %rcx, %rbx
je if1_then
movq $3, %rbx # generate code for eBranch, store result in %rbx
jmp if1_end

if1_then:
movq $2, %rbx # generate code for tBranch, store result in %rbx

if1_end: # end code generated
movq %rbx, %rax
ret

12



x86 Flags And Jump - Compile Loops

trans(While(Cond(op, l, r), lbody, body), 0)(Map())

In order to compile while statement, we are going to follow this idea:
jmp loop_cond

loop_body:
... # code for lbody

loop_cond:
... # code for l and r
cmpq <r>, <l>
j<op> loop_body # the jump operation depends on 'op'
... # code for body

How would we compile a do-while loop?

Answer: omit the unconditional jump
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We Can Write, Parse, and Compile Nice Code!!

var x = 2;
var y = 0;
while (y < 5) {
x = x * x;
y = y + 1

};
x

Can we really?
<atom> ::= <number> | <ident> | '('<simp>')' | '{'<exp>'}'
<uatom> ::= [<op>]<atom>
<cond> ::= <simp><bop><simp>
<simp> ::= <uatom>[<op><uatom>]*

| 'if' '('<cond>')' <simp> 'else' <simp>
| <ident> '=' <simp>

<exp> ::= <simp>
| 'val' <ident> '=' <simp> ';' <exp>
| 'var' <ident> '=' <simp> ';' <exp>
| 'while' '(' <cond> ')' <simp> ';' <exp>
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We Can Write, Parse, and Compile Nice-ish Code!!

What has to been written is actually:
var x = 2;
var y = 0;
while (y < 5) {
val dummy = x = x * x;
y = y + 1

};
x

• Let’s modify our grammar slightly instead!

15



We Can Write, Parse, and Compile Nice-ish Code!!

What has to been written is actually:
var x = 2;
var y = 0;
while (y < 5) {
val dummy = x = x * x;
y = y + 1

};
x

• Let’s modify our grammar slightly instead!

15



Grammar - Syntactic Sugar

<op> ::= ['+' | '-' | '*' | '/']+
<bop> ::= '==' | '!=' | '<' | '>' | '<=' | '>='
<atom> ::= <number>

| <ident>
| '('<simp>')'
| '{'<exp>'}'

<uatom> ::= [<op>]<atom>
<cond> ::= <simp><bop><simp>
<simp> ::= <uatom>[<op><uatom>]*

| 'if' '('<cond>')' <simp> ['else' <simp>]
| <ident> '=' <simp>

<exp> ::= <simp>[';'<exp>]
| 'val' <ident> '=' <simp>';'<exp>
| 'var' <ident> '=' <simp>';'<exp>
| 'while' '(' <cond> ')' <simp>';'<exp>

What have been changed?
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Grammar - Syntactic Sugar

• Syntax sugar constructs are constructs that can be syntactically translated to
other existing core constructs.

• Syntactic sugar does not offer additional expressive power to the programmer;
only some syntactic convenience.

x = x + 1;
y = y + 1

rather than
val dummy = x = x + 1;
y = y + 1
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Unit Type

val tmp = if (x > 0)
x = x - 1

else
0; // Won't be used

val y = x * 5;
y

now can be written as
if (x > 0)
x = x - 1;

val y = x * 5;
x

What is the type of this if expression?

We cannot always meaningfully synthesize a value for the else-branch. So we introduce
a unit type and its sole value ().

18



Unit Type

val tmp = if (x > 0)
x = x - 1

else
0; // Won't be used

val y = x * 5;
y

now can be written as
if (x > 0)
x = x - 1;

val y = x * 5;
x

What is the type of this if expression?

We cannot always meaningfully synthesize a value for the else-branch. So we introduce
a unit type and its sole value ().

18



Unit Type

val tmp = if (x > 0)
x = x - 1

else
0; // Won't be used

val y = x * 5;
y

now can be written as
if (x > 0)
x = x - 1;

val y = x * 5;
x

What is the type of this if expression?

We cannot always meaningfully synthesize a value for the else-branch. So we introduce
a unit type and its sole value ().

18



Unit Type

val tmp = if (x > 0)
x = x - 1

else
0; // Won't be used

val y = x * 5;
y

now can be written as
if (x > 0)
x = x - 1;

val y = x * 5;
x

What is the type of this if expression?

We cannot always meaningfully synthesize a value for the else-branch. So we introduce
a unit type and its sole value ().

18



AST of Sugared Expressions

x = x + 1;
y = y + 1

Parser produces:
Let("tmp$1",
VarAssign("x", Prim("+", Ref("x"), Lit(1)))
VarAssign("y", Prim("+", Ref("y"), Lit(1)))

)
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AST of Sugared Expressions

if (x > 0)
x = x - 1;

val y = x * 5;
x

Parser produces:
Let("tmp$1",
If(Cond(">", Ref("x"), Lit(0)),
VarAssign("x", Prim("-", Ref("x"), Lit(1))),
Lit(())),

Let("y", Prim("*", Ref("x"), Lit(5)),
Ref("x")))

You will implement parsing with syntactic sugars in Project 3.
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Introducing Type Systems

• So far we talked about syntax and dynamic semantics (specified as interpretation
or translation).

• Languages typically have a static semantics, often specified as a type system.

What is a type?

• A set of values: e.g. true, false
• A set of operations on those values: e.g. !, &&, …

Why do we need types?

• Help structure and understand a program
• Can prevent some kinds of errors or undefined behaviors
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Our Grammar, Typed

<op> ::= ['*' | '/' | '+' | '-' | '<' | '>' | '=' | '!']+
<type> ::= <ident> // new
<bool> ::= 'true' | 'false'
<atom> ::= <number> | <bool> | '()' // new

| <ident>
| '('<simp>')'
| '{'<exp>'}'

<uatom> ::= [<op>]<atom>
<simp> ::= <uatom>[<op><uatom>]*

| 'if' '('<simp>')' <simp> ['else' <simp>]
| <ident> '=' <simp>

<exp> ::= <simp>[';'<exp>]
| 'val' <ident> [':' <type>] '=' <simp>';'<exp> // optional type
| 'var' <ident> [':' <type>] '=' <simp>';'<exp> // optional type
| 'while' '(' <simp> ')' <simp>';'<exp>
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Example

var x: Int = 2;
val y: Int = 0;
x = y
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Our AST, Typed

First, we modify our AST to handle the new grammar:
abstract class Type
// Definition later

case class Lit(x: Any) extends Exp
case class Let(name: String, tp: Type, v: Exp, b: Exp) extends Exp
case class VarDec(name: String, tp: Type, v: Exp, b: Exp) extends Exp
case class If(cond: Exp, tBranch: Exp, eBranch: Exp) extends Exp
case class While(cond: Exp, lbody: Exp, body: Exp) extends Exp
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Inference Rules

Typing judgments: we write
Γ ⊢ 𝑒 ∶ 𝑇

to assert that in the environment Γ, the expression 𝑒 is of type 𝑇 .

• Γ is the typing environment: It stores knowledge about identifiers available at
compile time, as a finite mapping from identifiers to types. Grammar:

Γ ::= ∅ | Γ, id:T

• We write ∅ for the empty typing environment, and
• Γ, id ∶ 𝑇 to extend the typing environment Γ with a new mapping from id to type

𝑇 .
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Inference Rules

• A type system consists of a set of inductively defined inference rules.

• These rules define how to form an instance of typing judgments, i.e. proving that
an expression has a certain type in a certain environment.

• General form of inference rules:

condition1 condition2 …
conclusion

name of the rule

26



Type Checking

The type checking realizes typing rules as part of the semantic analyzer.

• The key point to understand is that types represent an abstract value, and
inference rules are the set of operations on these values.

• Therefore, the implementation is going to be very similar to eval or analyze .
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Inference Rules

1) Lit: 𝑖 is an Int, 𝑏 is a Boolean

Γ ⊢ Lit(𝑖) ∶ Int int Γ ⊢ Lit(𝑏) ∶ Boolean boolean

Γ ⊢ Lit(()) ∶ Unit Unit

We call inference rules without conditions axioms.

2) Unary: op ∈ {"+", "-"}

Γ ⊢ 𝑒 ∶ Int
Γ ⊢ Unary(op, 𝑒) ∶ Int

intunop

28



Inference Rules

1) Lit: 𝑖 is an Int, 𝑏 is a Boolean

Γ ⊢ Lit(𝑖) ∶ Int int Γ ⊢ Lit(𝑏) ∶ Boolean boolean

Γ ⊢ Lit(()) ∶ Unit Unit

We call inference rules without conditions axioms.

2) Unary: op ∈ {"+", "-"}

Γ ⊢ 𝑒 ∶ Int
Γ ⊢ Unary(op, 𝑒) ∶ Int

intunop

28



Inference Rules

3) Prim:

• op ∈ {"+", "-", "*", "/"}
• bop ∈ {"^=", "^=", "^=", "^=", "<", ">"}

Γ ⊢ 𝑒1 ∶ Int Γ ⊢ 𝑒2 ∶ Int
Γ ⊢ Prim(op, 𝑒1, 𝑒2) ∶ Int

intop
Γ ⊢ 𝑒1 ∶ Int Γ ⊢ 𝑒2 ∶ Int

Γ ⊢ Prim(bop, 𝑒1, 𝑒2) ∶ Boolean
boolop
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Inference Rules

4) Immutable variables

Γ ⊢ 𝑒1 ∶ 𝑇1 Γ, 𝑥 ∶ 𝑇1 ⊢ 𝑒2 ∶ 𝑇2

Γ ⊢ Let(𝑥, 𝑇1, 𝑒1, 𝑒2) ∶ 𝑇2
let

Γ(𝑥) = 𝑇
Γ ⊢ Ref(𝑥) ∶ 𝑇

ref
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Where Are We?

• We added variables, loops and some syntactic sugar to our language.

• We introduced types and typing rules.

• We saw types as abstract values which can be computed. We also defined a
simplified type checking algorithm.

Questions?
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