CS107: Variables, Loops, and Type Checking

Guannan Wei
guannan.wei@tufts.edu
Jan 27, 2026

Spring 2026

Tufts University

What did we learn last time?

What did we learn last time?

= Syntax error vs semantic error
= Better error reporting
= Interpreting and compiling conditionals

Current Grammar

The grammar so far:

<op>
<bop>
<atom>

<uatom>
<cond>
<simp>

<exp>

N N IS VAR
I=:I | l!:l I I<I | l>l I
<number>

<ident>

"('<simp>")"

'{'<exp>'}'

[<op>]<atom>
<simp><bop><simp>
<uatom>[<op><uatom>]*

I<:I l>:l

"if' '('<cond>')' <simp> 'else' <simp>

<simp>

'val' <ident> '=' <simp>';

' <exp>

Is this valid syntax?

1)

if (3 == 5) {
2

} * 4 else 8

Is this valid syntax?

1)

if (3 == 5) {
2

} * 4 else 8

2)

if (3 == 2)
val x = 3; X

else
b

Is this valid syntax?

1)

if (3 == 5) {
2

} * 4 else 8

2)

if (3 == 2)
val x = 3; X

else
5

Answer: 1) Yes 2) No: val x = 3; x is not a simple expression

Missing Features

= What are still missing from our language?

Missing Features

= What are still missing from our language?

= Let's add mutable variables!

<op> = [t |-t et | /0]
<bop> N R L R t>=t
<atom> = <number>

| <ident>

| '('<simp>")"

['{'<exp>'}"
<uatom> = [<op>]<atom>
<cond> = <simp><bop><simp>
<simp> ::= <vatom>[<op><uatom>]*

| *if' '('<cond>')' <simp> 'else' <simp>

| <ident> '=' <simp> // new
<exp> 1= <simp>

| 'val' <ident> '=' <simp>';' <exp>

| 'var' <ident> '=' <simp>';' <exp> // new

Example:

var x = 2;
X = X * X

Let’'s Add Mutable Variables - AST

New AST nodes:

case class VarDec(name: String, value: Exp, body: Exp) extends Exp
case class VarAssign(name: String, value: Exp) extends Exp

Let’'s Add Mutable Variables - Semantics

We can only assign to mutable variables, i.e. declared with var (VarDec)

Let’'s Add Mutable Variables - Semantics

We can only assign to mutable variables, i.e. declared with var (VarDec)

type Value = Int

def eval(exp: Exp)(env: ValueEnv): Val = exp match
// previous cases omitted
case VarDec(x, rhs, body) =>
val v = eval(rhs)(env)
eval(body) (env.withVar(x, v))
case VarAssign(x, rhs) =>
val v = eval(rhs)(env)
env.updateVar(x, v)

= What would be the value of assignment?
= Unit or the assigned value

Let’s Add Loops - Syntax

= Let's then add loops!

Let’s Add Loops - Syntax

= Let's then add loops!

<op> e SR R B IRN BRVAN
<bop> ses =30 || 0080 | k0 || 00 || 9= Dot
<atom> = <number>
| <ident>
| "('<simp>')"
['{'<exp>'}"
<vatom> ::= [<op>]<atom>
<cond> = <simp><bop><simp>
<simp> ::= <vatom>[<op><uatom>]*
[*if' '('<cond>')' <simp> 'else' <simp>
| <ident> '=' <simp>
<exp> 1= <simp>
| 'val' <ident> '=' <simp> ';' <exp>
| 'var' <ident> '=' <simp> ';' <exp>
I

'while' '(' <cond> ')' <simp> ';' <exp> // new

Let’s Add Loops - AST

// Already defined
case class Cond(op: String, lop: Exp, rop: Exp) extends Exp

10

Let’s Add Loops - AST

// Already defined
case class Cond(op: String, lop: Exp, rop: Exp) extends Exp

// New definition
case class While(cond: Cond, lbody: Exp, body: Exp) extends Exp

10

Let’s Add Loops - Semantics

= Implementing while in the interpreter using Scala's while:
type Value = Int

def eval(exp: Exp)(env: ValueEnv): Val = exp match
// previous cases omitted
case While(Cond(op, 1, r), 1lbody, body) =>
while (evalCond(op) (eval(l)(env), eval(r)(env))) {
eval(lbody) (env)
}
eval(body) (env)

= Note that the ValueEnv is mutable, so changes in the loop body persist.

11

x86 Flags And Jump

Recap: how to compile conditionals?

trans(If(Cond("==", 1, 0),

begin code generated
movq $1, %rbx # generate
movq $0, %rcx # generate
cmpq %rcx, %rbx

je ifl_then
movq $3, %rbx # generate
jmp ifl_end
ifl_then:
movg $2, %rbx # generate
ifl_end: # end code
movq %rbx, %rax
ret

2, 3), 8)(Map())

stored in %rbx
stored in %rcx

code that compute
code that compute

L
r,

store result in %rbx

code for eBranch,

code for tBranch, store result in %rbx

generated

12

x86 Flags And Jump - Compile Loops

trans(While(Cond(op, 1, r), lbody, body), 0)(Map())

13

x86 Flags And Jump - Compile Loops

trans(While(Cond(op, 1, r), lbody, body), 0)(Map())

In order to compile while statement, we are going to follow this idea:

jmp loop_cond
loop_body:
e # code for lbody
loop_cond:
e # code for 1 and r
cmpq <r>, <1>
j<op> loop_body # the jump operation depends on 'op'
.. # code for body

13

x86 Flags And Jump - Compile Loops

trans(While(Cond(op, 1, r), lbody, body), 0)(Map())

In order to compile while statement, we are going to follow this idea:

jmp loop_cond
loop_body:
e # code for lbody
loop_cond:
e # code for 1 and r
cmpq <r>, <1>
j<op> loop_body # the jump operation depends on 'op'
.. # code for body

How would we compile a do-while loop?

13

x86 Flags And Jump - Compile Loops

trans(While(Cond(op, 1, r), lbody, body), 0)(Map())

In order to compile while statement, we are going to follow this idea:

jmp loop_cond
loop_body:
e # code for lbody
loop_cond:
e # code for 1 and r
cmpq <r>, <1>
j<op> loop_body # the jump operation depends on 'op'
.. # code for body

How would we compile a do-while loop?

Answer: omit the unconditional jump

13

We Can Write, Parse, and Compile Nice Code!!

var x = 2;
var y = 0;
while (y < 5) {
X = X * X;
y=y+1
};

X

14

We Can Write, Parse, and Compile Nice Code!!

var x = 2;

var y = 0;

while (y < 5) {
X = X * X;
y=y+1

i

X

Can we really?

14

<atom> ::= <number> | <ident> | '('<simp>')"' | '{'<exp>'}"'
<uvatom> ::= [<op>]<atom>
<cond> ::= <simp><bop><simp>
<simp> = <uatom>[<op><uatom>]*
| 'if' '('<cond>')' <simp> 'else' <simp>
| <ident> '=' <simp>
<exp> 1= <simp>
| 'val' <ident> '=' <simp> ';' <exp>
| 'var' <ident> '=' <simp> ';' <exp>
[

'while' '(' <cond> ')' <simp> ';' <exp>

We Can Write, Parse, and Compile Nice-ish Code!!

What has to been written is actually:

var x = 2;

var y = 0;

while (y < 5) {
val dummy = X = X * X;
y=y+1

%

X

15

We Can Write, Parse, and Compile Nice-ish Code!!

What has to been written is actually:

var x 2;

var y 0;

while (y < 5) {
val dummy = x
y=y+1

= X * X;

li

X

= Let's modify our grammar slightly instead!

15

Grammar - Syntactic Sugar

<op>
<bop>
<atom>

<uatom> ::

<cond>
<simp>

<exp>

N N VA
R I U IR B IR
<number>

<ident>

|(|<Simp>l)|

"{'<exp>'}'

[<op>]<atom>

<simp><bop><simp>

<uatom>[<op><uatom>]*

"if' '('<cond>')' <simp> ['else' <simp>]

<ident> '=' <simp>

<simp>["'; '<exp>]

'val' <ident> '=' <simp>';'<exp>
'var' <ident> '=' <simp>';'<exp>

'while' '(' <cond> ')' <simp>';'<exp>

What have been changed?

16

Grammar - Syntactic Sugar

= Syntax sugar constructs are constructs that can be syntactically translated to

other existing core constructs.

= Syntactic sugar does not offer additional expressive power to the programmer;

only some syntactic convenience.

17

Grammar - Syntactic Sugar

= Syntax sugar constructs are constructs that can be syntactically translated to
other existing core constructs.

= Syntactic sugar does not offer additional expressive power to the programmer;
only some syntactic convenience.

x
1

X + 1;
y +1

~<
1

17

Grammar - Syntactic Sugar

= Syntax sugar constructs are constructs that can be syntactically translated to
other existing core constructs.

= Syntactic sugar does not offer additional expressive power to the programmer;
only some syntactic convenience.

X + 1;
y +1

X
Y

rather than

val dummy = x = x + 1;
y=y+1

17

Unit Type

val tmp = if (x > 0)
X =x -1
else
Q; // Won't be used
val y = X x* 5;
y

18

Unit Type

val tmp = if (x > 0)
X =x -1
else
0; // Won't be used
val y = X x* 5;
y

now can be written as

if (x > 0)

X =x - 1;
val y = x * b;
X

18

Unit Type

val tmp = if (x > 0)
X =x -1
else
@; // Won't be used
val y = X x* 5;
Yy

now can be written as

if (x > 0)

X =x - 1;
val y = x * 5;
X

What is the type of this if expression?

18

Unit Type

val tmp = if (x > 0)
X =x -1
else
@; // Won't be used
val y = X x* 5;
Yy

now can be written as

if (x > 0)

X =x - 1;
val y = x * 5;
X

What is the type of this if expression?

We cannot always meaningfully synthesize a value for the else-branch. So we introduce

a unit type and its sole value ().
18

AST of Sugared Expressions

19

AST of Sugared Expressions

X
Y

x + 1;
y+1

Parser produces:

Let("tmp$1",
VarAssign("x", Prim("+", Ref("x"), Lit(1)))
VarAssign("y", Prim("+", Ref("y"), Lit(1)))

19

AST of Sugared Expressions

if (x > 0)

X =x - 1;
val y = X x 5;
X

20

AST of Sugared Expressions

if (x > 0)

X =x -1;
val y = X x 5;
X

Parser produces:

Let("tmp$1",
If(Cond(">", Ref("x"), Lit(©)),
VarAssign("x", Prim("-", Ref("x"), Lit(1))),
Lit(0)),
Let("y", Prim("%", Ref("x"), Lit(5)),
Ref("x")))

20

AST of Sugared Expressions

if (x > 0)

X =x -1;
val y = X x 5;
X

Parser produces:

Let("tmp$1",
If(Cond(">", Ref("x"), Lit(®)),
VarAssign("x", Prim("-", Ref("x"), Lit(1))),
Lit((0)),
Let("y", Prim("%", Ref("x"), Lit(5)),
Ref ("x")))

You will implement parsing with syntactic sugars in Project 3.

20

Introducing Type Systems

= So far we talked about syntax and dynamic semantics (specified as interpretation
or translation).
= Languages typically have a static semantics, often specified as a type system.

21

Introducing Type Systems

= So far we talked about syntax and dynamic semantics (specified as interpretation
or translation).
= Languages typically have a static semantics, often specified as a type system.

What is a type?

21

Introducing Type Systems

= So far we talked about syntax and dynamic semantics (specified as interpretation
or translation).
= Languages typically have a static semantics, often specified as a type system.

What is a type?

= A set of values: e.g. true, false

21

Introducing Type Systems

= So far we talked about syntax and dynamic semantics (specified as interpretation
or translation).
= Languages typically have a static semantics, often specified as a type system.

What is a type?

= A set of values: e.g. true, false
= A set of operations on those values: e.g. !, &&, ..

21

Introducing Type Systems

= So far we talked about syntax and dynamic semantics (specified as interpretation
or translation).
= Languages typically have a static semantics, often specified as a type system.

What is a type?

= A set of values: e.g. true, false
= A set of operations on those values: e.g. !, &&, ..

21

Introducing Type Systems

= So far we talked about syntax and dynamic semantics (specified as interpretation
or translation).
= Languages typically have a static semantics, often specified as a type system.

What is a type?

= A set of values: e.g. true, false
= A set of operations on those values: e.g. !, &&, ..

Why do we need types?

= Help structure and understand a program

21

Introducing Type Systems

= So far we talked about syntax and dynamic semantics (specified as interpretation
or translation).
= Languages typically have a static semantics, often specified as a type system.

What is a type?

= A set of values: e.g. true, false
= A set of operations on those values: e.g. !, &&, ..

Why do we need types?

= Help structure and understand a program
= Can prevent some kinds of errors or undefined behaviors

21

Our Grammar, Typed

<op> iz [N L /ULt Lt e | e |
<type> ::= <ident> // new
<bool> ::= 'true' | 'false'
<atom> = <number> | <bool> | '()" // new
| <ident>
| "('<simp>')"’
I |{|<exp>|}|
<uatom> ::= [<op>]<atom>
<simp> = <uatom>[<op><uatom>]=*
| 'if' '('<simp>')' <simp> ['else' <simp>]
| <ident> '=' <simp>
<exp> ti= <simp>['; '<exp>]
| 'val' <ident> [':' <type>] '=' <simp>';'<exp> // optional type
| 'var' <ident> [':' <type>] '=' <simp>';'<exp> // optional type
[

'while' '(' <simp> ')' <simp>';'<exp>

22

var x: Int = 2;
val y: Int = O;
X =y

23

Our AST, Typed

First, we modify our AST to handle the new grammar:

abstract class Type
// Definition later

case
case
case
case
case

class
class
class
class
class

Lit(x: Any) extends Exp

Let(name: String, tp: Type, v: Exp, b: Exp) extends Exp
VarDec(name: String, tp: Type, v: Exp, b: Exp) extends Exp
If(cond: Exp, tBranch: Exp, eBranch: Exp) extends Exp
While(cond: Exp, lbody: Exp, body: Exp) extends Exp

24

Inference Rules

Typing judgments: we write

I'Fe:T

to assert that in the environment I', the expression e is of type T.

25

Inference Rules

Typing judgments: we write

I'kFe:T
to assert that in the environment I', the expression e is of type T.

= ['is the typing environment: |t stores knowledge about identifiers available at
compile time, as a finite mapping from identifiers to types. Grammar:

I ::=0 | I, id:T

= We write) for the empty typing environment, and
= I'.id: T to extend the typing environment I" with a new mapping from id to type
T.

25

Inference Rules

= A type system consists of a set of inductively defined inference rules.

= These rules define how to form an instance of typing judgments, i.e. proving that
an expression has a certain type in a certain environment.

= General form of inference rules:

conditionl condition?2

NAME OF THE RULE
conclusion

26

Type Checking

The type checking realizes typing rules as part of the semantic analyzer.

= The key point to understand is that types represent an abstract value, and
inference rules are the set of operations on these values.

= Therefore, the implementation is going to be very similar to eval or analyze .

27

Inference Rules

1) Lit: ¢ is an Int, b is a Boolean

Ik Lit(é) : Int INT I'F Lit(b) : Boolean BOOLEAN
I'FLit(()) : Unit UnNIT

We call inference rules without conditions axioms.

28

Inference Rules

1) Lit: ¢ is an Int, b is a Boolean

Ik Lit(é) : Int INT I'F Lit(b) : Boolean BOOLEAN
['FLit(()): Unit UNIT

We call inference rules without conditions axioms.

2) Unary: op e {"+", "-"}

I'e:Int
I' - Unary(op,e) : Int

INTUNOP

28

Inference Rules

3) Prim:
- 0p€{"+", ||_||, n*nl II/II}
- bope{u:u, llilll nsu, n;u, ||<||, ||>||}
I'Fe;:Int I'ey: Int I'Fe;:Int I'Fe,: Int
INTOP BOOLOP
't Prim(op,eq,e5) : Int '+ Prim(bop,eq,e,) : Boolean

29

Inference Rules

4) Immutable variables

Fl_el:Tl F,$1T1|_€21T2 F(l‘):T
LET —— REF
't Let(z, T}, eq,e5) : Ty I'+Ref(z): T

30

Where Are We?

= We added variables, loops and some syntactic sugar to our language.
= We introduced types and typing rules.

= We saw types as abstract values which can be computed. We also defined a
simplified type checking algorithm.

31

Where Are We?

= We added variables, loops and some syntactic sugar to our language.
= We introduced types and typing rules.

= We saw types as abstract values which can be computed. We also defined a
simplified type checking algorithm.

Questions?

31

