CS107: Error Handling, Semantics, and Branches

Guannan Wei
guannan.wei@tufts.edu
January 22, 2026

Spring 2026

Tufts University

Project 1 dues today at 11:59 PM; no late submission accepted.

Project 2 will be released after that.
= Poll for office hours time slots.
Unofficial course assistant: Jonah Weinbaum

= Parsing with generic operator precedence
= Tokenization
= Interpreting and compiling with let-bindings

Grammar (extended from last lecture)

<num> i:= [0-9]+
<ident> ::= (a-zA-Z)[a-zA-20-9]*
<op> zi= [|t et /0]
<atom> ::= <num>
| <ident>
| '('<simp>")"
<simp> ::= <atom>[<op><atom>]*
<exp> 1= <simp>
['val' <ident> '=' <simp>';' <exp>

What kind of error(s)?

val x = z; val 1 = 2; x

What kind of error(s)?
val x = z; val 1 = 2; x

val x = 1++3; valy = x & 1

What kind of error(s)?
val x = z; val 1 = 2; x
val x = 1++3; valy = x & 1

val x = 1; val x = 3; X + X

What kind of error(s)?
val x = z; val 1 = 2; x
val x = 1++3; valy = x & 1

val x = 1; val x = 3; X + X
Answer:

= Syntax error: identifier expected got 1. Semantic error: undefined identifier 'z’

= Syntax error: unexpected character ‘&’. Semantic error: undefined operator ‘++'

= We need more information to conclude. No errors based on the interpreter from
previous lectures. We could choose to forbid redefining variables.

Error Handling

= The parser handles the syntax errors.

Error: identifier expected.
1:16: val x = z; val 1 = 2; x

A

Error Handling

= The parser handles the syntax errors.
Error: identifier expected.
1:16: val x = z; val 1 = 2; x

A

= The semantic analyzer handles the semantic errors.

Error: undefined reference to z.
1:9: val x = z; val y = 2; X
A

1 error found

Error Handling

= The parser handles the syntax errors.
Error: identifier expected.
1:16: val x = z; val 1 = 2; x

A

= The semantic analyzer handles the semantic errors.

Error: undefined reference to z.
1:9: val x = z; val y = 2; X
A

1 error found

= After these two phases, the compiler should generate correct code!

Token Position Information

// Position in the source code

case class Position(lineStart: Int, lineStop: Int,
colStart: Int, colEnd: Int)

abstract class Token {

var pos: Position = uninitialized

F

When the Scanner creates new tokens, it needs to assign the position of the token.

= Keep track of the number of lines read so far
= Keep track of the beginning of the lines (for column count)

Syntax Error Handling

= What to do when we find a syntax error?

Syntax Error Handling

= What to do when we find a syntax error?
Different solutions:

= Report the error and exit

Syntax Error Handling

= What to do when we find a syntax error?
Different solutions:

= Report the error and exit
= Try to recover and continue

Syntax Error Handling

= What to do when we find a syntax error?
Different solutions:

= Report the error and exit
= Try to recover and continue

Syntax Error Handling

= What to do when we find a syntax error?
Different solutions:

= Report the error and exit
= Try to recover and continue

For the project we are going to use the first method. But there are some algorithms
which exist for error repair.

Syntax Error Repair

val 1 = 2; 4

Syntax Error Repair

val 1 = 2; 4

After val we expect an identifier and find a number. We can report an error, then
create a “dummy’’ identifier and continue parsing.

val dummy = 2; 4

Syntax Error Repair

val 1 = 2; 4

After val we expect an identifier and find a number. We can report an error, then
create a “dummy’’ identifier and continue parsing.

val dummy = 2; 4

Other algorithms exist: Burke-Fisher error repair is one of them.

Semantic Error Handling

val x = z; ++z

10

Semantic Error Handling

val x = z; ++z

Let("x", Ref("z"), Unary("++", Ref("z")))

10

Semantic Error Handling

val x = z; ++z

Let("x", Ref("z"), Unary("++", Ref("z")))

= 3 errors
= 2 duplicates
= Finding one error does not require the algorithm to stop

10

Semantic Analyzer

= We want to find some semantic errors before code generation.

abstract class Exp {
var pos: Position = ...
¥

def analyze(exp: Exp)(env: Env): Unit = exp match

case Lit(x) => ()

case Unary(op, v) =>
if (!isUnOperator(op)) error("undefined operator", exp.pos)
analyze(v) (env)

case Let(x, v, b) =>
analyze(v) (env)
analyze(b) (env.withVal(x))

// ...

= Like an interpreter, but does not deal with concrete values
= We will see more about it in the next lecture.

11

Let’s Add Branches - Syntax

Our language still misses many important constructs. Let's add branches!

<op> S A IR IR BRVAN
<bop> cog Iz=0 [00x0 [k0 || 00 || 9==0 || Osst
<atom> = <number>

| <ident>

| '('<simp>")"

['{'<exp>'}"
<vatom> ::= [<op>]<atom>
<cond> = <simp><bop><simp>
<simp> ::= <vatom>[<op><uatom>]*

['if' '('<cond>')' <simp> 'else' <simp>
<exp> 1= <simp>

| 'val' <ident> '=' <simp>';' <exp>

12

Let’s Add Branches - Syntax

Our language still misses many important constructs. Let's add branches!

<op> RS B IR VAR
<bop> cog Iz=0 [00x0 [k0 || 00 || 9==0 || Osst
<atom> = <number>

| <ident>

| '('<simp>")"

['{'<exp>'}"
<vatom> ::= [<op>]<atom>
<cond> = <simp><bop><simp>
<simp> ::= <vatom>[<op><uatom>]*

['if' '('<cond>')' <simp> 'else' <simp>
<exp> 1= <simp>

| 'val' <ident> '=' <simp>';' <exp>

Exercise: write down a well-formed expression using branches.

12

Let’s Add Branches - AST

case class Cond(op: String, lop: Exp, rop: Exp) extends Exp
case class If(cond: Cond, tBranch: Exp, eBranch: Exp) extends Exp

13

Let’s Add Branches - AST

case class Cond(op: String, lop: Exp, rop: Exp) extends Exp
case class If(cond: Cond, tBranch: Exp, eBranch: Exp) extends Exp

Roadmap:

= High-level interpreter
Stack-based interpreter
Stack-based compiler
x86 code generation

13

Let’s Add Branches - Semantics

type Val = Int

def evalCond(op: String) (v: Val, w: Val) = op match
case "==" => v == W

/...

def eval(exp: Exp)(env: Env): Val = exp match
// other cases omitted
case If(Cond(op, 1, r), tBranch, eBranch) =>
if (evalCond(op) (eval(l) (env), eval(r)(env)))
eval(tBranch) (env)
else
eval(eBranch) (env)

14

Let’s Add Branches - Semantics

type Val = Int

def evalCond(op: String) (v: Val, w: Val) = op match
case "==" => v == W

/...

def eval(exp: Exp)(env: Env): Val = exp match
// other cases omitted
case If(Cond(op, 1, r), tBranch, eBranch) =>
if (evalCond(op) (eval(l) (env), eval(r)(env)))
eval(tBranch) (env)
else
eval(eBranch) (env)

Example:

eval(Let("x", 1, // Omitted Lit
If(Cond(">", Ref("x"), 0), Prim("+", 2, Ref("x")), 0)))Map())

14

A Stack-Based Interpreter

The main idea is to be as close as possible to a processor. How does x86 handle
branches?

15

A Stack-Based Interpreter

The main idea is to be as close as possible to a processor. How does x86 handle
branches?

= |t is using flags. There are comparison instructions that set the flags, and other
instructions that jump to a code location depending on the value of the flags.

15

A Stack-Based Interpreter

The main idea is to be as close as possible to a processor. How does x86 handle
branches?

= |t is using flags. There are comparison instructions that set the flags, and other
instructions that jump to a code location depending on the value of the flags.

= Unfortunately, in Scala we can not “jump” to a code location. We can only
simulate part of the behavior.

15

A Stack-Based Interpreter

val memory = new Array[Int](MEM_SIZE)
var flag = true

16

A Stack-Based Interpreter

val memory = new Array[Int](MEM_SIZE)
var flag = true

def evalCond(op: String)(sp: Int, spl: Int) = op match
case "==" => flag = memory(sp) == memory(spl)

/...

16

A Stack-Based Interpreter

def eval(exp: Exp, sp: Int)(env: Env): Unit = exp match
// other cases omitted
case Cond(op, 1, r) =>
eval(l, sp)(env)
eval(r, sp + 1)(env)
evalCond(op) (sp, sp + 1)
case If(cond, tBranch, eBranch) =>
eval(cond, sp)(env)
if (flag)
eval(tBranch, sp)(env)
else
eval(eBranch, sp)(env)

17

A Stack-Based Interpreter

def eval(exp: Exp, sp: Int)(env: Env): Unit = exp match
// other cases omitted
case Cond(op, 1, r) =>
eval(l, sp)(env)
eval(r, sp + 1)(env)
evalCond(op) (sp, sp + 1)
case If(cond, tBranch, eBranch) =>
eval(cond, sp)(env)
if (flag)
eval(tBranch, sp)(env)
else
eval(eBranch, sp)(env)

Example:

eval(Let("x", 1, // Omitted Lit
If(Cond(">", Ref("x"), 0), Prim("+", 2, Ref("x")), 0)), 0)(Map())

17

A Stack-Based Compiler

= Generating high-level Scala stack-based code:

def emitCode(exp: Exp): Unit =
emitln("val memory = new Array[Int](1000)")
emitln("var flag = true")
trans(exp, 0)(Env())
emitln(s"memory(0)")

18

A Stack-Based Compiler

= Generating high-level Scala stack-based code:

def emitCode(exp: Exp): Unit =
emitln("val memory = new Array[Int](1000)")
emitln("var flag = true")
trans(exp, 0)(Env())
emitln(s"memory(0)")

def transCond(op: String)(sp: Loc, spl: Loc) = op match
case "==" => emitln(s"flag = (memory($sp) == memory($spl))")
// ...

18

A Stack-Based Compiler

def trans(exp: Exp, sp: Int)(env: Env) = exp match
// other cases omitted
case Cond(op, 1, r) =>
trans(l, sp)(env)
trans(r, sp+1)(env)
transCond(op) (sp, sp + 1)
case If(cond, tBranch, eBranch) =>
trans(cond, sp)(env) // Set flag value
emitln(s"if (flag) {")
trans(tBranch, sp)(env)
emitln("} else {")
trans(eBranch, sp)(env)
emitiln("}")

19

A Stack-Based Compiler - Demo

emitCode(Let("x", 1, // Omitted Lit
If(Cond(">", Ref("x"), 0), Prim("+", 2, Ref("x")), 0)))

20

A Stack-Based Compiler - Demo

emitCode(Let("x", 1, // Omitted Lit
If(Cond(">", Ref("x"), 0), Prim("+", 2, Ref("x")), 0)))

Output:
val memory = new Array[Int](1000)
var flag = true

20

A Stack-Based Compiler - Demo

emitCode(Let("x", 1, // Omitted Lit
If(Cond(">", Ref("x"), 0), Prim("+", 2, Ref("x")), 0)))

Output:
val memory = new Array[Int](1000)
var flag = true

memory(0) = 1
memory (1) = memory(0); memory(2) = 0
flag = (memory(1) > memory(2))

if (flag) {

memory (1) = 2; memory(2) = memory(0); memory(1l) += memory(2)
} else {

memory (1) = 0

memory(0) = memory(1)
memory (0)

20

x86 Flags And Jump

X86 processors use flags to handle comparison.

cmpq %rbx, %rax # compute %rax-%rbx and set the flags accordingly

21

x86 Flags And Jump

X86 processors use flags to handle comparison.

cmpq %rbx, %rax # compute %rax-%rbx and set the flags accordingly
» Zero flag ZF = 1if %rax-%rbx = 0

= Sign flag SF = 1 if %rax-%rbx < 0
= And other flags like overflow flag OF, carry flag CF, etc.

21

x86 Flags And Jump

X86 processors use flags to handle comparison.

cmpqg %rbx, %rax

= Zero flag zF
= Sign flag SF

compute %rax-%rbx and set the flags accordingly

= 1if %rax-%rbx = 0

1if %rax-%rbx < 0

= And other flags like overflow flag OF, carry flag CF, etc.

Several instructions can be used for jump:

np
je
jne
jg
jge
jl
jle

labelA
labelA
labelA
labelA
labelA
labelA
labelA

R N T

always jump

jump equals (ZF set)

jump not equals (ZF not set)
jump greater

jump greater or equals

jump less

jump less or equals

21

x86 Flags And Jump - Example

movg $0, %rax
movg $1, %rbx

cmpq %rbx, %rax # operands inverted
jg greater
movq $1, %rax
greater:
ret # what value is in %rax?

22

x86 Flags And Jump - Example

movg $0, %rax
movg $1, %rbx

cmpq %rbx, %rax # operands inverted
jg greater
movq $1, %rax
greater:
ret # what value is in %rax?

Returns 1, because 0 is not greater than 1 so the jump doesn’t happen.

22

x86 Flags And Jump - Compile Ifs

trans(If(Cond(op, 1, r), tBranch, eBranch), 0)(Map())

23

x86 Flags And Jump - Compile Ifs

trans(If(Cond(op, 1, r), tBranch, eBranch), 0)(Map())

In order to compile the if statement, we are going to follow this idea:

500 # code for 1 and r
cmpg <r>, <l>
j<op> if_then # the jump operation depends on 'op'

e # code for else branch
jmp if_end # unconditional jump

if_then: # label for the beginning of the then branch

e # code for then branch

if_end:

code for the rest

23

x86 Flags And Jump - Compile Ifs - Example

trans(If(Cond("==", 1, 0), 2, 3), 0)(Map())

24

x86 Flags And Jump - Compile Ifs - Example

trans(If(Cond("==", 1, 0), 2, 3), 0)(Map())

begin code generated
movq $1, %rbx # generate code that compute 1, stored in %rbx
movqg $0, %rcx # generate code that compute r, stored in %rcx
cmpq %rcx, %rbx

je ifl_then

movq $3, %rbx # generate code for eBranch, store result in %rbx

jmp ifl_end
ifl_then:

movq $2, %rbx # generate code for tBranch, store result in %rbx
ifl_end: # end code generated

movqg %rbx, %rax

ret

24

x86 Flags And Jump - Compile Ifs - Example

trans(If(Cond("==", 1, 0), 2, 3), 0)(Map())

begin code generated
movq $1, %rbx # generate code that compute 1, stored in %rbx
movqg $0, %rcx # generate code that compute r, stored in %rcx
cmpq %rcx, %rbx

je ifl_then

movq $3, %rbx # generate code for eBranch, store result in %rbx

jmp ifl_end
ifl_then:

movq $2, %rbx # generate code for tBranch, store result in %rbx
ifl_end: # end code generated

movqg %rbx, %rax

ret

In project 2, you will implement this part!

24

Where Are We?

= Error handling: we made distinction between syntax errors and semantic errors.
= We also saw how to make our compiler more friendly to programmers.
= We added branches to our language, discussed its syntax, semantics, and code

generation to x86.

25

Where Are We?

= Error handling: we made distinction between syntax errors and semantic errors.
= We also saw how to make our compiler more friendly to programmers.
= We added branches to our language, discussed its syntax, semantics, and code

generation to x86.

Next time, we will see how to compile while loops and use type systems for semantic
analysis!

Questions?

25

