
CS107: Operator Precedence, Tokenization, and Bindings

Guannan Wei
guannan.wei@tufts.edu
Jan 20, 2026
Spring 2026

Tufts University

1

Recap: What did we learn last time?

Parsing with Operator Precedence

Parser from last time:
def parseExpression: Exp =
var res = parseTerm
while (in.hasNext(isOperator)) {
in.next() match
case '+' => res = Add(res, parseTerm)
case '-' => res = Sub(res, parseTerm)
case '*' => res = Mul(res, parseTerm)
case '/' => res = Div(res, parseTerm)

}
res

Problem: Does not work for 1+2*3

2

Parsing with Operator Precedence

Parser from last time:
def parseExpression: Exp =
var res = parseTerm
while (in.hasNext(isOperator)) {
in.next() match
case '+' => res = Add(res, parseTerm)
case '-' => res = Sub(res, parseTerm)
case '*' => res = Mul(res, parseTerm)
case '/' => res = Div(res, parseTerm)

}
res

Problem: Does not work for 1+2*3

2

A Better Grammar

Grammar with explicit operator precedence:
<addop> ::= '+' | '-'
<mulop> ::= '*' | '/'
<factor> ::= <num>
<term> ::= <factor>[<mulop><factor>]*
<exp> ::= <term>[<addop><term>]*

Example:
1+2*3 ∈ <exp>
1 ∈ <term>
+ 2*3 ∈ <addop> <term>
2 ∈ <factor>
* 3 ∈ <mulop> <factor>

Implementation in Project 1

3

A Better Grammar

Grammar with explicit operator precedence:
<addop> ::= '+' | '-'
<mulop> ::= '*' | '/'
<factor> ::= <num>
<term> ::= <factor>[<mulop><factor>]*
<exp> ::= <term>[<addop><term>]*

Example:
1+2*3 ∈ <exp>
1 ∈ <term>
+ 2*3 ∈ <addop> <term>
2 ∈ <factor>
* 3 ∈ <mulop> <factor>

Implementation in Project 1

3

A Better Grammar

Grammar with explicit operator precedence:
<addop> ::= '+' | '-'
<mulop> ::= '*' | '/'
<factor> ::= <num>
<term> ::= <factor>[<mulop><factor>]*
<exp> ::= <term>[<addop><term>]*

Example:
1+2*3 ∈ <exp>
1 ∈ <term>
+ 2*3 ∈ <addop> <term>
2 ∈ <factor>
* 3 ∈ <mulop> <factor>

Implementation in Project 1

3

Quiz

3*2/3 // => ???

3/2*3 // => ???

3*5%4&4==4 // => ???

Answer:

• (3*2)/3 => 2
• (3/2)*3 => 3
• ((3*5)%4)&(4^=4) => 1 (in C), type error in Scala

• weak typing vs. strong typing

4

Quiz

3*2/3 // => ???

3/2*3 // => ???

3*5%4&4==4 // => ???

Answer:

• (3*2)/3 => 2
• (3/2)*3 => 3
• ((3*5)%4)&(4^=4) => 1 (in C), type error in Scala

• weak typing vs. strong typing

4

Quiz

3*2/3 // => ???

3/2*3 // => ???

3*5%4&4==4 // => ???

Answer:

• (3*2)/3 => 2
• (3/2)*3 => 3
• ((3*5)%4)&(4^=4) => 1 (in C), type error in Scala

• weak typing vs. strong typing

4

Quiz

3*2/3 // => ???

3/2*3 // => ???

3*5%4&4==4 // => ???

Answer:

• (3*2)/3 => 2
• (3/2)*3 => 3
• ((3*5)%4)&(4^=4) => 1 (in C), type error in Scala

• weak typing vs. strong typing

4

Generic Operator Precedence

We define a grammar that can be easily adapted with new operators:
<op> ::= '+' | '-' | '*' | '/'
<exp> ::= <num>[<op><num>]*

In addition, we define a precedence level for each operator. From low to high:

• '+', '-'
• '*', '/'

We also need to define the associativity of each operator.
2 + 3 * 4 => 2 + (3 * 4) // * precedes +
2 * 3 / 4 => (2 * 3) / 4 // left associative
x = y = z => x = (y = z) // right associative

5

Generic Operator Precedence

We define a grammar that can be easily adapted with new operators:
<op> ::= '+' | '-' | '*' | '/'
<exp> ::= <num>[<op><num>]*

In addition, we define a precedence level for each operator. From low to high:

• '+', '-'
• '*', '/'

We also need to define the associativity of each operator.
2 + 3 * 4 => 2 + (3 * 4) // * precedes +
2 * 3 / 4 => (2 * 3) / 4 // left associative
x = y = z => x = (y = z) // right associative

5

Generic Operator Precedence

We define a grammar that can be easily adapted with new operators:
<op> ::= '+' | '-' | '*' | '/'
<exp> ::= <num>[<op><num>]*

In addition, we define a precedence level for each operator. From low to high:

• '+', '-'
• '*', '/'

We also need to define the associativity of each operator.
2 + 3 * 4 => 2 + (3 * 4) // * precedes +
2 * 3 / 4 => (2 * 3) / 4 // left associative
x = y = z => x = (y = z) // right associative

5

Code Update

At the same time, we make our target language more general with a new AST node:
case class Prim(op: Char, a: Exp, b: Exp) extends Exp

And we encode the precedence level with a function:
def prec(op: Char) = op match
case '+' | '-' => 0
case '*' | '/' => 1

def isInfixOp(min: Int)(op: Char) = prec(op) >= min

6

Now We Can Parse

def parseNum: Exp = Lit(getNum)

def parseExpression: Exp = parseExpression(0)
def parseExpression(min: Int): Exp =
var res = parseNum
while (in.hasNext(...)) {
val op = getOperator
...

}
res

Let’s try it by hand:

• 1+2*3

• 2*3/4

7

Now We Can Parse

def parseNum: Exp = Lit(getNum)

def parseExpression: Exp = parseExpression(0)
def parseExpression(min: Int): Exp =
var res = parseNum
while (in.hasNext(...)) {
val op = getOperator
...

}
res

Let’s try it by hand:

• 1+2*3

• 2*3/4

7

Now We Can Parse

Final solution in Project 2

8

Let’s Introduce Immutable Variables

<op> ::= '+' | '-' | '*' | '/'
<atom> ::= <num>

| <ident>
| '('<exp>')'

<exp> ::= <atom>[<op><atom>]*
| 'val' <ident> '=' <exp>';' <exp>

Example:
val x = 10;
x*2

New AST representations:
case class Ref(name: String) extends Exp
case class Let(name: String, rhs: Exp, body: Exp) extends Exp

9

Let’s Introduce Immutable Variables

<op> ::= '+' | '-' | '*' | '/'
<atom> ::= <num>

| <ident>
| '('<exp>')'

<exp> ::= <atom>[<op><atom>]*
| 'val' <ident> '=' <exp>';' <exp>

Example:
val x = 10;
x*2

New AST representations:
case class Ref(name: String) extends Exp
case class Let(name: String, rhs: Exp, body: Exp) extends Exp

9

Let’s Introduce Immutable Variables

<op> ::= '+' | '-' | '*' | '/'
<atom> ::= <num>

| <ident>
| '('<exp>')'

<exp> ::= <atom>[<op><atom>]*
| 'val' <ident> '=' <exp>';' <exp>

Example:
val x = 10;
x*2

New AST representations:
case class Ref(name: String) extends Exp
case class Let(name: String, rhs: Exp, body: Exp) extends Exp

9

Interpreter

type Val = Int

def eval(exp: Exp): Val = exp match
// previous cases omitted ...
case Let(n, rhs, b) =>
val ev = eval(rhs)
val eb = eval(b)
???

case Ref(name) => ???

What can we do?

10

Interpreter

Idea: use an environment to track variable bindings:
type Val = Int

def eval(exp: Exp)(env: Map[String, Val]): Val = exp match
// previous cases ...
case Let(n, rhs, b) => ???
case Ref(name) => ???

Example:
eval(Let("x", Lit(10), Prim("*", Ref("x"), Lit(2))))(Map()) // => ???

11

Interpreter

Idea: use an environment to track variable bindings:
type Val = Int

def eval(exp: Exp)(env: Map[String, Val]): Val = exp match
// previous cases ...
case Let(n, rhs, b) => ???
case Ref(name) => ???

Example:
eval(Let("x", Lit(10), Prim("*", Ref("x"), Lit(2))))(Map()) // => ???

11

Interpreter

type Val = Int

def eval(exp: Exp)(env: Map[String, Val]): Val = exp match
// previous cases omitted ...
case Let(n, rhs, b) =>
eval(b)(env + (n -> eval(rhs)(env)))

case Ref(n) =>
env(n)

Example:
eval(Let("x", Lit(10), Prim("*", Ref("x"), Lit(2))))(Map()) // => 20

12

Interpreter

type Val = Int

def eval(exp: Exp)(env: Map[String, Val]): Val = exp match
// previous cases omitted ...
case Let(n, rhs, b) =>
eval(b)(env + (n -> eval(rhs)(env)))

case Ref(n) =>
env(n)

Example:
eval(Let("x", Lit(10), Prim("*", Ref("x"), Lit(2))))(Map()) // => 20

12

A Stack-Based Interpreter

Idea: environment tracks variable locations in memory (instead of values).
type Val = Int
val memory = new Array[Int](MEM_SIZE)

def eval(exp: Exp, sp: Int)(env: Map[String, Int]): Unit = exp match
// previous cases omitted ...
case Let(n, rhs, b) =>
eval(rhs, sp)(env)
eval(b, sp + 1)(env + (n -> sp))
memory(sp) = memory(sp + 1)

case Ref(n) =>
memory(sp) = memory(env(n))

Example:
eval(Let("x", Lit(10), Prim("*", Ref("x"), Lit(2))))(Map()) // => 20

13

A Stack-Based Interpreter

Idea: environment tracks variable locations in memory (instead of values).
type Val = Int
val memory = new Array[Int](MEM_SIZE)

def eval(exp: Exp, sp: Int)(env: Map[String, Int]): Unit = exp match
// previous cases omitted ...
case Let(n, rhs, b) =>
eval(rhs, sp)(env)
eval(b, sp + 1)(env + (n -> sp))
memory(sp) = memory(sp + 1)

case Ref(n) =>
memory(sp) = memory(env(n))

Example:
eval(Let("x", Lit(10), Prim("*", Ref("x"), Lit(2))))(Map()) // => 20

13

A Stack-Based Compiler

def trans(exp: Exp, sp: Int)(env: Map[String, Int]): Unit = exp match
// ...
case Let(n, rhs, b) =>
trans(rhs, sp)(env)
trans(b, sp + 1)(env + (n -> sp))
println(s"memory($sp) = memory(${sp + 1})")

case Ref(n) => println(s"memory($sp) = memory(${env(n)})")

// val x = 10; x*2
trans(Let("x", Lit(10), Prim("*", Ref("x"), Lit(2))))(...)

Expected output:
memory(0) = 10 // Lit(10), Map()
memory(1) = memory(0) // Ref("x"), Map("x" -> 0)
memory(2) = 2 // Lit(2), Map("x" -> 0)
memory(1) *= memory(2) // Prim("*", ...), Map("x" -> 0)
memory(0) = memory(1) // Let("x", ...), Map()

14

A Stack-Based Compiler

def trans(exp: Exp, sp: Int)(env: Map[String, Int]): Unit = exp match
// ...
case Let(n, rhs, b) =>
trans(rhs, sp)(env)
trans(b, sp + 1)(env + (n -> sp))
println(s"memory($sp) = memory(${sp + 1})")

case Ref(n) => println(s"memory($sp) = memory(${env(n)})")

// val x = 10; x*2
trans(Let("x", Lit(10), Prim("*", Ref("x"), Lit(2))))(...)

Expected output:
memory(0) = 10 // Lit(10), Map()
memory(1) = memory(0) // Ref("x"), Map("x" -> 0)
memory(2) = 2 // Lit(2), Map("x" -> 0)
memory(1) *= memory(2) // Prim("*", ...), Map("x" -> 0)
memory(0) = memory(1) // Let("x", ...), Map()

14

A Stack-Based Compiler Targeting x86-64 Registers

• Using machine registers:
val regs = Seq("%rbx", "%rcx", "%rdi", "%rsi", "%r8", "%r9")
def trans(exp: Exp, sp: Int)(env: Map[String, Int]): Unit = exp match
// ...
case Let(n, rhs, b) =>
trans(rhs, sp)(env)
trans(b, sp + 1)(env + (n -> sp))
println(s"movq ${regs(sp + 1)}, ${regs(sp)}")

case Ref(n) => println(s"movq ${regs(env(n))}, ${regs(sp)})")

// val x = 10; x*2
trans(Let("x", Lit(10), Prim("*", Ref("x"), Lit(2))))(...)

movq $10, %rbx
movq %rbx, %rcx
movq $2, %rdi
imulq %rdi, %rcx
movq %rcx, %rbx 15

Parsing

val x = 10;
x*2

Can we parse this expression?

Not with the strategy we were using. Let’s introduce tokenization.

Tokenization: convert the stream of characters to a stream of tokens/words,
performed by tokenizers/scanners/lexers.

Token: a meaningful unit in the source code, such as keywords, identifiers, operators,
literals, and delimiters.

16

Parsing

val x = 10;
x*2

Can we parse this expression?

Not with the strategy we were using. Let’s introduce tokenization.

Tokenization: convert the stream of characters to a stream of tokens/words,
performed by tokenizers/scanners/lexers.

Token: a meaningful unit in the source code, such as keywords, identifiers, operators,
literals, and delimiters.

16

Tokenization

val x = 10;
x*2

What tokens do we have?

• Numbers: [0-9]+

• Keywords: val

• Identifier: [a-zA-Z][a-zA-Z0 -9]*

• Delimiters: '=', ';'

And we ignore whitespace: ' ', '\n', '\r', '\t'

17

Tokenization

val x = 10;
x*2

What tokens do we have?

• Numbers: [0-9]+

• Keywords: val

• Identifier: [a-zA-Z][a-zA-Z0 -9]*

• Delimiters: '=', ';'

And we ignore whitespace: ' ', '\n', '\r', '\t'

17

Tokenization

val x = 10;
x*2

What tokens do we have?

• Numbers: [0-9]+

• Keywords: val

• Identifier: [a-zA-Z][a-zA-Z0 -9]*

• Delimiters: '=', ';'

And we ignore whitespace: ' ', '\n', '\r', '\t'

17

Tokenization

val x = 10;
x*2

What tokens do we have?

• Numbers: [0-9]+

• Keywords: val

• Identifier: [a-zA-Z][a-zA-Z0 -9]*

• Delimiters: '=', ';'

And we ignore whitespace: ' ', '\n', '\r', '\t'

17

Tokenization

val x = 10;
x*2

What tokens do we have?

• Numbers: [0-9]+

• Keywords: val

• Identifier: [a-zA-Z][a-zA-Z0 -9]*

• Delimiters: '=', ';'

And we ignore whitespace: ' ', '\n', '\r', '\t'

17

Tokenization

val x = 10;
x*2

What tokens do we have?

• Numbers: [0-9]+

• Keywords: val

• Identifier: [a-zA-Z][a-zA-Z0 -9]*

• Delimiters: '=', ';'

And we ignore whitespace: ' ', '\n', '\r', '\t'

17

Scanner

• Defining the Tokens:
abstract class Token
case object EOF extends Token
case class Number(x: Int) extends Token
case class Ident(x: String) extends Token
case class Keyword(x: String) extends Token
case class Delim(x: Char) extends Token

• Note that Scanner is a Reader [Token], which is a stream of tokens:
class Scanner(in: Reader[Char]) extends Reader[Token]

18

Scanner

• Defining the Tokens:
abstract class Token
case object EOF extends Token
case class Number(x: Int) extends Token
case class Ident(x: String) extends Token
case class Keyword(x: String) extends Token
case class Delim(x: Char) extends Token

• Note that Scanner is a Reader [Token], which is a stream of tokens:
class Scanner(in: Reader[Char]) extends Reader[Token]

18

Scanner

• Some primitive predicates to classify characters:
def isAlpha(c: Char) =
('a' <= c && c <= 'z') || ('A' <= c && c <= 'Z')

def isDigit(c: Char) = '0' <= c && c <= '9'

def isAlphaNum(c: Char) = isAlpha(c) || isDigit(c)

val isWhiteSpace = Set(' ','\t','\n','\r')

val isOperator = Set('+','-','*','/')

val isDelim = Set('(',')',';','=')

val isKeyword = Set("val")

• Note: in Scala, s(x) tests membership 𝑥 ∈ 𝑠 for a set s (apply method).
19

Scanner

def getToken(): Token =
while (in.hasNext(isWhiteSpace)) in.next() // skip white space
if (in.hasNext(isAlpha))
getName()

else if (in.hasNext(isOperator))
getOperator()

else if (in.hasNext(isDigit))
getNum()

else if (in.hasNext(isDelim))
Delim(in.next())

else if (!in.hasNext)
EOF

else
abort(s"Unexpected character: ${in.peek}")

20

More Than One Letter!

def getName() =
val buf = new StringBuilder
while (in.hasNext(isAlphaNum)) {
buf += in.next()

}
val s = buf.toString
if (isKeyword(s)) Keyword(s) else Ident(s)

We need to distinguish between keywords and identifiers.
val x = 10;
x*2

21

More than just a digit!

Previously:
def getNum =
if (in.hasNext(isDigit)) (in.next - '0')

Now:
def getNum =
var res = 0
while (in.hasNext(isDigit))
res = res * 10 + (in.next - '0')

Number(res)

22

More than just a digit!

Previously:
def getNum =
if (in.hasNext(isDigit)) (in.next - '0')

Now:
def getNum =
var res = 0
while (in.hasNext(isDigit))
res = res * 10 + (in.next - '0')

Number(res)

22

Tokenization + Parsing

class Scanner(in: Reader[Char]) extends Reader[Token] {
def peek = ...
def next = ...
def hasNext(f: Token => Boolean) = f(peek)
...

}
class Parser(in: Reader[Token]) {
def parseExpression: Exp = ...
...

}

Look good?

23

Error Handling

We have been focusing on how to accept valid programs. One other aspect of the
parser is to reject invalid programs.

Does our current parser achieve that goal perfectly?

What can be added to improve the error handling?

• Report more information. Such as: line number, give some hints
• Try to recover and continue parsing
• Test integer overflow (for literals)
• Think about it for the next lecture

24

Error Handling

We have been focusing on how to accept valid programs. One other aspect of the
parser is to reject invalid programs.

Does our current parser achieve that goal perfectly?

What can be added to improve the error handling?

• Report more information. Such as: line number, give some hints

• Try to recover and continue parsing
• Test integer overflow (for literals)
• Think about it for the next lecture

24

Error Handling

We have been focusing on how to accept valid programs. One other aspect of the
parser is to reject invalid programs.

Does our current parser achieve that goal perfectly?

What can be added to improve the error handling?

• Report more information. Such as: line number, give some hints
• Try to recover and continue parsing

• Test integer overflow (for literals)
• Think about it for the next lecture

24

Error Handling

We have been focusing on how to accept valid programs. One other aspect of the
parser is to reject invalid programs.

Does our current parser achieve that goal perfectly?

What can be added to improve the error handling?

• Report more information. Such as: line number, give some hints
• Try to recover and continue parsing
• Test integer overflow (for literals)

• Think about it for the next lecture

24

Error Handling

We have been focusing on how to accept valid programs. One other aspect of the
parser is to reject invalid programs.

Does our current parser achieve that goal perfectly?

What can be added to improve the error handling?

• Report more information. Such as: line number, give some hints
• Try to recover and continue parsing
• Test integer overflow (for literals)
• Think about it for the next lecture

24

Where are we?

• Generic operator precedence handling.

• Immutable variables and let-bindings.

• Interpreter and compiler implementations.

• Improved the parser to process words (tokens) instead of individual characters.

• Pipeline: source code -> tokens -> AST -> interpreter/compiler

Questions?

25

Where are we?

• Generic operator precedence handling.

• Immutable variables and let-bindings.

• Interpreter and compiler implementations.

• Improved the parser to process words (tokens) instead of individual characters.

• Pipeline: source code -> tokens -> AST -> interpreter/compiler

Questions?

25

	Recap: What did we learn last time?

