
CS107 Compilers

Guannan Wei
guannan.wei@tufts.edu

Jan 15, 2026
Spring 2026

Tufts University

1

What is a Compiler?

You have certainly used one …

• A program that translates one programming language to another
• Usually, from human-friendly language to machine-friendly language
• Hopefully, generating code that uses the target machine efficiently

2

Why take this class?

This course: the theory and practice of implementing programming languages

Intellectual:

• If you want to understand software, you need to understand compilers
• Understand the implementation of programming languages
• Make you a better programmer

• Touches on all aspects of CS (algorithms, data structures, hardware, systems, etc.)

3

Why take this class?

This course: the theory and practice of implementing programming languages

Intellectual:

• If you want to understand software, you need to understand compilers
• Understand the implementation of programming languages
• Make you a better programmer

• Touches on all aspects of CS (algorithms, data structures, hardware, systems, etc.)

3

Why take this class?

This course: the theory and practice of implementing programming languages

Pragmatic:

• Hiring managers and PhD admissions know this
• All big companies have compiler teams

• Google: Chrome V8, MLIR, Go, Kotlin, Dart
• Amazon: Rust, Lean
• Apple: Swift, LLVM, JavaScriptCore
• Meta: Hack, HHVM, Infer
• Microsoft: TypeScript, C#, F#, Visual Studio
• …

• Infrastructure of modern/future AI/quantum computing:
• Tensorflow/XLA, JAX, PyTorch, CUDA, Triton, AWS Neuron, …
• Quantinuum, IonQ, …

4

Logistics

Topics:

• Parsing, type checking, interpretation and compilation
• Intermediate representations, CPS transformation, closure conversion, SSA
• Analysis and optimizations, function inlining, register allocation
• Runtime representation, garbage collection
• …

7 Hands-on Projects:

• Start with a tiny language and compiling to machine code
• Gradually add interesting features (variables, control flow, arrays, functions, etc.)
• You will build parsers, intermediate representations, optimizations, code

generators, and runtime systems

5

Logistics

Topics:

• Parsing, type checking, interpretation and compilation
• Intermediate representations, CPS transformation, closure conversion, SSA
• Analysis and optimizations, function inlining, register allocation
• Runtime representation, garbage collection
• …

7 Hands-on Projects:

• Start with a tiny language and compiling to machine code
• Gradually add interesting features (variables, control flow, arrays, functions, etc.)
• You will build parsers, intermediate representations, optimizations, code

generators, and runtime systems
5

Logistics

• Lecture: Tuesday and Thursday 4:30-5:45 PM, JCC 140
• 7 programming projects
• Midterm and final exams
• Piazza: https://piazza.com/tufts/spring2026/cs107

• We will use Piazza for announcements, questions, and discussions
• Canvas:

• Submitting projects and grading
• No required textbook

6

https://piazza.com/tufts/spring2026/cs107

Grading Policy

• Projects: 30%
• Extra credit up to 5%

• Midterm exam: 30%
• Final exam: 40%
• Piazza participation: extra credit up to 10%

• Recognition for active participation and instructor-endorsed answers
• You need to achieve a minimum of 25% in each of the three components

(projects, midterm, final) for a passing grade.

This is not a easy course! Be prepared to put in significant effort.

7

Grading Policy

• Projects: 30%
• Extra credit up to 5%

• Midterm exam: 30%
• Final exam: 40%
• Piazza participation: extra credit up to 10%

• Recognition for active participation and instructor-endorsed answers
• You need to achieve a minimum of 25% in each of the three components

(projects, midterm, final) for a passing grade.

This is not a easy course! Be prepared to put in significant effort.

7

AI Policy and Academic Integrity

• You may use AI tools (e.g., ChatGPT, GitHub Copilot) to help your learning
• You should complete assignments on your own

• No copy of code or collaboration with others
• If you use AI tools, you must disclose it in what ways you use it in your submission
• Do not submit anything you don’t understand or can’t explain

• Discussion about general concepts is allowed
• Help your peers on Piazza (will be recognized)

• You are responsible for following the university and SOE’s academic integrity
policy, and violations will be reported

8

A Few Languages

• We will use Scala 3 to write compilers for a small subset of Scala
• Meta language (language we use to write the compiler): Scala 3
• Object/source language (language we compile): a small subset of Scala
• Target language (language we compile to): x86-64 assembly

• Why Scala?
• Expressive high-level language with functional and object-oriented features
• Rich type system supporting algebraic data types, pattern matching, generics, etc
• “the only academic-designed language of the 21st century to achieve

widespread mainstream adoption’’ – citation from the ACM Programming
Languages Achievement Award 2025

9

A Few Languages

• We will use Scala 3 to write compilers for a small subset of Scala
• Meta language (language we use to write the compiler): Scala 3
• Object/source language (language we compile): a small subset of Scala
• Target language (language we compile to): x86-64 assembly

• Why Scala?
• Expressive high-level language with functional and object-oriented features
• Rich type system supporting algebraic data types, pattern matching, generics, etc
• “the only academic-designed language of the 21st century to achieve

widespread mainstream adoption’’ – citation from the ACM Programming
Languages Achievement Award 2025

9

Learning Scala

• If you have taken CS105, it should be easy to pick up Scala 3

• Official Scala 3 Book (Online):
https://docs.scala-lang.org/scala3/book/introduction.html

• Highly recommended go through at least the first few chapters

10

https://docs.scala-lang.org/scala3/book/introduction.html

Representing Programs

Compilers operate on programs as data:
• Source code: unstructured sequence of characters

"1 + 2 * 3"

• Intermediate representation: trees or graphs (data
structures in compiler)
(+ 1 (* 2 3))

+
/ \
1 *

/ \
2 3

11

Representing Programs

Compilers operate on programs as data:
• Source code: unstructured sequence of characters

"1 + 2 * 3"

• Intermediate representation: trees or graphs (data
structures in compiler)
(+ 1 (* 2 3))

+
/ \
1 *

/ \
2 3

11

Representing Programs

Compilers operate on programs as data:
• Source code: unstructured sequence of characters

"1 + 2 * 3"

• Intermediate representation: trees or graphs (data
structures in compiler)
(+ 1 (* 2 3))

• Output: sequence of machine instructions
movq $2, %rax
imulq $3, %rax
addq $1, %rax

+
/ \
1 *

/ \
2 3

12

Grammar

Concrete syntax of source code expressed as a context-free grammar (BNF notation):
n ∈ ℤ (integers)
<exp> ::= n (literal)

| <exp> + <exp> (addition)
| <exp> * <exp> (multiplication)
| <exp> - <exp> (subtraction)
| <exp> / <exp> (division)

• Grammar describes the valid form of expressions in our language

13

Program as Data

Abstract syntax: representing the program as data structure (e.g., tree):
enum Exp:
case Lit(n: Int)
case Add(e1: Exp, e2: Exp)
case Sub(e1: Exp, e2: Exp)
case Mul(e1: Exp, e2: Exp)
case Div(e1: Exp, e2: Exp)

Note: enum is Scala’s way of defining algebraic data types. Sometimes we will also
use trait / abstract class + case class for the same purpose.

Example:
val expr = Add(Lit(1), Mul(Lit(2), Lit(3))) // 1 + (2 * 3)

14

Program as Data

Abstract syntax: representing the program as data structure (e.g., tree):
enum Exp:
case Lit(n: Int)
case Add(e1: Exp, e2: Exp)
case Sub(e1: Exp, e2: Exp)
case Mul(e1: Exp, e2: Exp)
case Div(e1: Exp, e2: Exp)

Note: enum is Scala’s way of defining algebraic data types. Sometimes we will also
use trait / abstract class + case class for the same purpose.

Example:
val expr = Add(Lit(1), Mul(Lit(2), Lit(3))) // 1 + (2 * 3)

14

Writing an Interpreter

An interpreter evaluates the expression directly:
type Val = Int

def eval(e: Exp): Val =
e match

case Lit(n) => n
case Add(e1, e2) => eval(e1) + eval(e2)
case Sub(e1, e2) => eval(e1) - eval(e2)
// more cases ...

Example
val expr = Add(Lit(1), Mul(Lit(2), Lit(3))) // 1 + (2 * 3)
eval(expr) // 7

15

Writing an Interpreter

An interpreter evaluates the expression directly:
type Val = Int

def eval(e: Exp): Val =
e match

case Lit(n) => n
case Add(e1, e2) => eval(e1) + eval(e2)
case Sub(e1, e2) => eval(e1) - eval(e2)
// more cases ...

Example
val expr = Add(Lit(1), Mul(Lit(2), Lit(3))) // 1 + (2 * 3)
eval(expr) // 7

15

Our first compiler

From interpreters to compilers:
type Code = String

def trans(e: Exp): Code =
e match
case Lit(x) => s"$x"
case Add(x, y) => s"(${trans(x)} + ${trans(y)})"
case Sub(x, y) => s"(${trans(x)} - ${trans(y)})"
// more cases ...

Note: s" ^^. " is Scala’s string interpolation syntax, $ {^^.} inserts the result of the
expression into the string

case Add(x, y) =>
val c1 = trans(x)
val c2 = trans(y)
s"($c1 + $c2)"

16

Our first compiler

From interpreters to compilers:
type Code = String

def trans(e: Exp): Code =
e match
case Lit(x) => s"$x"
case Add(x, y) => s"(${trans(x)} + ${trans(y)})"
case Sub(x, y) => s"(${trans(x)} - ${trans(y)})"
// more cases ...

Note: s" ^^. " is Scala’s string interpolation syntax, $ {^^.} inserts the result of the
expression into the string

case Add(x, y) =>
val c1 = trans(x)
val c2 = trans(y)
s"($c1 + $c2)"

16

Our first compiler

From interpreters to compilers:
type Code = String

def trans(e: Exp): Code =
e match
case Lit(x) => s"$x"
case Add(x, y) => s"(${trans(x)} + ${trans(y)})"
case Sub(x, y) => s"(${trans(x)} - ${trans(y)})"
// more cases ...

Example
val expr = Add(Lit(1), Mul(Lit(2), Lit(3)))
trans(expr) // "(1 + (2 * 3))"

Essentially printing the AST back to a string!

17

Architecture Refresher

• We need to use the native hardware efficiently
• CPU specifies a set of instructions it can execute
• Memory hierarchy: registers, L1/L2/L3 caches, main memory, disk, …

CPU Disk,
Cloud,
(≥ TB)

Caches
(MB)Regs

Main
Memory
(GB-TB)

18

Architecture Refresher (Intel Skylake)

• A 4-core Intel Skylake CPU

L3$ Slice

L3$ Slice

L3$ Slice

L3$ Slice

System
Agent

R
ing

Display
Controller

Memory
Controller

PCIe

eDRAM
Controller

(optional)

CoreCore

Core Core

Gen9.5

https://en.wikichip.org/wiki/intel/microarchitectures/skylake

19

https://en.wikichip.org/wiki/intel/microarchitectures/skylake

Assembly Refresher

• We use AT&T syntax for x86-64 assembly (default for GNU assembler)

• General-purpose registers: % rax , % rbx , % rcx , % rdx , % rsi , % rdi , %r8, %r9, …

• Operand order op src , dst

movq $2, %rax
imulq $3, %rax
addq $1, %rax

20

Interpreter with Explicit Memory

In our meta-language (Scala), allocate a memory array to store intermediate results:
val memory = new Array[Int](MEM_SIZE)
var used = 0 // the current index that can be used
def eval(e: Exp): Unit =
e match
case Lit(x) => memory(used) = x; used += 1
case Add(x, y) =>
eval(x)
???

...

21

Interpreter with Explicit Memory

In our meta-language (Scala), allocate a memory array to store intermediate results:
val memory = new Array[Int](MEM_SIZE)
var used = 0 // the current index that can be used
def eval(e: Exp): Unit =
e match
case Lit(x) => memory(used) = x; used += 1
case Add(x, y) =>
eval(x)
val u = used
eval(y)
memory(used) = memory(u-1) + memory(used-1)
used += 1

...

Contract: eval puts the result of evaluating e into memory (used)

22

Interpreter with Explicit Memory

In our meta-language (Scala), allocate a memory array to store intermediate results:
val memory = new Array[Int](MEM_SIZE)
var used = 0 // the current index that can be used
def eval(e: Exp): Unit =
e match
case Lit(x) => memory(used) = x; used += 1
case Add(x, y) =>
eval(x)
val u = used
eval(y)
memory(used) = memory(u-1) + memory(used-1)
used += 1

...

Contract: eval puts the result of evaluating e into memory (used)

22

A Stack-Based Interpreter

• Why not just tell the eval function where to store the result?
val memory = new Array[Int](MEM_SIZE)
def eval(e: Exp, sp: Int): Unit =
e match
case Lit(x) => memory(sp) = x
case Add(x, y) =>
eval(x, sp)
???

...

23

A Stack-Based Interpreter

• sp (stack pointer) indicates the position in memory to store the result
val memory = new Array[Int](MEM_SIZE)
def eval(e: Exp, sp: Int): Unit =
e match
case Lit(x) => memory(sp) = x
case Add(x, y) =>
eval(x, sp)
eval(y, sp+1)
memory(sp) += memory(sp+1)

...

24

A Stack-Based Compiler

• Our second compiler: just print out the operations performed by the interpreter!
def trans(e: Exp, sp: Int): Unit = e match
case Lit(x) => println(s"memory($sp) = $x")
case Add(x, y) =>
trans(x, sp)
trans(y, sp+1)
println(s"memory($sp) += memory(${sp+1})")

...

Example: trans (Add (Lit (1), Add (Lit (2), Lit (3))), 0) ^/ 1+(2+3)

memory(0) = 1
memory(1) = 2
memory(2) = 3
memory(1) += memory(2)
memory(0) += memory(1)

25

A Stack-Based Compiler

• Our second compiler: just print out the operations performed by the interpreter!
def trans(e: Exp, sp: Int): Unit = e match
case Lit(x) => println(s"memory($sp) = $x")
case Add(x, y) =>
trans(x, sp)
trans(y, sp+1)
println(s"memory($sp) += memory(${sp+1})")

...

Example: trans (Add (Lit (1), Add (Lit (2), Lit (3))), 0) ^/ 1+(2+3)

memory(0) = 1
memory(1) = 2
memory(2) = 3
memory(1) += memory(2)
memory(0) += memory(1)

25

A Stack-Based Compiler Targeting x86-64 Registers

• Our third compiler: use a sequence of registers as a stack
val regs = Seq("%rbx", "%rcx", "%rdi", "%rsi", "%r8", "%r9")
def trans(e: Exp, sp: Int): Unit = e match
case Lit(x) => println(s"${regs(sp)} = $$$x")
case Add(x, y) =>
trans(x, sp)
trans(y, sp+1)
println(s"${regs(sp)} += ${regs(sp+1)}")

...

Example: trans (Add (Lit (1), Add (Lit (2), Lit (3))), 0) ^/ 1+(2+3)

%rbx = $1
%rcx = $2
%rdi = $3
%rcx += %rdi
%rbx += %rcx

26

A Stack-Based Compiler Targeting x86-64 Registers

• Our third compiler: use a sequence of registers as a stack
val regs = Seq("%rbx", "%rcx", "%rdi", "%rsi", "%r8", "%r9")
def trans(e: Exp, sp: Int): Unit = e match
case Lit(x) => println(s"${regs(sp)} = $$$x")
case Add(x, y) =>
trans(x, sp)
trans(y, sp+1)
println(s"${regs(sp)} += ${regs(sp+1)}")

...

Example: trans (Add (Lit (1), Add (Lit (2), Lit (3))), 0) ^/ 1+(2+3)

%rbx = $1
%rcx = $2
%rdi = $3
%rcx += %rdi
%rbx += %rcx

26

A Stack-Based Compiler Targeting x86-64 Registers

• Further tweak syntax to generate valid x86-64 assembly code:
val regs = Seq("%rbx", "%rcx", "%rdi", "%rsi", "%r8", "%r9")
def trans(e: Exp, sp: Int): Unit = e match
case Lit(x) => println(s"movq $$$x, ${regs(sp)}")
case Add(x, y) =>
trans(x, sp)
trans(y, sp+1)
println(s"addq ${regs(sp+1)}, ${regs(sp)}")

...

Example: trans (Add (Lit (1), Add (Lit (2), Lit (3))), 0) ^/ 1+(2+3)

movq $1, %rbx
movq $2, %rcx
movq $3, %rdi
addq %rdi, %rcx
addq %rcx, %rbx

27

Parsing

Parsing

We have seen how to translate an abstract syntax tree (AST) to assembly code.

How can we translate source code to ASTs?

1+2*3 –> Add (Lit (1), Mul (Lit (2), Lit (3)))

28

Source Code as Stream of Characters

Reading a single-digit number:
val in: Reader[Char] // implements peek(), hasNext(), next()

def isDigit(c: Char): Boolean = '0' <= c && c <= '9'

def getNum(): Int =
if (in.hasNext(isDigit)) (in.next() - '0')
else expected("Number")

def parseTerm: Exp = Lit(getNum)

29

Parsing Sequences of Operations

val in: Reader[Char] // implements peek(), hasNext(), next()

def parseTerm: Exp = Lit(getNum)

def parseExpression: Exp =
var res = parseTerm
while (in.hasNext(isOperator)) {
in.next() match
case '+' => res = Add(res, parseTerm)
case '-' => res = Sub(res, parseTerm)

}
res

30

Operator Precedence

We can successfully parse expressions like 1+2+3 into
Add(Add(Lit(1), Lit(2)), Lit(3))

or the equivalent of (1+2)+3 .

But what about 1+2*3 ?

With the current logic, this will parse as (1+2)*3 , which is probably not what we
want.

…

See next lecture!

31

Operator Precedence

We can successfully parse expressions like 1+2+3 into
Add(Add(Lit(1), Lit(2)), Lit(3))

or the equivalent of (1+2)+3 .

But what about 1+2*3 ?

With the current logic, this will parse as (1+2)*3 , which is probably not what we
want.

…

See next lecture!

31

Where are we?

Where are we?

• In just one lecture, we have built an end-to-end compiler, from simple arithmetic
expressions to native x86-64 code.

• In Project 1 (due in one week, Jan 22), you will complete the bits that were
missing on the slides.

• Over the next lectures, we will add language features such as variables, control
flow, functions, etc. We will keep the pace high, and have a fully functional
compiler for a quite substantial language in no time.

32

	Parsing
	Where are we?

