CS107 Compilers

Guannan Wei
guannan.wei@tufts.edu

Jan 15, 2026
Spring 2026

Tufts University

What is a Compiler?

You have certainly used one ...

= A program that translates one programming language to another
= Usually, from human-friendly language to machine-friendly language
= Hopefully, generating code that uses the target machine efficiently

Why take this class?

This course: the theory and practice of implementing programming languages

Why take this class?

This course: the theory and practice of implementing programming languages
Intellectual:

= |f you want to understand software, you need to understand compilers
= Understand the implementation of programming languages
= Make you a better programmer

= Touches on all aspects of CS (algorithms, data structures, hardware, systems, etc.)

Why take this class?

This course: the theory and practice of implementing programming languages
Pragmatic:

= Hiring managers and PhD admissions know this
= All big companies have compiler teams
= Google: Chrome V8, MLIR, Go, Kotlin, Dart
= Amazon: Rust, Lean
= Apple: Swift, LLVM, JavaScriptCore
= Meta: Hack, HHVM, Infer
= Microsoft: TypeScript, C#, F#, Visual Studio
= Infrastructure of modern/future Al/quantum computing:
= Tensorflow/XLA, JAX, PyTorch, CUDA, Triton, AWS Neuron, ...
= Quantinuum, lonQ), ..

Topics:

= Parsing, type checking, interpretation and compilation

Intermediate representations, CPS transformation, closure conversion, SSA
= Analysis and optimizations, function inlining, register allocation
= Runtime representation, garbage collection

Topics:

= Parsing, type checking, interpretation and compilation

Intermediate representations, CPS transformation, closure conversion, SSA
= Analysis and optimizations, function inlining, register allocation
= Runtime representation, garbage collection

7 Hands-on Projects:

= Start with a tiny language and compiling to machine code

= Gradually add interesting features (variables, control flow, arrays, functions, etc.)

= You will build parsers, intermediate representations, optimizations, code
generators, and runtime systems

s Lecture: Tuesday and Thursday 4:30-5:45 PM, JCC 140
= 7 programming projects
= Midterm and final exams
= Piazza: https://piazza.com/tufts/spring2026/cs107
= We will use Piazza for announcements, questions, and discussions
= Canvas:
= Submitting projects and grading
= No required textbook

https://piazza.com/tufts/spring2026/cs107

Grading Policy

= Projects: 30%
= Extra credit up to 5%

= Midterm exam: 30%
= Final exam: 40%

» Piazza participation: extra credit up to 10%
= Recognition for active participation and instructor-endorsed answers

= You need to achieve a minimum of 25% in each of the three components

(projects, midterm, final) for a passing grade.

Grading Policy

= Projects: 30%
= Extra credit up to 5%

= Midterm exam: 30%
= Final exam: 40%

» Piazza participation: extra credit up to 10%
= Recognition for active participation and instructor-endorsed answers

= You need to achieve a minimum of 25% in each of the three components

(projects, midterm, final) for a passing grade.

This is not a easy course! Be prepared to put in significant effort.

Al Policy and Academic Integrity

= You may use Al tools (e.g., ChatGPT, GitHub Copilot) to help your learning
= You should complete assignments on your own
= No copy of code or collaboration with others
= |f you use Al tools, you must disclose it in what ways you use it in your submission
= Do not submit anything you don't understand or can't explain
= Discussion about general concepts is allowed
= Help your peers on Piazza (will be recognized)
= You are responsible for following the university and SOE's academic integrity
policy, and violations will be reported

A Few Languages

= We will use Scala 3 to write compilers for a small subset of Scala
= Meta language (language we use to write the compiler): Scala 3
= Object/source language (language we compile): a small subset of Scala
= Target language (language we compile to): x86-64 assembly

A Few Languages

= We will use Scala 3 to write compilers for a small subset of Scala
= Meta language (language we use to write the compiler): Scala 3
= Object/source language (language we compile): a small subset of Scala
= Target language (language we compile to): x86-64 assembly

= Why Scala?
= Expressive high-level language with functional and object-oriented features
= Rich type system supporting algebraic data types, pattern matching, generics, etc
= “the only academic-designed language of the 21st century to achieve
widespread mainstream adoption’’ — citation from the ACM Programming
Languages Achievement Award 2025

Learning Scala

= If you have taken CS105, it should be easy to pick up Scala 3

= Official Scala 3 Book (Online):
https://docs.scala-lang.org/scala3/book /introduction.html

= Highly recommended go through at least the first few chapters

10

https://docs.scala-lang.org/scala3/book/introduction.html

Representing Programs

Compilers operate on programs as data:

= Source code: unstructured sequence of characters
I|1 + 2 * 3"

11

Representing Programs

Compilers operate on programs as data:

= Source code: unstructured sequence of characters

"1+ 2 % 3"
= Intermediate representation: trees or graphs (data "
structures in compiler) /\
(+1 (2 3) C
2 3

11

Representing Programs

Compilers operate on programs as data:

= Source code: unstructured sequence of characters

"1+ 2 % 3"
= Intermediate representation: trees or graphs (data "
structures in compiler) /\
(+1 (2 3) 0
= Qutput: sequence of machine instructions 2 3

movg $2, %rax
imulg $3, %rax
addg $1, %rax

12

Concrete syntax of source code expressed as a context-free grammar (BNF notation):

ne’z

<exp> ::=n
| <exp>
| <exp>
| <exp>
| <exp>

<exp>
<exp>
<exp>
<exp>

(integers)
(literal)
(addition)
(multiplication)
(subtraction)
(division)

= Grammar describes the valid form of expressions in our language

13

Program as Data

Abstract syntax: representing the program as data structure (e.g., tree):

enum Exp:
case Lit(n: Int)
case Add(el: Exp, e2: Exp)
case Sub(el: Exp, e2: Exp)
case Mul(el: Exp, e2: Exp)
case Div(el: Exp, e2: Exp)

Note: enum is Scala’'s way of defining algebraic data types. Sometimes we will also

use trait / abstract class + case class for the same purpose.

14

Program as Data

Abstract syntax: representing the program as data structure (e.g., tree):

enum Exp:
case Lit(n: Int)
case Add(el: Exp, e2: Exp)
case Sub(el: Exp, e2: Exp)
case Mul(el: Exp, e2: Exp)
case Div(el: Exp, e2: Exp)

Note: enum is Scala’'s way of defining algebraic data types. Sometimes we will also
use trait / abstract class + case class for the same purpose.

Example:
val expr = Add(Lit(1), Mul(Lit(2), Lit(3))) // 1 + (2 % 3)

14

Writing an Interpreter

An interpreter evaluates the expression directly:

type Val = Int

def eval(e: Exp): Val =
e match
case Lit(n) =>n
case Add(el, e2) => eval(el) + eval(e2)
case Sub(el, e2) => eval(el) - eval(e2)
// more cases ...

15

Writing an Interpreter

An interpreter evaluates the expression directly:

type Val = Int

def eval(e: Exp): Val =
e match
case Lit(n) =>n
case Add(el, e2) => eval(el) + eval(e2)
case Sub(el, e2) => eval(el) - eval(e2)
// more cases ...

Example

val expr = Add(Lit(1), Mul(Lit(2), Lit(3))) // 1 + (2 * 3)
eval(expr) // 7

15

Our first compiler

From interpreters to compilers:

type Code = String

def trans(e: Exp): Code =
e match
case Lit(x) => s"$x"
case Add(x, y) => s"(${trans(x)} + ${trans(y)})"
case Sub(x, y) => s"(${trans(x)} - ${trans(y)})"
// more cases ...

16

Our first compiler

From interpreters to compilers:

type Code = String

def trans(e: Exp): Code =
e match
case Lit(x) => s"$x"
case Add(x, y) => s"(${trans(x)} + ${trans(y)})"
case Sub(x, y) => s"(${trans(x)} - ${trans(y)})"
// more cases ...

Note: s" ... " is Scala’s string interpolation syntax, $ {...} inserts the result of the
expression into the string

case Add(x, y) =>
val ¢l = trans(x)
val c2 = trans(y)
s"($c1 + $c2)"
16

Our first compiler

From interpreters to compilers:
type Code = String
def trans(e: Exp): Code =
e match
case Lit(x) => s"$x"
case Add(x, y) => s"(${trans(x)} + ${trans(y)})"

case Sub(x, y) => s"(${trans(x)} - ${trans(y)})"
// more cases ...

Example

val expr = Add(Lit(1), Mul(Lit(2), Lit(3)))
trans(expr) // "(1 + (2 * 3))"

Essentially printing the AST back to a string!

17

Architecture Refresher

= We need to use the native hardware efficiently
= CPU specifies a set of instructions it can execute
= Memory hierarchy: registers, L1/L2/L3 caches, main memory, disk, ...

CPU Main Disk
Caches ISk,
Regs) (MB) =P Memory > Cloud,
(GB-TB) (2TB)

18

Architecture Refresher (Intel Skylake)

= A 4-core Intel Skylake CPU

System
Agent

<

Core Core Display <——>
Controller <——>

o

L3$ Slice L3$ Slice PCle <—>
" " <>
L3$ Slice 3 _ L3 Slice

Gen9.5

eDRAM <—>
Controller <\——>

(optional)

(=]

Core Core Memory <——>
Controller <——>

https://en.wikichip.org/wiki/intel /microarchitectures/skylake

19

https://en.wikichip.org/wiki/intel/microarchitectures/skylake

Assembly Refresher

= We use AT&T syntax for x86-64 assembly (default for GNU assembler)
L] General—purpose registers: %rax, %rbx, %rcx, %rdx, %rsi, %rdi, %r8, %r9, ..

= Operand order op src, dst

movg $2, %rax
imulg $3, %rax
addg $1, %rax

20

Interpreter with Explicit Memory

In our meta-language (Scala), allocate a memory array to store intermediate results:

val
var
def

e

memory = new Array[Int](MEM_SIZE)
used = 0 // the current index that can be used

eval(e: Exp): Unit =

match
case Lit(x) => memory(used) = x; used += 1
case Add(x, y) =>

eval(x)

???

21

Interpreter with Explicit Memory

In our meta-language (Scala), allocate a memory array to store intermediate results:

val memory = new Array[Int](MEM_SIZE)
var used = 0 // the current index that can be used
def eval(e: Exp): Unit =
e match
case Lit(x) => memory(used) = x; used += 1
case Add(x, y) =>
eval(x)
val u = used
eval(y)
memory (used) = memory(u-1) + memory(used-1)
used += 1

22

Interpreter with Explicit Memory

In our meta-language (Scala), allocate a memory array to store intermediate results:

val
var
def

e

Contract: eval puts the result of evaluating e into memory (used)

memory = new Array[Int](MEM_SIZE)
used = 0 // the current index that can be used
eval(e: Exp): Unit =
match
case Lit(x) => memory(used) = x; used += 1
case Add(x, y) =>
eval(x)
val u = used
eval(y)
memory (used) = memory(u-1) + memory(used-1)
used += 1

22

A Stack-Based Interpreter

= Why not just tell the eval function where to store the result?

val memory = new Array[Int](MEM_SIZE)
def eval(e: Exp, sp: Int): Unit =
e match
case Lit(x) => memory(sp) = x
case Add(x, y) =>
eval(x, sp)
2??

23

A Stack-Based Interpreter

= sp (stack pointer) indicates the position in memory to store the result

val memory = new Array[Int](MEM_SIZE)
def eval(e: Exp, sp: Int): Unit =
e match
case Lit(x) => memory(sp) = x
case Add(x, y) =>
eval(x, sp)
eval(y, sp+1)
memory(sp) += memory(sp+1)

24

A Stack-Based Compiler

= Our second compiler: just print out the operations performed by the interpreter!

def trans(e: Exp, sp: Int): Unit = e match
case Lit(x) => println(s"memory($sp) = $x")
case Add(x, y) =>
trans(x, sp)
trans(y, sp+l)
printin(s"memory($sp) += memory(${sp+1})")

Example: trans (Add (Lit (1), Add (Lit (2), Lit (3))), 0) // 1+(2+3)

25

A Stack-Based Compiler

= Our second compiler: just print out the operations performed by the interpreter!

def trans(e: Exp, sp: Int): Unit = e match
case Lit(x) => println(s"memory($sp) = $x")
case Add(x, y) =>
trans(x, sp)
trans(y, sp+l)
printin(s"memory($sp) += memory(${sp+1})")

Example: trans (Add (Lit (1), Add (Lit (2), Lit (3))), 0) // 1+(2+3)

memory (0)
memory (1)
memory (2)
memory (1)
memory (0)

1
2
=3
+= memory(2)
+= memory (1)

25

A Stack-Based Compiler Targeting x86-64 Registers

= Qur third compiler: use a sequence of registers as a stack

val regs = Seq("%rbx", "%rcx", "%rdi", "%rsi", "%rs8", "%r9")
def trans(e: Exp, sp: Int): Unit = e match
case Lit(x) => println(s"${regs(sp)} = $$$x")
case Add(x, y) =>
trans(x, sp)
trans(y, sp+1)
printin(s"${regs(sp)} += ${regs(sp+1)}")

Example: trans (Add (Lit (1), Add (Lit (2), Lit (3))), 0) // 1+(2+3)

26

A Stack-Based Compiler Targeting x86-64 Registers

= Qur third compiler: use a sequence of registers as a stack

val regs = Seq("%rbx", "%rcx", "%rdi", "%rsi", "%rs8", "%r9")
def trans(e: Exp, sp: Int): Unit = e match
case Lit(x) => println(s"${regs(sp)} = $$$x")
case Add(x, y) =>
trans(x, sp)
trans(y, sp+1)
printin(s"${regs(sp)} += ${regs(sp+1)}")

Example: trans (Add (Lit (1), Add (Lit (2), Lit (3))), 0) // 1+(2+3)

%rbx = $1
%rcx = $2
%rdi = $3

%rex += %rdi
%rbx += %rcx

26

A Stack-Based Compiler Targeting x86-64 Registers

s Further tweak syntax to generate valid x86-64 assembly code:

val regs = Seq("%rbx", "%rcx", "%rdi", "%rsi", "%rs8", "%r9")
def trans(e: Exp, sp: Int): Unit = e match
case Lit(x) => println(s"movg $$$x, ${regs(sp)}")
case Add(x, y) =>
trans(x, sp)
trans(y, sp+1)
println(s"addq ${regs(sp+1)}, ${regs(sp)}")

Example: trans (Add (Lit (1), Add (Lit (2), Lit (3))), 0) // 1+(2+3)

movq $1, %rbx
movqg $2, %rcx
movqg $3, %rdi
addq %rdi, %rcx
addq %rcx, %rbx

27

Parsing

We have seen how to translate an abstract syntax tree (AST) to assembly code.
How can we translate source code to ASTs?

1+2%3 —> Add (Lit (1), Mul(Lit (2), Lit (3)))

28

Source Code as Stream of Characters

Reading a single-digit number:
val in: Reader[Char] // implements peek(), hasNext(), next()
def isDigit(c: Char): Boolean = 'Q' <= ¢ & c <= '9'
def getNum(): Int =
if (in.hasNext(isDigit)) (in.next() - '0')

else expected("Number")

def parseTerm: Exp = Lit(getNum)

29

Parsing Sequences of Operations

val in: Reader[Char] // implements peek(), hasNext(), next()
def parseTerm: Exp = Lit(getNum)

def parseExpression: Exp =
var res = parseTerm
while (in.hasNext(isOperator)) {
in.next() match
case '+' => res Add(res, parseTerm)
case '-' => res = Sub(res, parseTerm)

res

30

Operator Precedence

We can successfully parse expressions like 1+2+3 into
Add(Add(Lit(1), Lit(2)), Lit(3))

or the equivalent of (1+2)+3 .

31

Operator Precedence

We can successfully parse expressions like 1+2+3 into
Add(Add(Lit(1), Lit(2)), Lit(3))

or the equivalent of (1+2)+3 .
But what about 1+2%37

With the current logic, this will parse as (1+2)%3 , which is probably not what we

want.

See next lecture!

31

Where are we?

Where are we?

= |n just one lecture, we have built an end-to-end compiler, from simple arithmetic

expressions to native x86-64 code.

= In Project 1 (due in one week, Jan 22), you will complete the bits that were
missing on the slides.

= Over the next lectures, we will add language features such as variables, control
flow, functions, etc. We will keep the pace high, and have a fully functional
compiler for a quite substantial language in no time.

32

	Parsing
	Where are we?

