
Polymorphic Reachability Types and Effects:
An Overview

Tracking Freshness, Aliasing, and Separation in
Higher-Order Generic Programs

Guannan Wei
INRIA/ENS, Tufts University

LIPN, Université Sorbonne Paris Nord - Mar 6, 2025

Previously at Purdue University
with Oliver Bračevac, Songlin Jia, David Deng, Siyuan He, Yuyan Bao, Tiark Rompf

Motivation

Memory safety, thread safety, performance, ...

Secret sauce: ownership types
[Clarke et al., OOPSLA 98, Noble et al. ECOOP 98]

Motivation

What would post-Rust
languages resemble?

weak strong
low-level

high-level ?

Motivation

What would post-Rust
languages resemble?

weak strong
low-level

high-level ?

Motivation

Mojo / Modular.aiweak strong
low-level

high-level ?

Motivation

Swift / Apple

weak strong
low-level

high-level ?

Motivation

Substructural type systems
e.g. Linear Haskell [POPL 2018]

weak strong
low-level

high-level ?

Motivation

Scala 3 Capturing Types [TOPLAS 2023]

weak strong
low-level

high-level ?

Motivation

OCaml with Rust-style Ownership [POPL 25]

weak strong
low-level

high-level ?

Motivation

weak strong
low-level

high-level ?

How to smoothly combine functional/type
abstractions with resource tracking/control?

Rust’s “secret sauce”
vs

Pervasive sharing from functional abstraction

Motivation

weak strong
low-level

high-level ?

How to smoothly combine functional/type
abstractions with resource tracking/control?

Rust’s “secret sauce”
vs

Pervasive sharing from functional abstraction

“shared XOR mutable”

Motivation

weak strong
low-level

high-level ?

How to smoothly combine functional/type
abstractions with resource tracking/control?

Rust’s “secret sauce”
vs

Pervasive sharing from functional abstraction

“shared XOR mutable”

first class functions, capturing, escaping ...

Example: Pair of Counters

 val c = new Ref(n)
 (() => c += 1, () => c -= 1)

❌

Example: Pair of Counters
def counter(n: Int): Pair[() => Unit, () => Unit] = {
 val c = new Ref(n)
 (() => c += 1, () => c -= 1)
}

❌

Example: Pair of Counters
def counter(n: Int): Pair[() => Unit, () => Unit] = {
 val c = new Ref(n)
 (() => c += 1, () => c -= 1)
}

val ctr = counter(0)
// ctr: Pair[(() => Unit)ctr, (() => Unit)ctr]ctr

val incr = fst(ctr) // incr: (() => Unit)ctr

val decr = snd(ctr) // decr: (() => Unit)ctr

❌

Example: Pair of Counters
def counter(n: Int): Pair[() => Unit, () => Unit] = {
 val c = new Ref(n)
 (() => c += 1, () => c -= 1)
}

val ctr = counter(0)
// ctr: Pair[(() => Unit)ctr, (() => Unit)ctr]ctr

val incr = fst(ctr) // incr: (() => Unit)ctr

val decr = snd(ctr) // decr: (() => Unit)ctr

par { () => incr() } { () => decr() } // UNSAFE!

❌

Example: Pair of Counters
def counter(n: Int): Pair[() => Unit, () => Unit] = {
 val c = new Ref(n)
 (() => c += 1, () => c -= 1)
}

val ctr = counter(0)
// ctr: Pair[(() => Unit)ctr, (() => Unit)ctr]ctr

val incr = fst(ctr) // incr: (() => Unit)ctr

val decr = snd(ctr) // decr: (() => Unit)ctr

par { () => incr() } { () => decr() } // UNSAFE!
incr(); decr() // SAFE!

❌

Example: Pair of Counters
def counter(n: Int): Pair[() => Unit, () => Unit] = {
 val c = new Ref(n)
 (() => c += 1, () => c -= 1)
}

val ctr = counter(0)
// ctr: Pair[(() => Unit)ctr, (() => Unit)ctr]ctr

val incr = fst(ctr) // incr: (() => Unit)ctr

val decr = snd(ctr) // decr: (() => Unit)ctr

par { () => incr() } { () => decr() } // UNSAFE!
incr(); decr() // SAFE!

❌

Reachability
Types ✓

Polymorphic Reachability Types

Reachability Types: tracking sharing and
separation in higher-order languages

[OOPSLA 2021, Bao et al.]

Polymorphic Reachability Types

Reachability Types: tracking sharing and
separation in higher-order languages

[OOPSLA 2021, Bao et al.]

This work [POPL 2024]
A new formulation of reachability types

★ smoothly combine with polymorphism
★ a notion of contextual freshness
★ precise lightweight reachability polymorphism
★ bounded type-and-reachability polymorphism

Polymorphic Reachability Types - Agenda

1. Basic reachability tracking mechanism

2. Formalization and metatheory

3. Effect system extension

4. Applications

5. Conclusion and future work

Qualifying Types with a Set of Variables

● Key idea:

● val x = new Ref(42) // x : Ref[Int]x

val y = x // y : Ref[Int]y in context [y: Ref[Int]x, ...]
val i = 42 // i : Int∅, untracked

Γ ⊢ e : T
q

q the set of variables that can be reached from the evaluation result of e.

Qualifying Types with a Set of Variables

● Key idea:

● val x = new Ref(42) // x : Ref[Int]x

val y = x // y : Ref[Int]y in context [y: Ref[Int]x, ...]
val i = 42 // i : Int∅, untracked

● Function types track the observable context:

val c = new Ref(42)

(n: Int) => { c := n } // : (Int => Unit)

Γ ⊢ e : T
q

q the set of variables that can be reached from the evaluation result of e.

{c}

Qualifying Types with … Not Yet a Variable?

● Key idea:

● What should be the qualifier for fresh allocations?
new Ref(42) // : Ref[Int]?

Γ ⊢ e : T
q

q the set of variables that can be reached from the evaluation result of e.

Qualifying Types with … Not Yet a Variable?

● Key idea:

● What should be the qualifier for fresh allocations?
new Ref(42) // : Ref[Int]
Possible option 1: ⊥ shared nothing, but confused with untracked!
Either unsound if not distinguished from untracked (primitive) values,
or the system becomes non-parametric over the untracked (as in Bao et al.).

Γ ⊢ e : T
q

q the set of variables that can be reached from the evaluation result of e.

⊥

● Key idea:

● What should be the qualifier for fresh allocations?
new Ref(42) // : Ref[Int]
Possible option 2: 丅 can be potentially shared with everything, but not really!
I.e. the universal/root capability {cap} in Scala Capturing Types,
where additional mechanisms are required to establish separation.

Γ ⊢ e : T
q

q the set of variables that can be reached from the evaluation result of e.

Qualifying Types with … Not Yet a Variable?

丅

A New Notion of Freshness

● Key idea: use a special marker ◆ to represent statically unobservable
variables/locations.
new Ref(42) // : Ref[Int]◆, fresh allocation

● Key idea: use a special marker ◆ to represent statically unobservable
variables/locations.
new Ref(42) // : Ref[Int]◆, fresh allocation

Unobservable variables/locations may materialize during evaluation:
new Ref(42) → ℓ // : Ref[Int]{ℓ}

A New Notion of Freshness

● Key idea: use a special marker ◆ to represent statically unobservable
variables/locations.
new Ref(42) // : Ref[Int]◆, fresh allocation

Unobservable variables/locations may materialize during evaluation:
new Ref(42) → ℓ // : Ref[Int]{ℓ}

Bound/known reachability sets cannot upcast to ◆:
val x = new Ref(42) // : Ref[Int]x not subtype of Ref[Int]◆

A New Notion of Freshness

● Key idea: use a special marker ◆ to represent statically unobservable
variables/locations.
new Ref(42) // : Ref[Int]◆, fresh allocation

Unobservable variables/locations may materialize during evaluation:
new Ref(42) → ℓ // : Ref[Int]{ℓ}

Bound/known reachability sets cannot upcast to ◆:
val x = new Ref(42) // : Ref[Int]x not subtype of Ref[Int]◆

● Leads to a parametric treatment of reachability/separation;
No conflation of untracked vs fresh resources anymore (cf. Bao et al.).

A New Notion of Freshness

● Key idea: use a special marker ◆ to represent statically unobservable
variables/locations.

● Support both scoped and non-scoped introduction forms of resources:
def try[A](f: CanThrow◆ => A): A
try { throw => ... }

A New Notion of Freshness

● Key idea: use a special marker ◆ to represent statically unobservable
variables/locations.

● Support both scoped and non-scoped introduction forms of resources:
def try[A](f: CanThrow◆ => A): A
try { throw => ... }

try[CanThrow◆] { throw => throw } // error:
 // CanThrowc not subtype of CanThrow◆

A New Notion of Freshness

● Key idea: use a special marker ◆ to represent statically unobservable
variables/locations.

● Support both scoped and non-scoped introduction forms of resources:
def try[A](f: CanThrow◆ => A): A
try { throw => ... }

try[CanThrow◆] { throw => throw } // error:
 // CanThrowc not subtype of CanThrow◆

try[Ref[Int]◆] { throw => new Ref(42) } // okay

A New Notion of Freshness

● Key idea: use a special marker ◆ to represent statically unobservable
variables/locations.

● Support both scoped and non-scoped introduction forms of resources:
def try[A](f: CanThrow◆ => A): A
try { throw => ... }

try[CanThrow◆] { throw => throw } // error:
 // CanThrowc not subtype of CanThrow◆

try[Ref[Int]◆] { throw => new Ref(42) } // okay

● More unified treatment compared with Scala Capturing Types:
try[Ref[Int]丅](c => new Ref(42)) // has to diff. {cap} and {ref}

A New Notion of Freshness

From Freshness to Separation

● In intersection type systems
Int & String <: Nothing // not typically derivable in syntactic subtyping

From Freshness to Separation

● In intersection type systems
Int & String <: Nothing // not typically derivable in syntactic subtyping

● Our freshness marker
∀x in the typing context, locs(◆) ∩ locs(x) ⊆ ∅

From Freshness to Separation

● In intersection type systems
Int & String <: Nothing // not typically derivable in syntactic subtyping

● Our freshness marker
∀x in the typing context, locs(◆) ∩ locs(x) ⊆ ∅

● Key Idea: observable separation between arguments and the function
∀x in function observation, locs(◆) ∩ locs(x) ⊆ ∅

From Freshness to Separation

● In intersection type systems
Int & String <: Nothing // not typically derivable in syntactic subtyping

● Our freshness marker
∀x in the typing context, locs(◆) ∩ locs(x) ⊆ ∅

● Key Idea: observable separation between arguments and the function
∀x in function observation, locs(◆) ∩ locs(x) ⊆ ∅

def id(x: T◆): T{x} = x // : ((x: T◆) => T{x})∅

id(y) // okay
id(new Ref(42)) // okay

Checking Separation

● Applications check separation by non-overlapping reachability:
val c1: Ref[Int]{c1}
val c2: Ref[Int]{c2}

def addRef(r: Ref[Int]◆) = { c1 := !c1 + !r; c1 }

Checking Separation

● Applications check separation by non-overlapping reachability:
val c1: Ref[Int]{c1}

val c2: Ref[Int]{c2}

def addRef(r: Ref[Int]◆) = { c1 := !c1 + !r; c1 }

addRef(c1) // type error because {c1} ⋂ {c1} ⊈ ∅

c1

required to be ∅ by function
argument qualifier

addRef c1

Checking Separation

● Applications check separation by non-overlapping reachability:
val c1: Ref[Int]{c1}

val c2: Ref[Int]{c2}

def addRef(r: Ref[Int]◆) = { c1 := !c1 + !r; c1 }

addRef(c1) // type error because {c1} ⋂ {c1} ⊈ ∅
addRef(c2) // ok because {c2} ⋂ {c1} ⊆ ∅

c2c1

indeed the overlap is ∅

addRef c2

Checking Separation

● Applications check separation by non-overlapping reachability:
val c1: Ref[Int]{c1}

val c2: Ref[Int]{c2}

def addRef(r: Ref[Int]◆) = { c1 := !c1 + !r; c1 }

addRef(c1) // type error because {c1} ⋂ {c1} ⊈ ∅
addRef(c2) // ok because {c2} ⋂ {c1} ⊆ ∅

Invariant: non-overlapping reachability implies separate locations!

Checking Separation

● Applications check separation by non-overlapping reachability:
val c1: Ref[Int]{c1}

val c2: Ref[Int]{c2}

def addRef(r: Ref[Int]◆) = { c1 := !c1 + !r; c1 }

addRef(c1) // type error because {c1} ⋂ {c1} ⊈ ∅
addRef(c2) // ok because {c2} ⋂ {c1} ⊆ ∅

● Function argument qualifier describes permissible overlap/aliasing patten:
def addRef2(c: Ref[Int]{c1, ◆}) = …
addRef2(c1) // ok now {c1} ⋂ {c1} ⊆ {c1}

Invariant: non-overlapping reachability implies separate locations!

Lightweight Reachability Polymorphism

● Lightweight (quantification-free) reachability polymorphism:
def id[T](x: T◆): T{x} = x // : ((x: T◆) => T{x})∅

id(42) // : Int∅

id(new Ref(42)) // : Ref[Int]◆

id(x) // : Ref[Int]{x}

Term-level variables already indicate the dependency: result reachability can
precisely depend on the argument reachability without quantification.

Bounded Reachability Polymorphism

● Bounded parametric reachability a la F<:

def id[Tz <: Top◆](x: Tz): T{z} = x
def fst[Aa <: Top◆, Bb <: Top◆](p: Pair[Aa,Bb]): Aa = ...

val v1 = new Ref(1)
val v2 = new Ref(2)
val p = makePair(v1, v2) // : Pair[Ref[Int]v1, Ref[Int]v2]
fst(p) // : Ref[Int]v1

Polymorphic Reachability Types - Agenda

1. Basic reachability tracking mechanism

2. Formalization and metatheory

3. Effect system extension

4. Applications

5. Conclusion and future work

Formalization

● Simply-typed λ◆-calculus
● F<:-calculus with

bounded polymorphism

◆

Γ ⊢ e : T q
𝜑

Context: what resources can be observed
○ lexical scope, capturing, escaping

Space: where are things/heap topology
○ reachability, aliasing/sharing, separation

More details in Wei et al. POPL 2024

Formalization

● Simply-typed λ◆-calculus
● F<:-calculus with

bounded polymorphism

◆

Γ ⊢ e : T q
𝜑

Context: what resources can be observed
○ lexical scope, capturing, escaping

Space: where are things/heap topology
○ reachability, aliasing/sharing, separation

Formalization

● Simply-typed λ◆-calculus
● F<:-calculus with

bounded polymorphism

◆

Γ ⊢ e : T q
𝜑

Context: what resources can be observed
○ lexical scope, capturing, escaping

Space: where are things/heap topology
○ reachability, aliasing/sharing, separation

Formalization

● Simply-typed λ◆-calculus
● F<:-calculus with

bounded polymorphism

◆

Γ ⊢ e : T q
𝜑

Context: what resources can be observed
○ lexical scope, capturing, escaping

Space: where are things/heap topology
○ reachability, aliasing/sharing, separation

Formalization

● Simply-typed λ◆-calculus
● F<:-calculus with

bounded polymorphism

◆

Γ ⊢ e : T q
𝜑

Context: what resources can be observed
○ lexical scope, capturing, escaping

Space: where are things/heap topology
○ reachability, aliasing/sharing, separation val x = new Ref(new Ref(42))

!x // : Ref[Int]◆

!x // : Ref[Int]◆

Unsound:

Formalization

● Simply-typed λ◆-calculus
● F<:-calculus with

bounded polymorphism

◆

Γ ⊢ e : T q
𝜑

Context: what resources can be observed
○ lexical scope, capturing, escaping

Space: where are things/heap topology
○ reachability, aliasing/sharing, separation val x = new Ref(new Ref(42))

!x // : Ref[Int]◆

!x // : Ref[Int]◆

Unsound:

val r = new Ref(42)
val x = new Ref(r)
!x // : Ref[Int]r

!x // : Ref[Int]r

With freshness restriction:

Metatheory

● Syntactic soundness

○ Progress
○ Preservation: qualifiers may grow only due to freshness (new allocations)

● Preservation of Separation: two separate terms remain separate after reduction steps.

Metatheory

● Syntactic soundness

○ Progress
○ Preservation: qualifiers may grow only due to freshness (new allocations)

● Preservation of Separation: two separate terms remain separate after reduction steps.

Metatheory

● Syntactic soundness

○ Progress
○ Preservation: qualifiers may grow only due to freshness (new allocations)

● Preservation of Separation: two separate terms remain separate after reduction steps.

● Mechanized formalization in Rocq/Coq
○ Alternative logical relation formalization in progress

● Prototype implementation Diamond language
● Both can be found at https://github.com/TiarkRompf/reachability

Mechanization & Implementation

Polymorphic Reachability Types - Agenda

1. Basic reachability tracking mechanism

2. Formalization and metatheory

3. Effect system extension

4. Applications

5. Conclusion and future work

Flow-Sensitive Effect System

● Key idea: Tracking side-effects with aliases, separation, and flow-sensitivity

Γ ⊢ e : T | ε
q𝜑

An alias-aware,
flow-sensitive effect algebra

val x = new Ref(0) // : Ref[Int]x

val y = id(x) // : Ref[Int]{y,x}

y := 42 // : Unit @wr(y,x)

Flow-Sensitive Effect System

● Key idea: Tracking side-effects with aliases, separation, and flow-sensitivity

Γ ⊢ e : T | ε
q𝜑

An alias-aware,
flow-sensitive effect algebra

● Effect quantale [Gordon 2021, TOPLAS]
An effect quantale Q = (E, ㄩ, ▶, I) is a partial (binary) join semilattice (E, ㄩ)
with partial monoid (E, ▶, I)
○ ㄩ models commutative effect join (e.g. two branches)
○ ▶ models sequential effect composition

Lifting to Store-Sensitive Effect System

● Effect store ε ∊ P(P(Var) x PreEff) is an instance of effect quantale if

PreEff is an effect quantale too.

Example: { {x, y} → Read, {w, v} → Write } where PreEff = {Read, Write}

Lifting to Store-Sensitive Effect System

● Effect store ε ∊ P(P(Var) x PreEff) is an instance of effect quantale if

PreEff is an effect quantale too.

Example: { {x, y} → Read, {w, v} → Write } where PreEff = {Read, Write}

{ {x, y} → Read } ㄩ { {y, z} → Write }

 = { {x, y} U {y, z} → Read ㄩPreEff Write } since {x, y} Ո {y, z} ≠ ø

 = { {x, y, z} → Write }

Destructive Effects

● Key idea: ▶ doesn’t have to be commutative, we define a “kill” effect that can
only be partially composed (see details in Bao et al., OOPSLA 21)

read ▶ kill // okay
kill ▶ read // error

Destructive Effects

● Key idea: ▶ doesn’t have to be commutative, we define a “kill” effect that can
only be partially composed (see details in Bao et al., OOPSLA 21)

▶

var c1 = ...
val x = move(c1) // : Ref[Int]◆ @kill(c1)
c1 += 1 // error

read ▶ kill // okay
kill ▶ read // error

Polymorphic Reachability Types - Agenda

1. Basic reachability tracking mechanism

2. Formalization and metatheory

3. Effect system extension

4. Applications

5. Conclusion and future work

Applications
● Flexible and safe programming with resources [POPL 24, OOPSLA 21]

○ Safe parallelization
○ Scoped capabilities
○ Ownership transfer and affinity
○ ...

● Optimizations for high-order effectful programs [OOPSLA 23]
○ Effect-guided optimization

■ Dead-write elimination
■ Constant sub-expression elimination

○ Code motion (lambda-hoisting)
○ ...

Checking Separation -- Safe Parallelization

● Requiring disjoint qualifiers of two thunks to ensure non-interference:

// library code
def par(a: (() => Unit)◆)(b: (() => Unit)◆): Unit

// user code
val c1 = new Ref(0), c2 = new Ref(0)
par {
 // ok: operate on c1 only, cannot access c2
 c1 += 42
} {
 // ok: operate on c2 only, cannot access c1
 c2 -= 100
}

67

Non-Escaping Scoped Capabilities

val res = withFile("a.txt") { file =>
 val line = file.readLine()
 ...
}

withFile abstraction ensures
the file is closed after use.

More details/examples in OOPSLA 21, POPL 24.

68

Non-Escaping Scoped Capabilities

val res = withFile("a.txt") { file =>
 val line = file.readLine()
 ...
 { () => file.readLine() }
}

val f = res()

More details/examples in OOPSLA 21, POPL 24.

69

val res = withFile("a.txt") { file =>
 val line = file.readLine()
 ...
 { () => file.readLine() }
}

val f = res()

file handle escaped!

More details/examples in OOPSLA 21, POPL 24.

Non-Escaping Scoped Capabilities

70

val res = withFile("a.txt") { file =>
 val line = file.readLine()
 ...
 { () => file.readLine() }
}

val f = res()

file handle escaped!

at this moment, the file is
already closed!

More details/examples in OOPSLA 21, POPL 24.

Non-Escaping Scoped Capabilities

71

// library code
def withFile[T](path: String)(block: File => T◆): T◆ = { ... }

// user code
withFile("a.txt") { file =>
 ...
 { () => file.readLine() } // type error, cannot compile!
}

Reachability type system ensures that the
returned value cannot capture “file”:

(Unit => String)file ≮: (Unit => String)◆

More details/examples in OOPSLA 21, POPL 24.

Non-Escaping Scoped Capabilities

72

Destructive Effects: Affinity
● Affine effect: ensuring destructed resources are not used anymore

○ ownership transfer/move semantics

More details/examples in OOPSLA 21, POPL 24.

// ownership transfer:
var c1 = ...
var c2 = c1 // c1 and c2 aliased
val x = move(c1) // move semantics (e.g. in C++)
c1 += 1 // error
c2 += 1 // error, too!

73

Destructive Effects: Affinity
● Affine effect: ensuring destructed resources are not used anymore

○ ownership transfer/move semantics

More details/examples in OOPSLA 21, POPL 24.

 { {c1, c2} → e }

effect store before move

// ownership transfer:
var c1 = ...
var c2 = c1 // c1 and c2 aliased
val x = move(c1) // move semantics (e.g. in C++)
c1 += 1 // error
c2 += 1 // error, too!

74

Destructive Effects: Affinity
● Affine effect: ensuring destructed resources are not used anymore

○ ownership transfer/move semantics

More details/examples in OOPSLA 21, POPL 24.

 { {c1, c2} → e } ▶ { {c1} → Kill }

effect gen by move

// ownership transfer:
var c1 = ...
var c2 = c1 // c1 and c2 aliased
val x = move(c1) // move semantics (e.g. in C++)
c1 += 1 // error
c2 += 1 // error, too!

75

Destructive Effects: Affinity
● Affine effect: ensuring destructed resources are not used anymore

○ ownership transfer/move semantics

More details/examples in OOPSLA 21, POPL 24.

 { {c1, c2} → e } ▶ { {c1} → Kill }
= { {c1, c2} U {c1} → e ▶PreEff Kill }
= { {c1, c2} → Kill }

// ownership transfer:
var c1 = ...
var c2 = c1 // c1 and c2 aliased
val x = move(c1) // move semantics (e.g. in C++)
c1 += 1 // error
c2 += 1 // error, too!

76

Destructive Effects: Affinity
● Affine effect: ensuring destructed resources are not used anymore

○ ownership transfer/move semantics

More details/examples in OOPSLA 21, POPL 24.

 { {c1, c2} → e } ▶ { {c1} → Kill }
= { {c1, c2} U {c1} → e ▶PreEff Kill }
= { {c1, c2} → Kill }

 { {c1, c2} → Kill } ▶ { {c1} → Write }
= { {c1, c2} U {c1} → Kill ▶PreEff Write }

undefined, compile-time error

// ownership transfer:
var c1 = ...
var c2 = c1 // c1 and c2 aliased
val x = move(c1) // move semantics (e.g. in C++)
c1 += 1 // error
c2 += 1 // error, too!

77

Destructive Effects: Affinity
● Affine effect: ensuring destructed resources are not used anymore

○ ownership transfer/move semantics
○ one-shot continuation/effect handler
○ memory deallocation
○ message passing

More details/examples in OOPSLA 21, POPL 24.

// memory deallocation:
free(c1)
c1 += 1 // error

// message passing:
channel.send(c1)
c1 += 1 // error

// ownership transfer:
var c1 = ...
var c2 = c1 // c1 and c2 aliased
val x = move(c1) // move semantics (e.g. in C++)
c1 += 1 // error
c2 += 1 // error, too!

Ongoing and Future Work

● Published work:
○ Polymorphic Reachability Types [POPL ‘24]
○ Graph IRs for Impure Higher-Order Languages – Making Aggressive Optimizations

Affordable with Precise Effect Dependencies [OOPSLA ‘23]
○ Reachability Types [OOPSLA ‘21]

● Ongoing work:
○ Logic relations, soundness, termination, and equivalence
○ Algorithmic subtyping for escaping
○ Enabling reachability on cyclic data structures

● Possible future work:
○ Concurrency extension of the object language
○ Under-approximation reachability
○ Separation logic as the semantic interpretation

Summary

● Reachability Types: A family of type systems tracking aliases, separation, and
effects for imperative higher-order languages

● Rocq Mechanization & implementation:
https://github.com/TiarkRompf/reachability

Context: what resources can be observed
Space: where are things/heap topology
Time: how things change by execution order

Γ ⊢ e : T | ε
q𝜑

