Polymorphic Reachability Types and Effects:
An Overview

Tracking Freshness, Aliasing, and Separation in
Higher-Order Generic Programs

Guannan Wei

INRIA/ENS, Tufts University
LIPN, Université Sorbonne Paris Nord - Mar 6,2025

Previously at Purdue University
with Oliver BracCevac, Songlin Jia, David Deng, Siyuan He, Yuyan Bao, Tiark Rompf

Motivation

Memory safety, thread safety, performance, ...

Secret sauce: ownership types
[Clarke et al., OOPSLA 98, Noble et al. ECOOP 98]

Rust most admired language,
Stack Overflow survey says

Stack Overflow 2023 Developer Survey finds
that JavaScript and Python are the most used
and most desired languages, but they fall far
short of Rust in satisfying their users.

Motivation

high-level 4 ?
A
low-level & @
weak strong> What would pOST'RUST

languages resemble?

Motivation

high-level 4)k """ >

~0caml

!
low-level & @

weak strong> What would pOST'RUST
languages resemble?

high-level

low-level

Motivation

Y

—_————

Ownership and Lifetimes
The ownership system is partially implemented, and is expected to get built out in the next couple of months.
The basic support for ownership includes features like:

« Capture declarations in closures.

« Borrow checker: complain about invalid mutable references.

The next step in this is to bring proper lifetime support in. This will add the ability to return references and store
references in structures safely. In the immediate future, one can use the unsafe Pointer struct to do this like
in C++.

weak

strong

Mojo / Modular.ai

Motivation

swift / docs / OwnershipManifesto.md (3

O

re
e

)x- 2 @ uhooi Update OwnershipManifesto.md v/ 3 months ago
. e - - |
high-level > O
1635 lines (1350 loc) - 68.1 KB
!I The)
.l)%aml * Th¢ | Preview l Code Blame Rw @ & 2 -
1 .
I - Ownership
1
The
reft Introduction
low-level «
— Adding "ownership" to Swift is a major feature with many benefits for programmers.
k > This document is both a "manifesto" and a "meta-proposal” for ownership: it lays out
wea Sfrong the basic goals of the work, describes a general approach for achieving those goals,

Swift / Apple

high-level

low-level

Motivation

) SR

A

OCaml

®

weak

strong

Linear Haskell
Practical Linearity in a Higher-Order Polymorphic Language

JEAN-PHILIPPE BERNARDY, University of Gothenburg, Sweden
MATHIEU BOESPFLUG, Tweag I/O, France

RYAN R. NEWTON, Indiana University, USA

SIMON PEYTON JONES, Microsoft Research, UK

ARNAUD SPIWACK, Tweag I/O, France

Linear type systems have a long and storied history, but not a clear path forward to integrate with existing
languages such as OCaml or Haskell. In this paper, we study a linear type system designed with two crucial
properties in mind: backwards-compatibility and code reuse across linear and non-linear users of a library.
Only then can the benefits of linear types permeate conventional functional programming. Rather than
bifurcate types into linear and non-linear counterparts, we instead attach linearity to function arrows. Linear
functions can receive inputs from linearly-bound values, but can also operate over unrestricted, regular values.

To demonstrate the efficacy of our linear type system — both how easy it can be integrated in an existing
language implementation and how streamlined it makes it to write programs with linear types — we imple-
mented our type system in GHc, the leading Haskell compiler, and demonstrate two kinds of applications of
linear types: mutable data with pure interfaces; and enforcing protocols in I/O-performing functions.

Substructural type systems
e.g. Linear Haskell [POPL 2018]

high-level

low-level

) SR

OoCaml

Motivation

®

weak

strong

Capturing Types

ALEKSANDER BORUCH-GRUSZECKI and MARTIN ODERSKY, EPFL
EDWARD LEE and ONDREJ LHOTAK, University of Waterloo
JONATHAN BRACHTHAUSER, Eberhard Karls University of Tiibingen

Type systems usually characterize the shape of values but not their free variables. However, many desirable
safety properties could be guaranteed if one knew the free variables captured by values. We describe CC <.q,
a calculus where such captured variables are succinctly represented in types, and show it can be used to
safely implement effects and effect polymorphism via scoped capabilities. We discuss how the decision to
track captured variables guides key aspects of the calculus, and show that CC <. admits simple and intuitive
types for common data structures and their typical usage patterns. We demonstrate how these ideas can be
used to guide the implementation of capture checking in a practical programming language.

CCS Concepts: « Theory of computation — Type structures; « Software and its engineering — Object
oriented languages;

Additional Key Words and Phrases: Scala, type systems, effects, resources, capabilities

Scala 3 Capturing Types [TOPLAS 2023]

high-level

low-level

Motivation

>

y IR
! .lO%Elml 4
I
I
I
weak strong

Data Race Freedom a la Mode

AINA LINN GEORGES, MPI-SWS, Germany
BENJAMIN PETERS, MPI-SWS, Germany
LAILA ELBEHEIRY, MPI-SWS, Germany
LEO WHITE, Jane Street, UK

STEPHEN DOLAN, Jane Street, UK
RICHARD A. EISENBERG, Jane Street, USA
CHRIS CASINGHINO, Jane Street, USA
FRANCOIS POTTIER, Inria, France
DEREK DREYER, MPI-SWS, Germany

We present DRFCaml, an extension of OCaml’s type system that guarantees data race freedom for multi-
threaded OCaml programs while retaining backward compatibility with existing sequential OCaml code. We
build on recent work of Lorenzen et al., who extend OCaml with modes that keep track of locality, uniqueness,
and affinity. We introduce two new mode axes, contention and portability, which record whether data has
been shared or can be shared between multiple threads. Although this basic type-and-mode system has
limited expressive power by itself, it does let us express APIs for capsules, regions of memory whose access
is controlled by a unique ghost key, and reader-writer locks, which allow a thread to safely acquire partial
or full ownership of a key. We show that this allows complex data structures (which may involve aliasing
and mutable state) to be safely shared between threads. We formalize the complete system and establish its
soundness by building a semantic model of it in the Iris program logic on top of the Rocq proof assistant.

OCaml with Rust-style Ownership [POPL 25]

high-level 4

low-level

Motivation

How to smoothly combine functional/type
abstractions with resource tracking/control?

OOOOO

?
I\
1
1
|
@ Rust’s “secret sauce”

strong Vs
Pervasive sharing from functional abstraction

high-level 4

low-level

Motivation

How to smoothly combine functional/type
abstractions with resource tracking/control?

) S
o A
| “shared XOR mutable”
@ @ Rust’'s =—seeret-satece—
weak strong> Vs

Pervasive sharing from functional abstraction

Motivation

How to smoothly combine functional/type
abstractions with resource tracking/control?

high-level 4 !)k """ > ?
A A
E “shared XOR mutable”
low-level @ @ Rust's =]
weak sTrong> vs

Pervasive sharing from functional abstraction

first class functions, capturing, escaping ...

Example: Pair of Counters

val ¢ = new Ref(n)
(() =>c+=1, () =>c -=1) @X

Example: Pair of Counters

def counter(n: Int): Pair[() => Unit, () => Unit] = {

val ¢ = new Ref(n) N
()= c+=1, () =c-=1 @

}

Example: Pair of Counters

def counter(n: Int): Pair[() => Unit, () => Unit] = {

val ¢ = new Ref(n)
(() =>c+=1, () =>c -=1) @X

}

val ctr = counter(0)

fst(ctr)
snd(ctr)

val incr

val decr

Example: Pair of Counters

def counter(n: Int): Pair[() => Unit, () => Unit] = {

val ¢ = new Ref(n)
() = c+=1, () =>c-=1) @X

}

val ctr = counter(0)

val incr = fst(ctr)

snd(ctr)

val decr

par { () => dincr() } { () => decr() } // UNSAFE!

Example: Pair of Counters

def counter(n: Int): Pair[() => Unit, () => Unit] = {

val ¢ = new Ref(n)
() = c+=1, () =>c-=1) @X

}

val ctr = counter(0)

val incr = fst(ctr)

snd(ctr)

val decr

par { () => dincr() } { () => decr() } // UNSAFE!
incr(); decr() // SAFE!

Example: Pair of Counters

def counter(n: Int): Pair[() => Unit, () => Unit] = {

val ¢ = new Ref(n)
() = c+=1, () =>c-=1) @X

}

val ctr = counter(0)

ctr ctr Jctr
val incr = fst(ctr) ctr Reachability
val decr = snd(ctr) ctr /

Types

par { () => dincr() } { () => decr() } // UNSAFE!
incr(); decr() // SAFE!

Rust, state-of-the-art
ownership type systems

Borrowing: temporarily relax
access where needed

Ownership: unique access
paths, global heap invariant

Strict foundation,
selectively relaxed.

Reachability Types

Reachability types,
separation logic,

Uniqueness, separation:
restrict access where needed

Sharing, reachability: flexible
heap properties, no globally
enforced invariants

Liberal foundation,
selectively restricted.

Reachability Types: tracking sharing and
separation in higher-order languages
[OOPSLA 2021, Bao et al.]

Rust, state-of-the-art
ownership type systems

Borrowing: temporarily relax
access where needed

Ownership: unique access
paths, global heap invariant

Strict foundation,
selectively relaxed.

Reachability types,
separation logic,

Uniqueness, separation:
restrict access where needed

Sharing, reachability: flexible
heap properties, no globally
enforced invariants

Liberal foundation,
selectively restricted.

Polymorphic Reachability Types

This work [POPL 2024]
A new formulation of reachability types

smoothly combine with polymorphism
a notion of contextual freshness
precise lightweight reachability polymorphism

* % O

bounded type-and-reachability polymorphism

Polymorphic Reachability Types - Agenda

1. Basic reachability tracking mechanism
2. Formalization and metatheory

3. Effect system extension

4. Applications

5. Conclusion and future work

Qualifying Types with a Set of Variables

q
Keyidea: [- e : T

g the set of variables that can be reached from the evaluation result of e.

val x = new Ref(42) // x : Ref[Int]*
val y = X //'y : Ref[Int]¥Y in context [y: Ref[Int]*, ...
val i = 42 // 1 : Int®, untracked

Qualifying Types with a Set of Variables

q
Keyidea: [- e : T

g the set of variables that can be reached from the evaluation result of e.

val x = new Ref(42) // x : Ref[Int]*
val y = X //y : Ref[Int]¥Y in context [y: Ref[Int]*,
val i = 42 // 1 : Int®, untracked

Function types track the observable context:

val ¢ = new Ref(42)

(n: Int) => { ¢ :=n } // : (Int => Unit){C}

Qualifying Types with ... Not Yet a Variable?
o Keyidea: [- e : TCI

g the set of variables that can be reached from the evaluation result of e.

e What should be the qualifier for fresh allocations?
new Ref(42) /] Ref[Int]?

Qualifying Types with ... Not Yet a Variable?
Key idea: I - e : TCI

g the set of variables that can be reached from the evaluation result of e.

What should be the qualifier for fresh allocations?
new Ref(42) /] Ref[Int]'L

Possible option 1: L shared nothing, but confused with untracked!

Either unsound if not distinguished from untracked (primitive) values,
or the system becomes non-parametric over the untracked (as in Bao et al.).

Qualifying Types with ... Not Yet a Variable?
Key idea: I - e : TCI

g the set of variables that can be reached from the evaluation result of e.

What should be the qualifier for fresh allocations?
new Ref(42) /] Ref[Int]T

Possible option 2: T can be potentially shared with everything, but not really!

|.e. the universal/root capability {cap} in Scala Capturing Types,
where additional mechanisms are required to establish separation.

A New Notion of Freshness

e Key idea: use a special marker @ to represent statically unobservable

variables/locations.
new Ref(42) // : Ref[Int]®, fresh allocation

A New Notion of Freshness

Key idea: use a special marker @ to represent statically unobservable

variables/locations.
new Ref(42) // : Ref[Int]®, fresh allocation

Unobservable variables/locations may materialize during evaluation:
new Ref(42) — @ // : Ref[Int]{¥

A New Notion of Freshness

Key idea: use a special marker @ to represent statically unobservable

variables/locations.
new Ref(42) // : Ref[Int]®, fresh allocation

Unobservable variables/locations may materialize during evaluation:
new Ref(42) — @ // : Ref[Int]{¥

Bound/known reachability sets cannot upcast to *:
val x = new Ref(42) // : Ref[Int]* not subtype of Ref[Int]*

A New Notion of Freshness

Key idea: use a special marker @ to represent statically unobservable

variables/locations.
new Ref(42) // : Ref[Int]®, fresh allocation

Unobservable variables/locations may materialize during evaluation:
new Ref(42) — @ // : Ref[Int]{¥

Bound/known reachability sets cannot upcast to *:
val x = new Ref(42) // : Ref[Int]* not subtype of Ref[Int]*

Leads to a parametric treatment of reachability/separation;
No conflation of unfracked vs fresh resources anymore (cf. Bao et al.).

A New Notion of Freshness

e Key idea: use a special marker @ to represent statically unobservable
variables/locations.

e Support both scoped and non-scoped introduction forms of resources:
def try[A](f: CanThrow® => A): A
try { throw => ... }

A New Notion of Freshness

e Key idea: use a special marker @ to represent statically unobservable
variables/locations.

e Support both scoped and non-scoped introduction forms of resources:
def try[A](f: CanThrow® => A): A
try { throw => ... }

try[CanThrow®] { throw => throw } // error:
// CanThrow® not subtype of CanThrow®

A New Notion of Freshness

e Key idea: use a special marker @ to represent statically unobservable
variables/locations.

e Support both scoped and non-scoped introduction forms of resources:
def try[A](f: CanThrow® => A): A
try { throw => ... }

try[CanThrow®] { throw => throw } // error:
// CanThrow® not subtype of CanThrow®

try[Ref[Int]®] { throw => new Ref(42) } // okay

A New Notion of Freshness

Key idea: use a special marker @ to represent statically unobservable
variables/locations.

Support both scoped and non-scoped introduction forms of resources:
def try[A](f: CanThrow® => A): A
try { throw => ... }

try[CanThrow®] { throw => throw } // error:
// CanThrow® not subtype of CanThrow®
try[Ref[Int]®] { throw => new Ref(42) } // okay

More unified treatment compared with Scala Capturing Types:
try[Ref[Int]T](c => new Ref(42)) // has to diff. {cap} and {ref}

From Freshness to Separation

e In intersection type systems
Int & String <: Nothing // not typically derivable in syntactic subtyping

From Freshness to Separation

In intersection type systems
Int & String <: Nothing // not typically derivable in syntactic subtyping

Our freshness marker
Vv x in the typing context, locs(®) n locs(x) S @

From Freshness to Separation

In intersection type systems
Int & String <: Nothing // not typically derivable in syntactic subtyping

Our freshness marker
Vv x in the typing context, locs(®) n locs(x) S @

Key Idea: observable separation between arguments and the function
Vv x in function observation, locs(#) n locs(x) < @

From Freshness to Separation

e In intersection type systems
Int & String <: Nothing // not typically derivable in syntactic subtyping

e Our freshness marker
Vv x in the typing context, locs(®) n locs(x) S @

e Key Idea: observable separation between arguments and the function
Vv x in function observation, locs(#) n locs(x) < @

def id(x: T®): T = x // : ((x: T®) => TH&})”
id(y) // okay
id(new Ref(42)) // okay

Checking Separation

Applications check separation by non-overlapping reachability:

val c1: Ref[Int]{c"
val c2: Ref[Int]{c2
def addRef(r: Ref[Int]®) = { c1 := 'c1 + !'r; c1 }

Checking Separation

Applications check separation by non-overlapping reachability:

val c1: Ref[Int]{c"
val c2: Ref[Int]{c2
def addRef(r: Ref[Int]®) = { ¢c1 := lc1 + Ir; c1 }

addRef(c1) // type error because {c1} n {c1} € » addRef c1

required to be @ by function
argument qualifier

Checking Separation

Applications check separation by non-overlapping reachability:

val c1: Ref[Int]{c"
val c2: Ref[Int]{c2
def addRef(r: Ref[Int]®) = { ¢c1 := lc1 + Ir; c1 }

addRef(c1) // type error because {c1} N {c1} q o
addRef(c2) // ok because {c2} N {c1} € @

addRef T c2

indeed the overlap is @

Checking Separation

Applications check separation by non-overlapping reachability:

val c1: Ref[Int]{c"
val c2: Ref[Int]{c2
def addRef(r: Ref[Int]®) = { ¢c1 := lc1 + Ir; c1 }

addRef(c1) // type error because {c1} N {c1} q o
addRef(c2) // ok because {c2} N {c1} € @

Invariant: non-overlapping reachability implies separate locations!

Checking Separation

Applications check separation by non-overlapping reachability:

val c1: Ref[Int]{c"
val c2: Ref[Int]{c2
def addRef(r: Ref[Int]®) = { ¢c1 := lc1 + Ir; c1 }

addRef(c1) // type error because {c1} N {c1} q o
addRef(c2) // ok because {c2} N {c1} € @

Invariant: non-overlapping reachability implies separate locations!

Function argument qualifier describes permissible overlap/aliasing patten:

def addRef2(c: Ref[Int]{c! ®}) =
addRef2(c1) // ok now {c1} N {c1} < {c1}

Lightweight Reachability Polymorphism

Lightweight (quantification-free) reachability polymorphism:

def id[T](x: T®): T = x // : ((x: T®) => THXH)?

id(42) // : Int’
id(new Ref(42)) // : Ref[Int]*
id(x) // : Ref[Int]®

Term-level variables already indicate the dependency: result reachability can
precisely depend on the argument reachability without quantification.

Bounded Reachability Polymorphism

Bounded parametric reachability a la F_,

def id[T? <: Top®](x: T?): T# = x
def fst[A? <: Top®, B® <: Top®](p: Pair[A?,BP]): A? = ...

val vi new Ref(1)

val v2 = new Ref(2)

val p = makePair(v1, v2) // : Pair[Ref[Int]'', Ref[Int]"?]
fst(p) // : Ref[Int]

Polymorphic Reachability Types - Agenda

1. Basic reachability tracking mechanism
2. Formalization and metatheory

3. Effect system extension

4. Applications

5. Conclusion and future work

Formalization

Context: what resources can be observed
o lexical scope, capturing, escaping
Space: where are things/heap topology

o reachability, aliasing/sharing, separation

e Simplytyped A®-calculus
e F?*-calculus with

bounded polymorphism

Term Typing
xaT9el XEQ
(T-VAR)
Tk 56 T
(T, f:F,x:P)¥f rt:0 qCo
F=(f(x:P) > Q)17
(T-ABS)
I'? +r Af(x).t:F
T? rt:(f(x:TP) - Q)4 T? v tp:TP

¢¢p Q=U" rcepxf fé¢fv()
T? v+ t1t2:Q[p/x,q/f]

(T-APP)

re I-tl:(f(x:Tpmq)—>Q)q T? v ty:TP

Q=U" rcepx, f
sep=>x¢efv(U) fetv(U)

T? + t1t2:Q[p/x,q/f]
(T-APPY)

(T-CsT)

c€B
I'? ¢ c:B?

'Y b #:T9 ¢éq

T-REF
I'? + reft: (Ref T9)*? ()

T?+ t:(RefTP)4 ¢¢p pCo
L?v1t:TP

(T-DEREF)

T? v+ t:(RefTP)T TP +1:TP o ¢p
T? + t; = tz:UnitQ

(T-ASSGN)

I’ rt:Q TrHQ<:TT gCep

T v t:T9)

More details in Wei et al. POPL 2024

Formalization

Context: what resources can be observed
o lexical scope, capturing, escaping
Space: where are things/heap topology

o reachability, aliasing/sharing, separation

e Simplytyped A®-calculus
e F?*-calculus with

bounded polymorphism

x:T9€T XEQ

T’ +x:T*

(T-VAR)

Formalization

Context: what resources can be observed
o lexical scope, capturing, escaping
Space: where are things/heap topology

o reachability, aliasing/sharing, separation

e Simplytyped A®-calculus
e F?*-calculus with

bounded polymorphism

(F,f:F,x:P)q’x’fl—t:Q q< o
F=(f(x:P)— Q)1

T'? + Af(x).t: F

(T-ABS)

Formalization

Context: what resources can be observed
o lexical scope, capturing, escaping
Space: where are things/heap topology

o reachability, aliasing/sharing, separation

e Simplytyped A®-calculus
e F?*-calculus with

bounded polymorphism

re I—tlz(f(x:Tpmq)—>Q)q TPk t3:TP

O=1" r Ceo,x, f

sep=xgfv(U) f¢fv(U)

T? v t1t2:Q[p/x q/f]

(T-APP$)

Formalization

I'Y ¢ t:.79 ¢ ¢q
I'? + reft:(RefT9)*?

(T-REF)

Context: what resources can be observed

o lexical scope, capturing, escaping
Space: where are things/heap topology Unsound:

o reachability, aliasing/sharing, separation val x = new Ref(new Ref(42))
Ix // : Ref[Int]*®
Ix // : Ref[Int]®

e Simplytyped A®-calculus

° F:-calculus with

bounded polymorphism

Formalization

Context: what resources can be observed
o lexical scope, capturing, escaping
Space: where are things/heap topology

o reachability, aliasing/sharing, separation

e Simplytyped A®-calculus
e F?*-calculus with

bounded polymorphism

I'Y ¢ t:.79 ¢ ¢q
I'? + reft:(RefT9)*?

(T-REF)

Unsound:

val x = new Ref(new Ref(42))
Ix // : Ref[Int]*
Ix // : Ref[Int]*

With freshness restriction:

val r = new Ref(42)
val x = new Ref(r)
Ix // : Ref[Int]"
Ix // : Ref[Int]"

Metatheory

® Syntactic soundness
o Progress
o Preservation: qualifiers may grow only due to freshness (new allocations)

® Preservation of Separation: two separate terms remain separate after reduction steps.

Metatheory

® Syntactic soundness
o Progress
o Preservation: qualifiers may grow only due to freshness (new allocations)

® Preservation of Separation: two separate terms remain separate after reduction steps.

THEOREM 4.7 (PRESERVATION). If [@ | 2]? + t:T9, and [@ | Z]? F 0,andt | o > t' | 0/,
and 3 ok, then there exists Y’ 2 3, ¢’ 2 ¢ Up, and p C dom(Z’ \ X) such that [@ | 2']1* + ¢’ and
[@ |19 F 1 : Talp/e].

Metatheory

® Syntactic soundness
o Progress
o Preservation: qualifiers may grow only due to freshness (new allocations)

® Preservation of Separation: two separate terms remain separate after reduction steps.

COROLLARY 4.8 (PRESERVATION OF SEPARATION). Sequential reduction of two terms with disjoint
qualifiers preserve types and disjointness:

[@ | £]%m®) v ¢ . T hlo >t |o P|ZFo > ok
[@ | 2]9m3) v, T2 o >t |0’ qMq C{+}
o pp T EY, [0 |2 PR kT BRI X
[@ | =] domE") ¢/ =T2p2 p1Mps C {¢}

Mechanization & Implementation

e Mechanized formalization in Rocq/Coq
o Alternative logical relation formalization in progress
e Prototype implementation Diamond language
e Both can be found at https://github.com/TiarkRompf/reachability

Reachability Types

Reachability types are a new take on modeling lifetimes and sharing in high-level functional languages, showing
how to integrate Rust-style reasoning capabilities with higher-order functions, polymorphic types, and similar
high-level abstractions.

Mechanization Overview

e base -- Coq mechanization of the A”-calculus [1] and its variations, gradually increasing in complexity.
« effects -- Cog mechanization of the A;-calculus [1] and its variations, gradually increasing in complexity.

e polymorphism -- Coq mechanization of the 1°-calculus [2] and its variations, featuring a refined reachability
model that scales to parametric type polymorphism.

o log-rel-unary -- Unary logical relations for proving semantic type soundness and termination of 1°, 27, and
its variants [4,5].

e log-rel-binary -- Binary logical relations for establishing equational reasoning about 2°, 4, and its variants

[4].

o log-rel-step-indexed -- Step-indexed logical relations for A°, 27 and its variants [4].

e checking -- Bidirectional type system A% with decidable type checking/inference, including refined subtyping
for self-references [5]

Polymorphic Reachability Types - Agenda

1. Basic reachability tracking mechanism
2. Formalization and metatheory

3. Effect system exiension

4. Applications

5. Conclusion and future work

Flow-Sensitive Effect System

e Key idea: Tracking side-effects with aliases, separation, and flow-sensitivity

F(pk e . TO] & <+
An alias-aware,
flow-sensitive effect algebra

val x = new Ref(0) // : Ref[Int]*
val y = id(x) // : Ref[Int]{yx}
y := 42 // : Unit @wr(y, x)

Flow-Sensitive Effect System

Key idea: Tracking side-effects with aliases, separation, and flow-sensitivity

FFe:TG]8<—’—\

An alias-aware,
flow-sensitive effect algebra

Effect quantale [Gordon 2021, TOPLAS]
An effect quantale Q = (E, U, », |) is a partial (binary) join semilattice (E, U)
with partial monoid (E, », 1)

o Ll models commutative effect join (e.g. two branches)

o » models sequential effect composition

Lifting to Store-Sensitive Effect System

e Effectstore e € P(P(Var) x PreEff) is an instance of effect quantale if
PreEff is an effect quantale too.

Example: { {x, y} — Read, {w, v} — Write } where PreEff = {Read, Write}

Lifting to Store-Sensitive Effect System

e Effectstore e € P(P(Var) x PreEff) is an instance of effect quantale if

PreEff is an effect quantale too.

Example: { {x, y} — Read, {w, v} — Write } where PreEff = {Read, Write}

{{x, y} = Read } U {{y, z} — Write }

{{x, y}U{y, z} - Read U Write } since {x, y} N{y, z} # @

PreEff

{{x,y, z} — Write }

Destructive Effects

e Key idea: » doesn’t have to be commutative, we define a “kill” effect that can
only be partially composed (see details in Bao et al., OOPSLA 21)

read » kill // okay
kill » read // error

Destructive Effects

Key idea: » doesn’t have to be commutative, we define a “kill” effect that can
only be partially composed (see details in Bao et al., OOPSLA 21)

read » kill // okay » | 1g | rd | wr | kill

kill » read // error lg | Lg rd wr Kkill

rd rd rd wr Kkill
wr | wr wr wr kill
var ¢l = ... kill undefined

val x = move(c1) // : Ref[Int]® @kill(c1)
cl += 1 // error

Polymorphic Reachability Types - Agenda

1. Basic reachability tracking mechanism
2. Formalization and metatheory

3. Effect system extension

4. Applications

5. Conclusion and future work

Applications

e Flexible and safe programming with resources [POPL 24, OOPSLA 21]
o Safe parallelization
o Scoped capabilities
o Ownership transfer and affinity
O

e Optimizations for high-order effectful programs [OOPSLA 23]
o Effect-guided optimization
m Dead-write elimination
m Constant sub-expression elimination
o Code motion (lambda-hoisting)
O

Checking Separation -- Safe Parallelization

Requiring disjoint qualifiers of two thunks to ensure non-interference:

// library code
def par(a: (() => Unit)®)(b: (() => Unit)*®): Unit

// user code
val c1 = new Ref(8), c2 = new Ref(0)

par {
// ok: operate on c¢1 only, cannot access c2
cl += 42

+ A
// ok: operate on c2 only, cannot access c1
c2 -= 100

}

Non-Escaping Scoped Capabilities

val res = withFile('a.txt") { file => withFile abstraction ensures
val line = file.readLine() the file is closed after use.

More details/examples in OOPSLA 21, POPL 24.

67

Non-Escaping Scoped Capabilities

val res = withFile("a.txt") { file =>
val line = file.readlLine()

i.i) => file.readlLine() }
}

val f = res()

More details/examples in OOPSLA 21, POPL 24.

68

Non-Escaping Scoped Capabilities

val res = withFile("a.txt") { file =>
val line = file.readlLine()

. file handle escaped!
{ () => file.readlLine() } A/////—__—

val f = res()

More details/examples in OOPSLA 21, POPL 24. 69

Non-Escaping Scoped Capabilities

val res = withFile("a.txt") { file =>
val line = file.readlLine()

. file handle escaped!
{ () => file.readlLine() } A////’—__—

_ at this moment, the file is

1 f =
' rest) already closed!

More details/examples in OOPSLA 21, POPL 24. 70

Non-Escaping Scoped Capabilities

// library code
def withFile[T](path: String)(block: File => T®): T7®* = { ... }

// user code
withFile("a.txt") { file =>

{ () => file.readLine() } // type error, cannot compile!

}
Reachability type system ensures that the

returned value cannot capture “file”:

(Unit => String)fi!® «: (Unit => String)*®

More details/examples in OOPSLA 21, POPL 24.

71

Destructive Effects: Affinity

e Affine effect: ensuring destructed resources are not used anymore
o ownership transfer/move semantics

// ownership transfer:

var c1 = ...

var c2 = cT // c1 and c2 aliased

val x = move(c1) // move semantics (e.g. in C++)
cl += 1 // error

c2 += 1 // error, too!

More details/examples in OOPSLA 21, POPL 24.

Destructive Effects: Affinity

e Affine effect: ensuring destructed resources are not used anymore
o ownership transfer/move semantics

effect store before move

{{c1, c2} > e}

// ownership transfer:

var c1 = ...

var c2 = cT // c1 and c2 aliased

val x = move(c1) // move semantics (e.g. in C++)
cl += 1 // error

c2 += 1 // error, too!

More details/examples in OOPSLA 21, POPL 24.

Destructive Effects: Affinity

e Affine effect: ensuring destructed resources are not used anymore
o ownership transfer/move semantics

effect gen by move

{{c1, c2} - e} »{{c1} —Kill}

// ownership transfer:

var c1 = ...

var c2 = cT // c1 and c2 aliased

val x = move(c1) // move semantics (e.g. in C++)
cl += 1 // error

c2 += 1 // error, too!

More details/examples in OOPSLA 21, POPL 24.

Destructive Effects: Affinity

e Affine effect: ensuring destructed resources are not used anymore
o ownership transfer/move semantics

{{c1, c2} > e} »{{c1} —Kill}

= {{c1,c2}U{cl} — e > ook Kill } // ownership transfer:
= {1, <2} — kil } var c1 =
var c2 = cl // ¢1 and c2 aliased
val x = move(c1) // move semantics (e.g. in C++)
cl += 1 // error
c2 += 1 // error, too!

More details/examples in OOPSLA 21, POPL 24.

75

Destructive Effects: Affinity

e Affine effect: ensuring destructed resources are not used anymore
o ownership transfer/move semantics

({c], c2) > e} » [{c1} = Kill)

= {icl,c2}U{cl} > e » Kill // ownership transfer:
PreEff
= {{c1, c2} > Kill } var cl = ...
var c2 = cl // ¢1 and c2 aliased
val x = move(c1) // move semantics (e.g. in C++)
({c, c2} > Kill }» { {c1} > Write } €1 *= 1 /1 error
c2 += 1 // error, too!

= {{c1, c2} U {c1} —Kill », .. Write }
undefined, compile-time error

More details/examples in OOPSLA 21, POPL 24.

76

Destructive Effects: Affinity

e Affine effect: ensuring destructed resources are not used anymore
o ownership transfer/move semantics
o one-shot continuation/effect handler
o memory deallocation
o message passing

// ownership transfer:

// memory deallocation: var ¢1 = ...

free(c1) var c2 = c1 // c¢1 and c2 aliased

¢l +=1 /] error val x = move(cl) // move semantics (e.g. in C++)
cl += 1 // error

// message passing: c2 += 1 // error, too!

channel.send(c1)

cl += 1 // error

More details/examples in OOPSLA 21, POPL 24.

Ongoing and Future Work

e Published work:
o Polymorphic Reachability Types [POPL ‘24]
o Graph IRs for Impure Higher-Order Languages — Making Aggressive Optimizations

Affordable with Precise Effect Dependencies [OOPSLA ‘23]
o Reachability Types [OOPSLA ‘21]

e Ongoing work:
o Logic relations, soundness, termination, and equivalence
o Algorithmic subtyping for escaping
o Enabling reachability on cyclic data structures

e Possible future work:
o Concurrency extension of the object language
o Under-approximation reachability
o Separation logic as the semantic interpretation

Summary

e Reachability Types: A family of type systems tracking aliases, separation, and
effects for imperative higher-order languages

Context: what resources can be observed
Space: where are things/heap topology
Time: how things change by execution order

e Rocq Mechanization & implementation:
httos://github.com/TiarkRompf /reachability

