
Metaprogramming for
Program Analyzers

Guannan Wei
with Oliver Bračevac, Shangyin Tan, Yuxuan Chen, and Tiark Rompf

August 2020, PurPL Retreat

guannanwei@purdue.edu
https://continuation.passing.style

What is metaprogramming?
● Metaprogramming treats other programs as data objects.

● In general, metaprograms analyze, interpret, transform and generate
other programs.

2

What is metaprogramming?
● Metaprogramming treats other programs as data objects.

● In general, metaprograms analyze, interpret, transform and generate
other programs.

● Generative metaprogramming:
 macros, templates, multi-stage programming (the LMS framework) ...

3

second stagefirst stage

What is metaprogramming?
● Metaprogramming treats other programs as data objects.

● In general, metaprograms analyze, interpret, transform and generate
other programs.

● Generative metaprogramming:
 macros, templates, multi-stage programming (the LMS framework) ...

metaprogram another
programinput1

input2

generates
result

4

What is metaprogramming?
● Metaprogramming treats other programs as data objects.

● In general, metaprograms analyze, interpret, transform and generate
other programs.

● Generative metaprogramming:
 macros, templates, multi-stage programming (the LMS framework) ...

5

second stagefirst stage

power(x, n) =
...

power3(x) =
x * x * xn=3

x = 3

generates
27

What is a program analyzer?
● A (static) program analyzer computes runtime behaviors/properties of a

program without running it.
● A program analyzer is also a metaprogram -- in the sense that itself is a

program and it analyzes another program.

analyzerinput
program

result

e.g.:
- termination
- control flow
- data flow
- numerical bounds
- validity of assertions
- ...

6

What is a program analyzer?
● A (static) program analyzer computes runtime behaviors/properties of a

program without running it.
● A program analyzer is also a metaprogram -- in the sense that itself is a

program and it analyzes another program.

● A semantic view of program analyses and analyzers:
○ program analyzers approximately simulate the concrete execution

7
program
analyzer

concrete
interpreter

implements implements

analyzing
semantics

concrete
semantics

deriving from

deriving from

When building program analyzers, what can
metaprogramming abstractions do?

● Multi-stage programming + functional programming can improve the
construction, performance, and flexibility of program analyzers.

8

When building program analyzers, what can
metaprogramming abstractions do?

● Multi-stage programming + functional programming can improve the
construction, performance, and flexibility of program analyzers.

9

program
analyzer

concrete
interpreter

implements implements

analyzing
semantics

concrete
semantics

deriving from

deriving from

staged
program
analyzer

input
program

derives

specialized
analyzer
program

staging
result

Our Recent Study
● Abstract interpreters and control-flow analysis for functional

languages.
 Staged Abstract Interpreters (OOPSLA 2019)
 Guannan Wei, Yuxuan Chen, and Tiark Rompf

● Symbolic execution engines for imperative languages.
 Compiling Symbolic Execution with Staging and Algebraic Effects
 (Conditionally accepted, OOPSLA 2020)
 Guannan Wei, Oliver Bracevac, and Tiark Rompf

10

Staged Abstract Interpreter
● Constructed a generic monadic

interpreter that abstracts over value
domains and binding-times.

11

staged
concrete

interpreter

unstaged
concrete

interpreter

staged
abstract

interpreter

unstaged
abstract

interpreter

α α

↑↓

↑↓

Staged Abstract Interpreter
● Constructed a generic monadic

interpreter that abstracts over value
domains and binding-times.

12

staged
concrete

interpreter

unstaged
concrete

interpreter

staged
abstract

interpreter

unstaged
abstract

interpreter

α α

↑↓

↑↓

def eval(ev: EvalFun)(e: Expr): Ans =
 e match {
 case Var(x) ⇒ for {
 ρ ← ask_env
 σ ← get_store
 } yield get(σ, ρ, x)
 case Lam(x, e) ⇒ for {
 ρ ← ask_env
 } yield close(ev)(Lam(x, e), ρ)
 case App(e1, e2) ⇒ for {
 v1 ← ev(e1)
 v2 ← ev(e2)
 rt ← ap_clo(ev)(v1, v2)
 } yield rt
 ...
 }

Staged Abstract Interpreter - Key Result
● Code sharing with concrete interpreter brings more confidence of

correctness.
● The staged abstract interpreter is also a compiler that takes program as

input and generates low-level code according to the abstract semantics.
● The generated code is modular and reusable, and has no interpretation

and monadic overhead.

● Performance evaluation on control-flow analysis of a subset of Scheme
○ 0-CFA with/without store widening: on average ~10 times faster compared with the

unstaged analyzer

13

Compiling Symbolic Execution
● Applying staging to symbolic execution engine

14

Compiling Symbolic Execution
● Applying staging to symbolic execution engine, and moreover, we

○ improve efficiency by generating/staging to C++ code
○ integrate with SMT solver APIs directly in the generated code
○ use algebraic effects and handlers to abstract over nondeterminism

behavior, which gives us more flexibility over path selection
strategy

15

Compiling Symbolic Execution

16

staged
symbolic
executor

input
program

C++ code
staging

./out
compile & link

result
execute

SMT
solver

symbolic
runtime

effect
handlers

MSP
support
(LMS)

Compiling Symbolic Execution - Key Result
● Using algebraic effects and effect handlers enable flexibly interprets

the nondeterminism effects -- resulting in different path exploration
strategies
○ depth-first, breath-first, random, fair random sampling, etc.

● Build a prototype for a subset of LLVM IR
● Performance evaluation on micro benchmarks

○ The generated code (C++) run 3~20x faster than unstaged counterpart (Scala)
○ The generated code (C++) outperforms ~17%~60% than KLEE (interpretation, C++)
○ Still a lot of room to improve!

17

When building program analyzers, what can
metaprogramming abstractions do?

● Multi-stage programming + functional programming can improve the
construction, performance, and flexibility of program analyzers.

● Recipe:
○ Deriving the analyzer from concrete definitional interpreters,

expressing the analyzing semantics with high fidelity and confidence of correctness.

○ Turning the analyzer to a compiler via staging and the 1st Futamura projection,
generating low-level code and eliminating the interpretation overhead.

○ Using type/effect system to model and abstract over the behavior of analyzers,
improving the modularity and flexibility of analyzers.

18

