o

Metaprogramming for
Program Analyzers

Guannan Wei

with Oliver Bracevac, Shangyin Tan, Yuxuan Chen, and Tiark Rompf

2

PURDUE guannanwei@purdue.edu

UNIVERSITY. https://continuation.passing.style

August 2020, PurPL Retreat

What is metaprogramming?

e Metaprogramming treats other programs as data objects.

e Ingeneral, metaprograms analyze, interpret, transform and generate
other programs.

What is metaprogramming?

Metaprogramming treats other programs as data objects.

In general, metaprograms analyze, interpret, transform and generate
other programs.

Generative metaprogramming:
macros, templates, multi-stage programming (the LMS framework] ...

What is metaprogramming?

Metaprogramming treats other programs as data objects.

In general, metaprograms analyze, interpret, transform and generate
other programs.

Generative metaprogramming:
macros, templates, multi-stage programming (the LMS framework] ...

first stage input?2 second stage

_ generates th

What is metaprogramming?

Metaprogramming treats other programs as data objects.

In general, metaprograms analyze, interpret, transform and generate
other programs.

Generative metaprogramming:
macros, templates, multi-stage programming (the LMS framework] ...

first stage x=3 second stage

ne3 power‘?(, n = generates : po)‘('vfff;] - 97

What is a program analyzer?

e A (static) program analyzer computes runtime behaviors/properties of a
program without running it.
e A program analyzer is also a metaprogram -- in the sense that itself is a
program and it analyzes another program.

input

program

e.g.:
- termination

- control flow

- data flow

- numerical bounds

- validity of assertions

What is a program analyzer?

e A (static) program analyzer computes runtime behaviors/properties of a
program without running it.

e A program analyzer is also a metaprogram -- in the sense that itself is a
program and it analyzes another program.

e A semantic view of program analyses and analyzers:
o program analyzers approximately simulate the concrete execution

SRR P S TN~

= 1
1 PR 1
analyzing 1 dériving from concrete

i semantics ! . semantics
I

I_—
v

-

e -—a
e S~ e ~

1
1
1
1
1
1
-

implements implements

program |deriving from | concrete
analyzer interpreter

When building program analyzers, what can
metaprogramming abstractions do?

e Multi-stage programming + functional programming can improve the
construction, performance, and flexibility of program analyzers.

When building program analyzers, what can
metaprogramming abstractions do?

e Multi-stage programming + functional programming can improve the
construction, performance, and flexibility of program analyzers.

T~
______________ . concrete
i semantics | | semantics

implements implements

deriving from

concrete
interpreter

program
analyzer

derives
) staged stagin specialized
input program g analyzer result
program analyzer program

Our Recent Study

Abstract interpreters and control-flow analysis for functional
languages.

Staged Abstract Interpreters (OOPSLA 2019)
Guannan Wei, Yuxuan Chen, and Tiark Rompf

Symbolic execution engines for imperative languages.

Compiling Symbolic Execution with Staging and Algebraic Effects
(Conditionally accepted, OOPSLA 2020)
Guannan Wei, Oliver Bracevac, and Tiark Rompf

10

Staged Abstract Interpreter

Constructed a generic monadic
interpreter that abstracts over value
domains and binding-times.

unstaged
abstract
interpreter

unstaged
concrete
interpreter

Tl

staged

abstract
interpreter

A

staged

Tl

— concrete
interpreter

11

Staged Abstract Interpreter

Constructed a generic monadic

_ unstaged T staged
interpreter that abstracts over value abstract abstract
domains and binding-times. interpreter interpreter
def eval(ev: EvalFun)(e: Expr): Ans = ‘
e match {
case Var(x) = for {
p — ask_env o x
6 — get_store
} yield get(s, p, x)
case Lam(x, e) = for {
p — ask_env
} yield close(ev)(Lam(x, e), p) unstaged staged
casi App(?l.l)eZ) = for { concrete — concrete
xz - :(22] interpreter 1 interpreter
rt — ap_clo(ev)(vl, v2)

} yield rt
12

Staged Abstract Interpreter - Key Result

Code sharing with concrete interpreter brings more confidence of
correctness.
The staged abstract interpreter is also a compiler that takes program as

input and generates low-level code according to the abstract semantics.

The generated code is modular and reusable, and has no interpretation
and monadic overhead.

Performance evaluation on control-flow analysis of a subset of Scheme
o 0-CFA with/without store widening: on average "10 times faster compared with the
unstaged analyzer

13

Compiling Symbolic Execution

Applying staging to symbolic execution engine

14

Compiling Symbolic Execution

Applying staging to symbolic execution engine, and moreover, we
o improve efficiency by generating/staging to C++ code
o integrate with SMT solver APIs directly in the generated code
o use algebraic effects and handlers to abstract over nondeterminism
behavior, which gives us more flexibility over path selection
strategy

15

Compiling Symbolic Execution

effect SMT
handlers solver

: staged stagin
nfg 1 symbolic Jng C
phitele freean executor

"

o
&

compile & link execute
JJout result

-

MSP .
subport symbolic
[Lpl\ﬁS) runtime

16

Compiling Symbolic Execution - Key Result

Using algebraic effects and effect handlers enable flexibly interprets
the nondeterminism effects -- resulting in different path exploration

strategies
o depth-first, breath-first, random, fair random sampling, etc.

Build a prototype for a subset of LLVM IR

Performance evaluation on micro benchmarks
o The generated code (C++) run 3°20x faster than unstaged counterpart (Scala)
o The generated code (C++) outperforms "17%760% than KLEE (interpretation, C++)
o Still a lot of room to improve!

17

When building program analyzers, what can
metaprogramming abstractions do?

Multi-stage programming + functional programming can improve the
construction, performance, and flexibility of program analyzers.

Recipe:
o Deriving the analyzer from concrete definitional interpreters,
expressing the analyzing semantics with high fidelity and confidence of correctness.

o Turning the analyzer to a compiler via staging and the 1st Futamura projection,
generating low-level code and eliminating the interpretation overhead.

o Using type/effect system to model and abstract over the behavior of analyzers,

improving the modularity and flexibility of analyzers. "

