Mixing Transformation and Symbolic Execution with
Continuation for WebAssembly

Guannan Wei, Dinghong Zhong, Alex Bai
Tufts University

OlivierFest at SPLASH/ICFP

Singapore, 2025

WebAssembly

= WebAssembly is a low-level IR aimed to be safe, portable, and efficient
= WebAssembly comes with an official formal specification

From official semantics to efficient symbolic analysis tools

This talk

A few mechanical steps from official semantics to efficient symbolic analysis tools using
continuations and staging.

Efficient
- symbol'lc
, analysis
1 tools
-~ 1
’ SS /
1 Se o
o I
’ ~ /
/ SS -
Official /
R - /
reduction Sa o
semantics

Official Wasm reduction semantics

= Official specification: a small-step reduction semantics
= Structured control flow (block, loop, if, etc.)
= Administrative instructions (label, etc.) representing evaluation context

loop loop
i32.const 4 i32.const 4
i32.const 2 label{...} i32.const 2
i32.const 1 i32.const 4 i32.const 1
i32.add > i32.const 3 N\ label{...} > i32.add
i32.add i32.add i32.const 7 i32.add
br 0 br 0 br 0 br 0

end end end end

Downsides of using “administrative instructions”

= Code duplication and search over the context —> inefficient

Downsides of using “administrative instructions”

= Code duplication and search over the context —> inefficient
But to use this semantics to derive faster implementations using partial evaluation:

= Not part of the source language -> binding-time conflation
= Non-compositional => unfolding the interpreter doesn’t work straightforwardly

From official semantics to efficient symbolic analysis tools

Official
reduction
semantics

first-order repr.
of control

—_—

CPS /
evaluator > _ - s
[TFP “25] -

higher-order repr.

of control,
compositional

Efficient

symbolic

analysis
tools

Syntax of yWasm

£ € Label =N
x € |dentifier =N
t € ValueType ==1i32|i64]...

ft € FunctionType ::=t" — ¢t~
e € Instruction 1= nop | t.const c | t.{add,sub,eq,...}
| block ft es | loop ft es

| br ¢ | call x | return

es € Instructions = List[Instruction]
f € Function ::= func x {type : ft,locals : t*, body : es}
m € Module ::= module f*

Semantics Definition

Evaluation function: [-] : List[Inst] — (Stack x Env x Cont x Trail) — Ans

v € Value =7

o € Stack = List[Value]

p € Env = List[Value]

k € Cont = Stack x Env — Ans
6 € Trail = List[Cont]

The CPS Semantics — Empty List of Inst

Evaluation function: [-] : List[Inst] — (Stack x Env x Cont x Trail) — Ans

[nil](o, p, &, 0) = k(0 p)

The CPS Semantics — Stack Manipulation

Evaluation function: [-] : List[Inst] — (Stack x Env x Cont x Trail) — Ans

[add :: rest](vy :: vo 2 0, p, K, 6) = [rest](vi + v2 :: 0, p, K, 0)

10

The CPS Semantics — Block

Evaluation function: [-] : List[Inst] — (Stack x Env x Cont x Trail) — Ans

[block (t™ — t") es :: rest](Carg mH 0, p, K, 0) = 777
[br ¢ :: rest] (o, p, Kk, 0) =777

11

Wasm Control Flow - Blocks

block /;
= Blocks are structured and can be nested S
block />
= A block has a label (can be named, or nameless as .
de Bruijn indices) br £
br 61
end
br (1
end

12

Wasm Control Flow - Blocks

block /;

= Blocks are structured and can be nested block 0,

= A block has a label (can be named, or nameless as -
br fz

de Bruijn indices)

s The label serves as a branch target, jumping to the br 0

instruction after the block
= |dea: we need to remember the “escaping
continuation” of each block introduced in the scope

13

The CPS Semantics — Block

[block (t™ — t") es :: rest](carg mH 0, p, K, 0) = block /

let k1 = (o1, p1).[rest](lo1], +H o, p1, £, 0) in br ¢
lesl(oarg, ps k1, K1 :2 0) end J
[br ¢ :: rest](o, p, &, 0) = rest
0(0)(o: p)
= The new continuation k1 is shared as ordinary continuation and
escape/branch continuation

» / is the de Bruijn index of the target label of the block, so 6(¢) is
the corresponding escaping continuation

14

The CPS Semantics — Block

[block (t™ — t") es :: rest](carg mH 0, p, K, 0) = block /

let k1 = (o1, p1).[rest](lo1], +H o, p1, £, 0) in br ¢
lesl(oarg, ps K1, K1 =2 0) end J
[br ¢ :: rest](o, p, K, 0) = rest
0(0)(o: p)
= The new continuation k1 is shared as ordinary continuation and
escape/branch continuation

» / is the de Bruijn index of the target label of the block, so 6(¢) is
the corresponding escaping continuation

15

Wasm Control Flow — Loops

loop /

= Similar to blocks, loops also introduce a label as jump block (;
target

br 62

= But branching to that label will jump back to the

br 4
beginning of the loop!
= If no branching happens, the loop finishes

br fl

end

16

Wasm Control Flow — Loops

loop /

= Similar to blocks, loops also introduce a label as jump block (;

target br 0,

= But branching to that label will jump back to the e g
r

beginning of the loop! !

= If no branching happens, the loop finishes

= ldea: we need to remember two different continuations br ‘0
for loops! c

end

17

The CPS Semantics — Loops

loop /

Tloop (t™ — t") es :: rest](Carg mH 0, p, K,0) = Fock ’
let k1 = No1, p1)-[rest](lo1], + o, p1,k,0) in
fix @ = (o2, p2)-[es](lo2],,, p2, k1,8 - 0) in

"52(Uarga p)

br 62

br él

= Ky is both the body of the loop and the branch

continuation br 4

= Therefore defined recursively and appended to the trail end

18

Call and Return

[call x :: rest](Targ mH 0, ps K, 0) =
let {type: t™ — t",locals : ts, body : es} = lookupFunc(x) in
let p1 := buildEnv(oarg, ts) in
let k1 := X(o1, p1).[rest](|o1], Ho,p, k,0) in
[esI([], p1, 51, [Ka])
[return :: rest](o, p, K, 0) = f.last(o, p)

= Discard the current trail, and install a new singleton trail containing the return
continuation
= The last continuation in the trail is always the return continuation (function body is

also a block, implicitly)
19

Definitional Interpreter for WebAssembly

= Now we have an evaluator in continuation-passing style with a trail:

[-] : List[Inst] — (Stack x Env x Cont x List[Cont]) — Ans

= Trail nicely gives semantics for block, loop, br, call, and return

= Compositional and tail recursive

20

From official semantics to efficient symbolic analysis tools

Official
reduction
semantics

first-order repr.
of control

—_—

Symbolic
evaluation

CPS
evaluator
[TFP 25]

higher-order repr.
of control,
compositional

Efficient
4 symbolic
1~ analysis
J tools
7
Symbolic CPS

evaluator

automatic tests
generation &
verification

21

From interpreter to symbolic interpreter

= Symbolic evaluator maintains symbolic expressions on stack/env and path
conditions (PC):

[-]s : List[Inst] — (Stack x Env
xSymStack x SymEnv x PC
x Cont x List[Cont]) — Ans

22

From official semantics to efficient symbolic analysis tools

Multi-stage
evaluation
Staged
; mbolic CP
Symbolic P symbolic CPS
i evaluator
evaluation
. efficient
Symbohc CPS automatic tests
evaluator generation &
verification
Official CPs automatic fests
duction =~ ——————— evaluator generation &
recuc . verification
semantics [TFP 25]
firstorder repr. higher-order repr.
of control,

of control i
compositional

23

From symbolic interpreter to staged symbolic interpreter

= A two-stage symbolic interpreter
= Staging removes interpretation overhead
= Trail list is eliminated at compile/staging-time (vs. Rep[List[Cont]])

[1&" : List[Inst] — (Rep[Stack] x Rep[Env]
x Rep[SymStack] x Rep[SymEnv] x Rep[P(]
x Rep[Cont] x List[Rep[Cont]]) — Rep[Ans]

24

From symbolic interpreter to staged symbolic interpreter

= A two-stage symbolic interpreter
= Staging removes interpretation overhead
= Trail list is eliminated at compile/staging-time (vs. Rep[List[Cont]])

[1&" : List[Inst] — (Rep[Stack] x Rep[Env]
x Rep[SymStack] x Rep[SymEnv] x Rep[P(]
x Rep[Cont] x List[Rep[Cont]]) — Rep[Ans]

= Thanks to CPS:
= Staging the interpreter is straightforward (unfolding)
= Enables snapshot-reuse optimizations by remembering the continuation

= Talk at WebAssembly Workshop on Thursday

20m Efficient Concolic Execution of WebAssembly by Compilation and Snapshot Reuse
Talk Dinghong Zhong Tufts University, Alexander Bai New York University, Guannan Wei Tufts University

24

Functional correspondence

Official
reduction
semantics

first-order repr.
of control

refunc.

defunc.

Symbolic
evaluation

CPS
evaluator
[TFP 25]

higher-order repr.
of control,
compositional

Multi-stage
evaluation

Symbolic CPS
evaluator

automatic tests
generation &
verification

>

Staged
symbolic CPS
evaluator

efficient
automatic tests
generation &
verification

25

New opportunities for the (inter-)derivation of semantic artifacts

relation Step: config ~> config
relation Step_pure: instr» ~> instr«
rule Step/pure:

z;instr« ~> z;instr's

—— Step_pure: instr« ~> instr's
rule Step_pure/nop:

NOP ~> eps
rule Step_pure/drop:

val DROP ~> eps

rule Step_pure/select-true:
val_1 val_2 (CONST 132 ¢) SELECT ~> val_1 —-ifc=/=0
rule Step_pure/select—false:
val_1val_2 (CONST 132 ¢) SELECT ~> val_2 -- otherwise
rule Step/local.get:
7; (LOCALGET x) ~> z;val —- if $local(z, x) = val
rule Step/global.get:
7; (GLOBAL.GET x) ~> z; val - if $global(z, x) = val

Official
reduction
semantics

first-order repr.
of control

SpecTec
[Youn et al., PLDI 24]

Can we automate this derivation?

—— ===

Staged
symbolic CPS
evaluator

efficient
automatic tests
generation &
verification

26

Conclusion

WebAssembly CPS semantics + symbolic evaluation + staging:

= CPS semantics eliminates administrative instructions

= Symbolic evaluation maintains symbolic expressions and path conditions
= Amenable to be partially evaluated/staged due to compositionality

= Result: efficient symbolic analysis tools

Ongoing/future work:

= Automating the derivation with SpecTec specification as input

27

