
Mixing Transformation and Symbolic Execution with
Continuation for WebAssembly

Guannan Wei, Dinghong Zhong, Alex Bai
Tufts University
OlivierFest at SPLASH/ICFP
Singapore, 2025

1

Motivation

WebAssembly

• WebAssembly is a low-level IR aimed to be safe, portable, and efficient
• WebAssembly comes with an official formal specification

2

From official semantics to efficient symbolic analysis tools

This talk

A few mechanical steps from official semantics to efficient symbolic analysis tools using
continuations and staging.

3

Official Wasm reduction semantics

• Official specification: a small-step reduction semantics
• Structured control flow (block, loop, if, etc.)
• Administrative instructions (label, etc.) representing evaluation context

4

Downsides of using “administrative instructions”

• Code duplication and search over the context -> inefficient

But to use this semantics to derive faster implementations using partial evaluation:

• Not part of the source language -> binding-time conflation
• Non-compositional -> unfolding the interpreter doesn’t work straightforwardly

5

Downsides of using “administrative instructions”

• Code duplication and search over the context -> inefficient

But to use this semantics to derive faster implementations using partial evaluation:

• Not part of the source language -> binding-time conflation
• Non-compositional -> unfolding the interpreter doesn’t work straightforwardly

5

From official semantics to efficient symbolic analysis tools

Overview

6

Syntax of µWasm

ℓ ∈ Label = N

x ∈ Identifier = N

t ∈ ValueType ::= i32 | i64 | . . .

ft ∈ FunctionType ::= t∗ → t∗

e ∈ Instruction ::= nop | t.const c | t.{add, sub, eq, . . . }

| block ft es | loop ft es

| br ℓ | call x | return

| . . .

es ∈ Instructions = List[Instruction]

f ∈ Function ::= func x {type : ft, locals : t∗, body : es}

m ∈ Module ::= module f ∗

7

Semantics Definition

Evaluation function: J·K : List[Inst] → (Stack × Env × Cont × Trail) → Ans

v ∈ Value = Z

σ ∈ Stack = List[Value]
ρ ∈ Env = List[Value]
κ ∈ Cont = Stack × Env → Ans
θ ∈ Trail = List[Cont]

8

The CPS Semantics – Empty List of Inst

Evaluation function: J·K : List[Inst] → (Stack × Env × Cont × Trail) → Ans

JnilK(σ, ρ, κ, θ) = κ(σ, ρ)

9

The CPS Semantics – Stack Manipulation

Evaluation function: J·K : List[Inst] → (Stack × Env × Cont × Trail) → Ans

Jadd :: restK(v1 :: v2 :: σ, ρ, κ, θ) = JrestK(v1 + v2 :: σ, ρ, κ, θ)

10

The CPS Semantics – Block

Evaluation function: J·K : List[Inst] → (Stack × Env × Cont × Trail) → Ans

Jblock (tm → tn) es :: restK(σarg m++ σ, ρ, κ, θ) = ???
Jbr ℓ :: restK(σ, ρ, κ, θ) = ???

11

Wasm Control Flow - Blocks

• Blocks are structured and can be nested
• A block has a label (can be named, or nameless as

de Bruijn indices)

block ℓ1
...
block ℓ2

...
br ℓ2
...
br ℓ1
...

end
...
br ℓ1
...

end
...

12

Wasm Control Flow - Blocks

• Blocks are structured and can be nested
• A block has a label (can be named, or nameless as

de Bruijn indices)
• The label serves as a branch target, jumping to the

instruction after the block
• Idea: we need to remember the “escaping

continuation” of each block introduced in the scope

block ℓ1
...
block ℓ2

...
br ℓ2
...
br ℓ1
...

end
...
br ℓ1
...

end
...

13

The CPS Semantics – Block

Jblock (tm → tn) es :: restK(σarg m++ σ, ρ, κ, θ) =
let κ1 := λ(σ1, ρ1).JrestK(⌊σ1⌋n ++ σ, ρ1, κ, θ) in
JesK(σarg , ρ, κ1, κ1 :: θ)

Jbr ℓ :: restK(σ, ρ, κ, θ) =
θ(ℓ)(σ, ρ)

• The new continuation κ1 is shared as ordinary continuation and
escape/branch continuation

• ℓ is the de Bruijn index of the target label of the block, so θ(ℓ) is
the corresponding escaping continuation

block ℓ
...
br ℓ
...

end
rest

14

The CPS Semantics – Block

Jblock (tm → tn) es :: restK(σarg m++ σ, ρ, κ, θ) =
let κ1 := λ(σ1, ρ1).JrestK(⌊σ1⌋n ++ σ, ρ1, κ, θ) in
JesK(σarg , ρ, κ1 , κ1 :: θ)

Jbr ℓ :: restK(σ, ρ, κ, θ) =
θ(ℓ)(σ, ρ)

• The new continuation κ1 is shared as ordinary continuation and
escape/branch continuation

• ℓ is the de Bruijn index of the target label of the block, so θ(ℓ) is
the corresponding escaping continuation

block ℓ
...
br ℓ
...

end
rest

15

Wasm Control Flow – Loops

• Similar to blocks, loops also introduce a label as jump
target

• But branching to that label will jump back to the
beginning of the loop!

• If no branching happens, the loop finishes

loop ℓ1
...
block ℓ2

...
br ℓ2
...
br ℓ1
...

end
...
br ℓ1
...

end
...

16

Wasm Control Flow – Loops

• Similar to blocks, loops also introduce a label as jump
target

• But branching to that label will jump back to the
beginning of the loop!

• If no branching happens, the loop finishes
• Idea: we need to remember two different continuations

for loops!

loop ℓ1
...
block ℓ2

...
br ℓ2
...
br ℓ1
...

end
...
br ℓ1
...

end
...

17

The CPS Semantics – Loops

Jloop (tm → tn) es :: restK(σarg m++ σ, ρ, κ, θ) =
let κ1 := λ(σ1, ρ1).JrestK(⌊σ1⌋n ++ σ, ρ1, κ, θ) in
fix κ2 := λ(σ2, ρ2).JesK(⌊σ2⌋m , ρ2, κ1 , κ2 :: θ) in
κ2(σarg , ρ)

• κ2 is both the body of the loop and the branch
continuation

• Therefore defined recursively and appended to the trail

loop ℓ1
...

block ℓ2
...
br ℓ2
...
br ℓ1
...

end
...
br ℓ1
...

end
...

18

Call and Return

Jcall x :: restK(σarg m++ σ, ρ, κ, θ) =
let {type : tm → tn, locals : ts, body : es} := lookupFunc(x) in
let ρ1 := buildEnv(σarg , ts) in
let κ1 := λ(σ1, ρ1).JrestK(⌊σ1⌋n ++σ, ρ, κ, θ) in

JesK([], ρ1, κ1, [κ1])

Jreturn :: restK(σ, ρ, κ, θ) = θ.last(σ, ρ)

• Discard the current trail, and install a new singleton trail containing the return
continuation

• The last continuation in the trail is always the return continuation (function body is
also a block, implicitly)

19

Definitional Interpreter for WebAssembly

• Now we have an evaluator in continuation-passing style with a trail:

J·K : List[Inst] → (Stack × Env × Cont × List[Cont]) → Ans

• Trail nicely gives semantics for block, loop, br, call, and return

• Compositional and tail recursive

20

From official semantics to efficient symbolic analysis tools

Overview

21

From interpreter to symbolic interpreter

• Symbolic evaluator maintains symbolic expressions on stack/env and path
conditions (PC):

J·KS : List[Inst] → (Stack × Env
×SymStack × SymEnv × PC
×Cont × List[Cont]) → Ans

22

From official semantics to efficient symbolic analysis tools

Overview

23

From symbolic interpreter to staged symbolic interpreter

• A two-stage symbolic interpreter
• Staging removes interpretation overhead
• Trail list is eliminated at compile/staging-time (vs. Rep[List[Cont]])

J·K↓↑
S : List[Inst] → (Rep[Stack] × Rep[Env]

×Rep[SymStack] × Rep[SymEnv] × Rep[PC]
×Rep[Cont] × List[Rep[Cont]]) → Rep[Ans]

• Thanks to CPS:
• Staging the interpreter is straightforward (unfolding)
• Enables snapshot-reuse optimizations by remembering the continuation

• Talk at WebAssembly Workshop on Thursday

24

From symbolic interpreter to staged symbolic interpreter

• A two-stage symbolic interpreter
• Staging removes interpretation overhead
• Trail list is eliminated at compile/staging-time (vs. Rep[List[Cont]])

J·K↓↑
S : List[Inst] → (Rep[Stack] × Rep[Env]

×Rep[SymStack] × Rep[SymEnv] × Rep[PC]
×Rep[Cont] × List[Rep[Cont]]) → Rep[Ans]

• Thanks to CPS:
• Staging the interpreter is straightforward (unfolding)
• Enables snapshot-reuse optimizations by remembering the continuation

• Talk at WebAssembly Workshop on Thursday

24

Functional correspondence

Overview

25

New opportunities for the (inter-)derivation of semantic artifacts

Overview

26

Conclusion

WebAssembly CPS semantics + symbolic evaluation + staging:

• CPS semantics eliminates administrative instructions
• Symbolic evaluation maintains symbolic expressions and path conditions
• Amenable to be partially evaluated/staged due to compositionality
• Result: efficient symbolic analysis tools

Ongoing/future work:

• Automating the derivation with SpecTec specification as input

27

