Hallucination-Resilient
LLM-Driven Sound and
Tunable Static Analysis

Guannan Wei, Zhuo Zhang, Caterina Urban
LMPL @ SPLASH/ICFP 2025, Singapore

I.H.f:t[§ COLGULEBIA h,m ES ‘ PSL@Z

UNIVERSITY

What is Static Analysis?

ft) A

time

concrete traces

What is Static Analysis?

ft) A

time

soundness:
over-approximations

What is Static Analysis?

ft) A

absence

N / of errors
— |
time

soundness:
over-approximations

ft) A

What is Static Analysis?

error
(true positive)

time

soundness:
over-approximations

What is Static Analysis?

possible error
(false positive)

1 error
w (true positive)
>

time

coarser-grained
over-approximations

What is Static Analysis?

possible error
(false positive)

error
w (true positive)
-

time

Soundness: detect all true errors
Precision: reduce false errors

Goals

What is Static Analysis?

possible error
(false positive)

error
w (true positive)
>

time

So, you want to use LLMs for static analysis, but how?

Prompting LLMs

demo.java 1 X

Users > xianggian > Downloads demo.java
ort java.util.ArraylList;

Demo {

foo(
h.abs(b) > 1)
stem.out.println(a /

main(String

=1;

=10 / x;
ArrayList<Integer> list = new ArraylList<>();
list.add(x);
list.add(y);
list.add(e
y =x % 1;

=EXY/0Y;
z = list.get(inde
System.out.println(y / z);

x = fooly, z);
System.out.println(x / x);

Claude-3.5-Sonnet

Prompting LLMs

demo.java 1 X CHAT

Users > xiangqian > Downloads demo.java > ... Please mimic the execution of the program and detect divide-by-zero bugs. prompf
ort java.util.ArraylList;

demo.java:1
Demo {

5 foo(
Math.abs(b) > 1
tem.out.println(a /

main(String
=1;

y =10 / x;
ArrayList<Integer> list = new ArraylList<>();
list.add(x);
list.add(y);
list.add(e
y = x x 1;

=EXY/0Y;
z = list.get(index:
System.out.println(y / z);

x = fooly, z);
System.out.println(x / x);

Claude-3.5-Sonnet

Prompting LLMs

demo.java 1 X CHAT

Users > xiangqian > Downloads demo.java > ... Please mimic the execution of the program and detect divide-by-zero bugs.

java.util.ArraylList;
demo.java
Demo {
& GitHub Copilot
> fool
Math.abs(b) > 1

System.out.println(a / H I'll analyze the code execution step by step and identify potential divide-by-zero bugs.

H
Analysis

1.In @ main() :
e x=1
2y=10/x 2> @y=10 (safe, x=1)

x=1;
y = 1é / x; > Create ArrayList and add: [1, 10, @]
Jy=x*1 =

ArraylList<Integer> list = new ArraylList<>(); py =1
list.add(x); o @z=x]y > w@z=1 (safe,y=1)
¢ z=list.get(2) > @z=0
s System.out.printin(y /z) - DIVIDE BY ZERO ERROR! (y =1,z = 0)
Program would crash here, but if it continued:
e x =foo(y, z2) with @y=1,2=0
> Inside = foo() :doesn't print since) Math.abs(0) <1
Returns @ z whichis 0
) System.out.printin(x /x) -> DIVIDE BY ZERO ERROR! (x = 0)

main(String

list.add(y);
list.add(e:0);
y =x % 1;
=x/Yy;
= list.get(X:2);
System.out.println(y / z);

x = fooly, z); Divide-by-Zero Bugs Found:
S .out.println(x / x);

1. Line 21: (= System.out.printin(y /z) -when @ z=0
2. Line 24: @ System.out.printin(x /x) -when @ x=0

Claude-3.5-Sonnet

prompt

reasoning &
analysis result

Can we trust LLM-reported analysis results?

false positive
T -

N
N
X~ h |
. -~ , miss a
rue error
time

LLMs are untrustworthy because of hallucination.

Can we trust LLM-reported analysis results?

false positive
T -

AN

miss a
true error

.\/
|

time

Can we validate the analysis results from LLMs?

Can we trust LLM-reported analysis results?

false positive
T -

N
N
X~ b |
. -~ , miss a
rue error
time

Can we validate the analysis results from LLMs?
Yes, but this becomes a static analysis problem...

Our Idea: LLMs as Meta-Analysis

Instead of analyzing target programs, use LLMs to “analyze” the analysis!

H

analyzer

D)

Q
ﬁ groqeam
X

O

%

O
O

O O
O O

O O

N

> abstract states

> concrete traces

Our Idea: LLMs as Meta-Analysis

Instead of analyzing target programs, use LLMs to “analyze” the analysis!

N
/ L
o — o > abstract states

analyzer

)) O
’J ?V‘Oﬁvam Q

O

/]

O O
O O
O O

> concrete traces

Our Idea: LLMs as Meta-Analysis

Recipe:
e Identify precision-critical decisions in the static analysis
o Any decision does not hinder soundness,
o but only impacts precision
e During the analysis, use LLMs as the decision maker

o Prompt describes the process/implementation of static analysis
o Prompt contains current abstract state and other (meta-) information
o Prompt instructs to decide for better precision

Our Idea: LLMs as Meta-Analysis

Recipe:
e Identify precision-critical decisions in the static analysis
o Any decision does not hinder soundness,
o but only impacts precision
e During the analysis, use LLMs as the decision maker

o Prompt describes the process/implementation of static analysis
o Prompt contains current abstract state and other (meta-) information
o Prompt instructs to decide for better precision

Our Idea: LLMs as Meta-Analysis

Recipe:
e Identify precision-critical decisions in the static analysis
o Any outcome does not hinder soundness,
o but only impacts on precision
e During the analysis, use LLMs as the decision maker

o Prompt describes the process/implementation of static analysis
o Prompt contains current abstract state and other (meta-) information
o Prompt instructs to decide for precision

effective prompts
t NNy [Hecive promp
N\ \ K improve precision

preserve soundness
"D by construction

>

A Case of Higher-Order Control-Flow Analysis

e Control flow analysis:
o determines the function to be called at each call-site
o undecidable problem once data- and control-flow are entangled
(e.g. when with first-class functions in Scheme, dynamic dispatch in Java, indirect call with pointers
in C, etc.)

e Abstracting abstract machine (AAM) framework [ICFP 10]

o analysis is defined as an abstraction of a concrete abstract machine (e.g. CEK machine)

——— — e —

> € State = (Expr+ Value) X Env X BStore X KStore X Kont X Time

o result is an over-approximated transition graph of abstract states

A Case of Higher-Order Control-Flow Analysis

e [Recipe step 1] Identify precision-critical decisions in the static analysis

A Case of Higher-Order Control-Flow Analysis

e [Recipe step 1] Identify precision-critical decisions in the static analysis

tick : State — Time

alloc, : State X Var X Time — BAddr

——

alloc, : State X Expr X Env x BStore x Time — KAddr

LLM as abstract address allocator

A Case of Higher-Order Control-Flow Analysis

e [Recipe step 1] Identify precision-critical decisions in the static analysis

tick : State — Time

alloc, : State X Var X Time — BAddr

——

alloc, : State X Expr X Env x BStore x Time — KAddr

LLM as abstract address allocator

Soundness-safe:
Any allocation strategy from a finite set is sound (a Posteriori Soundness Theorem)

Precision-critical:
Addresses decide the degree of approximation (e.g. context-sensitivity, ...)

A Case of Higher-Order Control-Flow Analysis

e [Recipe step 2] During the analysis,
use LLMs as the decision maker.

A Case of Higher-Order Control-Flow Analysis

e [Recipe step 2] During the analysis,
use LLMs as the decision maker.

|The "State" field is an abstract state, which can be one of the following:
|enum State:

| case EState(e: Expr, p: Env, ov: BStore, ox: KStore, k: Kont, t: Time)

| case VState(v: Value, p: Env, ov: BStore, ox: KStore, k: Kont, t: Time)

| case ErrState()

Describe data structures used in the analyzer

A Case of Higher-Order Control-Flow Analysis

e [Recipe step 2] During the analysis,
use LLMs as the decision maker.

|[Your input is a JSON object with the following schema:
|{
| "“state": State,

"query-type": "BAddr" or "KAddr" or "Tick",

I

| "variable": String, // for BAddr only

| "time": Time, // for BAddr, KAddr, and "Tick"
| "source-expression": Expr, // for KAddr only

| "“target-expression"': Expr, // for KAddr only

| "target-environment": Env, // for KAddr only

| "target-binding-store": BStore, // for KAddr only

I

Describe input JSON format for each query.

A Case of Higher-Order Control-Flow Analysis

e [Recipe step 2] During the analysis,
use LLMs as the decision maker.
|Your output should be only a JSON object with the following schema:
|{

| "reason": string
"query-type": "BAddr" or "KAddr" or "Tick",,

"variable": String, // for BAddr only
"time": Bool, // for both BAddr and KAddr
"source-expression": Bool, // for KAddr only
"target-environment": Bool, // for KAddr only

"target-binding-store": Bool, // for KAddr only

I

I

I

I

| "target-expression": Bool, // for KAddr only
I

I

| "k": Int represented as String, // for Tick only
I

Describe output JSON format for each query.

A Case of Higher-Order Control-Flow Analysis

e [Recipe step 2] During the analysis,
use LLMs as the decision maker.

|You should analyze the current "state" and return an abstract address for better analysis ${goal}.

|You should look at the entries of the existing binding store and continuation store,
|since if the binding address already exists, reusing it decreases the precision of the analysis.

Explain the logic behind allocation and ask for reasoning
with the abstract states.

A Case of Higher-Order Control-Flow Analysis

e A prototype “LLMAAM" implemented in Scala
https://github.com/Kraks/llmaam
e Preliminary evaluation of micro-benchmarks with GPT-40-mini

idid kcfa2 loop2

#N #E | #N 4E ‘ #N #E ‘ #N #E

0CFA+P4F 42 41 307 306 303 302 110 108
0CFA+AAC 33 32 203 202 179 175 110 108
0CFA+SRC 42 41 246 245 647 0644 149 146
1CFA+P4F 33 32 TO TO 1437 1407 108 106
1CFA+AAC 33 32 336 324 331 323 108 106
1CFA+SRC 42 41 12189 12117 6849 6834 108 106
33 32 133 131 199 202 108 106
llmaam 33 32 193 150 268 259 108 106
33 32 272 265 281 273 108 106

mj09

#edges and #states as approximation of precision - smaller is better

Use LLMs to “Analyze” the Analysis!

Recipe for sound, precise, tunable static analysis driven by LLMs:

Future opportunities - Analyses:

|dentify precision-critical decisions in static analysis

During the analysis, use LLMs as meta-analysis and the decision maker

Control-flow sensitivity
Numeric analysis
Termination analysis

Future opportunities - Optimizations:

Prompt optimizations
Fine-tuning
Reinforcement learning

