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Soundness: detect all true errors
Precision: reduce false errors

possible error
(false positive)

error
(true positive)

Goals



What is Static Analysis?
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So, you want to use LLMs for static analysis, but how?
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Can we trust LLM-reported analysis results?
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LLMs are untrustworthy because of hallucination.
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Can we trust LLM-reported analysis results?
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Can we validate the analysis results from LLMs?
Yes, but this becomes a static analysis problem...
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Our Idea: LLMs as Meta-Analysis

Instead of analyzing target programs, use LLMs to “analyze” the analysis!
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Recipe:
● Identify precision-critical decisions in the static analysis 

○ Any decision does not hinder soundness,
○ but only impacts precision

● During the analysis, use LLMs as the decision maker
○ Prompt describes the process/implementation of static analysis
○ Prompt contains current abstract state and other (meta-) information
○ Prompt instructs to decide for better precision
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Our Idea: LLMs as Meta-Analysis

preserve soundness
by construction

effective prompts
improve precision

Recipe:
● Identify precision-critical decisions in the static analysis 

○ Any outcome does not hinder soundness,
○ but only impacts on precision

● During the analysis, use LLMs as the decision maker
○ Prompt describes the process/implementation of static analysis
○ Prompt contains current abstract state and other (meta-) information
○ Prompt instructs to decide for precision



A Case of Higher-Order Control-Flow Analysis

● Control flow analysis: 
○ determines the function to be called at each call-site
○ undecidable problem once data- and control-flow are entangled 

(e.g. when with first-class functions in Scheme, dynamic dispatch in Java, indirect call with pointers 
in C, etc.)

● Abstracting abstract machine (AAM) framework [ICFP ‘10]
○ analysis is defined as an abstraction of a concrete abstract machine (e.g. CEK machine)

○ result is an over-approximated transition graph of abstract states
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● [Recipe step 1] Identify precision-critical decisions in the static analysis 

A Case of Higher-Order Control-Flow Analysis

LLM as abstract address allocator

Soundness-safe: 
Any allocation strategy from a finite set is sound (a Posteriori Soundness Theorem)

Precision-critical:
Addresses decide the degree of approximation (e.g. context-sensitivity, ...)
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Describe data structures used in the analyzer
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A Case of Higher-Order Control-Flow Analysis

● [Recipe step 2] During the analysis, 
use LLMs as the decision maker.

Describe output JSON format for each query.



A Case of Higher-Order Control-Flow Analysis

● [Recipe step 2] During the analysis, 
use LLMs as the decision maker.

Explain the logic behind allocation and ask for reasoning 
with the abstract states.



● A prototype “LLMAAM” implemented in Scala 
https://github.com/Kraks/llmaam

● Preliminary evaluation of micro-benchmarks with GPT-4o-mini

A Case of Higher-Order Control-Flow Analysis

#edges and #states as approximation of precision -- smaller is better



Recipe for sound, precise, tunable static analysis driven by LLMs:

● Identify precision-critical decisions in static analysis 
● During the analysis, use LLMs as meta-analysis and the decision maker

Use LLMs to “Analyze” the Analysis!

Future opportunities -- Optimizations: 

● Prompt optimizations
● Fine-tuning
● Reinforcement learning
● ...

Future opportunities -- Analyses:

● Control-flow sensitivity
● Numeric analysis
● Termination analysis
● ...


