
Hallucination-Resilient 
LLM-Driven Sound and
Tunable Static Analysis

Guannan Wei, Zhuo Zhang, Caterina Urban
LMPL @ SPLASH/ICFP 2025, Singapore



What is Static Analysis?

concrete traces

time

f(t)



What is Static Analysis?

soundness: 
over-approximations

time

f(t)



What is Static Analysis?

time

f(t)

absence
of errors

soundness: 
over-approximations



What is Static Analysis?

time

f(t)

error
(true positive)

soundness: 
over-approximations



What is Static Analysis?

time

f(t)

coarser-grained
over-approximations

possible error
(false positive)

error
(true positive)



What is Static Analysis?

time

f(t)

Soundness: detect all true errors
Precision: reduce false errors

possible error
(false positive)

error
(true positive)

Goals



What is Static Analysis?

time

f(t)

possible error
(false positive)

So, you want to use LLMs for static analysis, but how?

error
(true positive)



Claude-3.5-Sonnet

Prompting LLMs



Claude-3.5-Sonnet

Prompting LLMs
prompt



Claude-3.5-Sonnet

Prompting LLMs
prompt

reasoning & 
analysis result



Can we trust LLM-reported analysis results?

time

f(t)

false positive

miss a 
true error

LLMs are untrustworthy because of hallucination.



Can we trust LLM-reported analysis results?

time

f(t)

Can we validate the analysis results from LLMs?

false positive

miss a 
true error



Can we trust LLM-reported analysis results?

time

f(t)

Can we validate the analysis results from LLMs?
Yes, but this becomes a static analysis problem...

false positive

miss a 
true error



Our Idea: LLMs as Meta-Analysis

Instead of analyzing target programs, use LLMs to “analyze” the analysis!

...

program

analyzer

concrete traces

abstract states

❌



Our Idea: LLMs as Meta-Analysis

Instead of analyzing target programs, use LLMs to “analyze” the analysis!

...

program

analyzer

concrete traces

abstract states
✓



Recipe:
● Identify precision-critical decisions in the static analysis 

○ Any decision does not hinder soundness,
○ but only impacts precision

● During the analysis, use LLMs as the decision maker
○ Prompt describes the process/implementation of static analysis
○ Prompt contains current abstract state and other (meta-) information
○ Prompt instructs to decide for better precision

Our Idea: LLMs as Meta-Analysis



Recipe:
● Identify precision-critical decisions in the static analysis 

○ Any decision does not hinder soundness,
○ but only impacts precision

● During the analysis, use LLMs as the decision maker
○ Prompt describes the process/implementation of static analysis
○ Prompt contains current abstract state and other (meta-) information
○ Prompt instructs to decide for better precision

Our Idea: LLMs as Meta-Analysis



Our Idea: LLMs as Meta-Analysis

preserve soundness
by construction

effective prompts
improve precision

Recipe:
● Identify precision-critical decisions in the static analysis 

○ Any outcome does not hinder soundness,
○ but only impacts on precision

● During the analysis, use LLMs as the decision maker
○ Prompt describes the process/implementation of static analysis
○ Prompt contains current abstract state and other (meta-) information
○ Prompt instructs to decide for precision



A Case of Higher-Order Control-Flow Analysis

● Control flow analysis: 
○ determines the function to be called at each call-site
○ undecidable problem once data- and control-flow are entangled 

(e.g. when with first-class functions in Scheme, dynamic dispatch in Java, indirect call with pointers 
in C, etc.)

● Abstracting abstract machine (AAM) framework [ICFP ‘10]
○ analysis is defined as an abstraction of a concrete abstract machine (e.g. CEK machine)

○ result is an over-approximated transition graph of abstract states



● [Recipe step 1] Identify precision-critical decisions in the static analysis 

A Case of Higher-Order Control-Flow Analysis



● [Recipe step 1] Identify precision-critical decisions in the static analysis 

A Case of Higher-Order Control-Flow Analysis

LLM as abstract address allocator



● [Recipe step 1] Identify precision-critical decisions in the static analysis 

A Case of Higher-Order Control-Flow Analysis

LLM as abstract address allocator

Soundness-safe: 
Any allocation strategy from a finite set is sound (a Posteriori Soundness Theorem)

Precision-critical:
Addresses decide the degree of approximation (e.g. context-sensitivity, ...)



A Case of Higher-Order Control-Flow Analysis

● [Recipe step 2] During the analysis, 
use LLMs as the decision maker.



A Case of Higher-Order Control-Flow Analysis

● [Recipe step 2] During the analysis, 
use LLMs as the decision maker.

Describe data structures used in the analyzer



A Case of Higher-Order Control-Flow Analysis

● [Recipe step 2] During the analysis, 
use LLMs as the decision maker.

Describe input JSON format for each query.



A Case of Higher-Order Control-Flow Analysis

● [Recipe step 2] During the analysis, 
use LLMs as the decision maker.

Describe output JSON format for each query.



A Case of Higher-Order Control-Flow Analysis

● [Recipe step 2] During the analysis, 
use LLMs as the decision maker.

Explain the logic behind allocation and ask for reasoning 
with the abstract states.



● A prototype “LLMAAM” implemented in Scala 
https://github.com/Kraks/llmaam

● Preliminary evaluation of micro-benchmarks with GPT-4o-mini

A Case of Higher-Order Control-Flow Analysis

#edges and #states as approximation of precision -- smaller is better



Recipe for sound, precise, tunable static analysis driven by LLMs:

● Identify precision-critical decisions in static analysis 
● During the analysis, use LLMs as meta-analysis and the decision maker

Use LLMs to “Analyze” the Analysis!

Future opportunities -- Optimizations: 

● Prompt optimizations
● Fine-tuning
● Reinforcement learning
● ...

Future opportunities -- Analyses:

● Control-flow sensitivity
● Numeric analysis
● Termination analysis
● ...


