Compiling & Controlling
Symbolic Execution

Guannan Wei

with Songlin Jia, Ruigi Gao, Haotian Deng,

Shangyin Tan, Oliver Bracevac, and Tiark Rompf
C 27
' Northeastern University - Dec12023 UNIVERSITY.

X

Symbolic Execution

user_input()

y = user_input()
if (x > 5) {
if (y < 10) A
) else {
}
} else {

}

Symbolic Execution

mark as X = user_input()
symbolic y = user_input()
if (x > 5) {
if (y < 10) {
} else {
}
} else {

}

Symbolic Execution

mark as X = user_input()
symbolic y = user_input()
if (x > 5) {
if (y < 10) {
. /* path 1 */
} else {
. /* path 2 */
}
} else {
. /* path 3 */
}

y < 10 y = 10

x>5 Ay <16

x>5 Ay =>160

Symbolic Execution

mark as X = user_input()
symbolic y = user_input()
if (x > 5) {
if (y < 18) {
. /* path 1 */
} else {
. /* path 2 */
}
} else {
. /* path 3 */
}

y < 10 y = 10

x>5Ay<16 44*”’:;::;7’

Xx>5Ayz=16

path conditions

Symbolic Execution

X = user_input()

y = user_input()
if (x > 5) { X > 5 X
if (y < 10) {
. /* path 1 */
} else {
. /* path 2 *
} /* pa / y < 10 y > 10
} else {
. /* path 3 */
}

solver(x >5 Ay <10) = { x

IA
a

Symbolic Execution - Applications

e automatic test case generation
e bug finding and exploit generation
e bounded verification

e worst-case execution time analysis

Symbolic Execution - Applications

KLEE: Unassisted and Automatic Generation of High-Coverage
Tests for Complex Systems Programs

Cristian Cadar, Daniel Dunbar, Dawson Engler *
Stanford University

Abstract

We present a new symbolic execution tool, KLEE, ca-
pable of automatically generating tests that achieve
high coverage on a diverse set of complex and
environmentally-intensive programs. We used KLEE to
thoroughly check all 89 stand-alone programs in the
GNU COREUTILS utility suite, which form the core
user-level environment installed on millions of Unix sys-
tems, and arguably are the single most heavily tested set
of open-source programs in existence. KLEE-generated
tests achieve high line coverage — on average over 90%

nor taal (maodian. ovor OAO0LN and cianificantly haat

bolic values and replace corresponding concrete program
operations with ones that manipulate symbolic values.
When program execution branches based on a symbolic
value, the system (conceptually) follows both branches,
on each path maintaining a set of constraints called the
path condition which must hold on execution of that
path. When a path terminates or hits a bug, a test case
can be generated by solving the current path condition
for concrete values. Assuming deterministic code, feed-
ing this concrete input to a raw, unmodified version of
the checked code will make it follow the same path and
hit the same bug.

Symbolic Execution - Applications

KLEE: Unassisted and Automatic Generation of High-Coverage
Tests for Complex Systems Programs

Cristian Cadar, Daniel Dunbar, Dawson Engler *
Stanford University

Higher-Order Symbolic Execution via Contracts

Abstract

We present a new symbolic execution tool, KLEE, ca-
pable of automatically generating tests that achieve
high coverage on a diverse set of complex and
environmentally-intensive programs. We used KLEE to
thoroughly check all 89 stand-alone programs in the
GNU COREUTILS utility suite, which form the core
user-level environment installed on millions of Unix sys-
tems, and arguably are the single most heavily tested set
of open-source programs in existence. KLEE-generated
tests achieve high line coverage — on average over 90%

nor taal (maodian. ovor OAO0LN and cianificantly haat

and many others ..

bolic values
operations
When prog
value, the §
on each pa
path condi
path. Whe
can be gen
for concret
ing this col
the checke(
hit the samy

Sam Tobin-Hochstadt

David Van Horn

Northeastern University

{samth,dvanhorn}@ccs.neu.edu

Abstract

We present a new approach to automated reasoning about
higher-order programs by extending symbolic execution to
use behavioral contracts as symbolic values, enabling sym-

" bolic approximation of higher-order behavior.

Our approach is based on the idea of an abstract reduc-
tion semantics that gives an operational semantics to pro-
grams with both concrete and symbolic components. Sym-
bolic components are approximated by their contract and our
semantics gives an operational interpretation of contracts-as-
values. The result is a executable semantics that soundly pre-

verification and analysis challenging as well as requiring
substantial effort to write sufficient specifications.

The problem of program analysis and verification in the
presence of missing data has been widely studied, producing
many effective tools that apply symbolic execution to non-
deterministically consider many or all possible inputs. These
tools typically determine constraints on the missing data, and
reason using these constraints. Since the central lesson of
higher-order programming is that computation is data, we
propose symbolic execution of higher-order programs for
reasoning about systems with omitted components, taking

dic FR . ; specifications to be our constraints.

Symbolic Execution Engine

a concrete interpreter eval: Prog - (Value, State)

e simulates the execution deterministically

input . concrete W —
program interpreter J

10

Symbolic Execution Engine

a symbolic interpreter evalsym: Prog -~ Set[(Value, State, PC)]

input
program

e simulates the execution nondeterministically

e records the condition of each path

_—

4[

symbolic W test
interpreter ‘J cases

11

Concrete Execution

1 path

VS

Path Explosion

Symbolic Execution

exponential number of
independent paths

12

Concrete Execution

1 path

VS

Path Explosion

Symbolic Execution

exponential number of
independent paths

13

Concrete Execution

1 path

VS

Path Explosion

Symbolic Execution

exponential number of
independent paths

14

Concrete Execution

1 path

VS

Path Explosion

Symbolic Execution

exponential number of
independent paths

15

Concrete Execution

1 path

VS

Path Explosion

Symbolic Execution

exponential number of
independent paths

16

Concrete Execution Symbolic Execution

1 path

Path Explosion

Vs ,
exponential number of

independent paths

performance matters

17

Performance Matters

evalSy : Prog - Set[(Value, State, PC)]

m

symbolic interpreter performance
compared fo native execution

KLEE (C++) 3,000x slower
angr (Python) 321,000x slower

Data from Qsym: A practical concolic execution engine tailored for hybrid fuzzing. Yun et al., USENIX Security, 2018.

18

Performance Matters

evalsy :

m.

Prog -~ Set[(Value, State, PC)]

interpretation overhead

e inspecting program AST/IR
e dispatching the semantics
e recursion/loop at meta-level

Data from Qsym: A practical concolic execution engine tailored for hybrid fuzzing. Yun et al., USENIX Security, 2018.

19

Symbolic-Execution Compilers

To remove these overheads,

compilation is inevitable.

20

Symbolic-Execution Compilers

SSSSS

Symbolic-Execution Compilers

‘
- N —-—
input symbolic test
program interpreter cases
(N J
‘
input symbolic) GRS f compiled runtime >
program compiler program test
cases
J _ J
Y Y
compilation removes interpretation overhead, runs faster

optimizes programs, etc.

Symbolic-Execution Compilers

input . symbolic
program interpreter

Our approach: staging/partial evaluation
deriving symbolic-compilers from symbolic-interpreters

derives _ _ ,
via metaprogramming (OOPSLA ‘20)
input symbolic GEAIAAES ‘(compiled
program compiler program
J U J
Y Y
compilation removes interpretation overhead, runs faster

optimizes programs, etc.

Symbolic-Execution Compilers

input
program

input
program

-~

Abstract Compilation: A New Implementation
Paradigm for Static Analysis

Dominique Boucher and Marc Feeley

Département d’informatique et de recherche opérationnelle (IRO)
Université de Montréal
C.P. 6128, succ. centre-ville, Montréal, Québec, Canada H3C 3J7
E-mail: {boucherd,feeley}@iro.umontreal.ca

Abstract. For large programs, static analysis can be one of the most
time-consuming phases of the whole compilation process. We propose a
new paradigm for the implementation of static analyses that is inspired
by partial evaluation techniques. Our paradigm does not reduce the com-
plexity of these analyses, but it allows an efficient implementation. We
illustrate this paradigm by its application to the problem of control flow
analysis of functional programs. We show that the analysis can be sped
up by a factor of 2 over the usual abstract interpretation method.

ﬂ
S

test
cases

)

test
cases

~

[Compiler Construction ‘96]

Path Explosion, Worse

n = user_input() // i.e. symbolic
while (i < n) {

<loop-body>
b

<after-Loop>

25

Path Explosion, Worse

n = user_input() // i.e. symbolic
while (i < n) {
<loop-body>

}

<loop-body> <after-Loop>
<after-Loop>

26

Path Explosion, Worse

n = user_input() // i.e. symbolic
while (i < n) {
<loop-body>

}

<loop-body> <after-Loop>
<after-Loop>

27

Path Explosion, Worse

n = user_input() // i.e. symbolic
while (i < n) {
<loop-body>

}

<loop-body> <after-Loop>
<after-Loop>

28

Path Explosion, Worse

n = user_input() // i.e. symbolic
while (i < n) {
<loop-body>

}

<loop-body> <after-Loop>
<after-Loop>

29

Path Explosion, Worse

n = user_input() // i.e. symbolic

while (1 < n) { <loop-body> <after-Loop>
<lLoop-body>

b

<after-Loop>

<loop-body> <after-Loop>

30

Path Explosion, Worse

n = user_input() // i.e. symbolic
while (i < n) {

<loop-body>
b

<after-Loop>

31

Path Explosion, Worse

n = user_input() // i.e. symbolic 1
while (i < n) {

<loop-body>
b

<after-Loop>

<loop-body> <after-Lloop>

Problem: once running into the black hole,
we cannot effectively explore other parts of the program

32

Escaping the Black Hole

n = user_input() // i.e. symbolic 1
while (i < n) {

<loop-body>
b

<after-Loop>

<loop-body> <after-Lloop>

Traditional wisdom: deploys clever path selection heuristics

33

Escaping the Black Hole

e random state/path selection
e coverage-guided heuristics
o ..

O-

34

Escaping the Black Hole

e random state/path selection
e coverage-guided heuristics
o ..

O-

35

Escaping the Black Hole

unexplored
function

e random state/path selection /
e coverage-guided heuristics
o ..

O-

36

Escaping the Black Hole

e random state/path selection
e coverage-guided heuristics
o

Deploying path selection strategies needs the ability
to pause and resume the execution of paths. (%

O

To efficiently execute and effectively explore the program,
compiled symbolic execution must be controlled.

38

To efficiently execute and effectively explore the program,
compiled symbolic execution must be controlled.

How can we do that without an external
interpreter/engine to control the execution?

39

To efficiently execute and effectively explore the program,
compiled symbolic execution must be controlled.

How can we do that without an external
interpreter/engine to control the execution?

Solution: Compile with continuations,
enabling the program to “control” itself.

40

Making Control Explicitly

represent the rest of execution as a function k in the generated code

41

Making Control Explicitly

represent the rest of execution as a function k in the generated code

g() __—»def g() =
y + 1 if (sym_cnd) {
X = 42
} else {
X = 100
}

return x

N X

42

Making Control Explicitly

represent the rest of execution as a function k in the generated code

- =

y = g() —def 90) - st
z =y + 1 if (sym_cnd) {
X = 42
. } else { z=y+1
X = 100
}
return x

static control-flow graph

43

Making Control Explicitly

represent the rest of execution as a function k in the generated code

-——

-

y = g()_,//Vdef g() = call
Iy T if (sym_cnd) { _1_-
1 : X = 42 _ :
o ! } else { z=y+1
"""" x = 100 :

: S
return X I

continuation k ' ...

—— o e e o o o o o)

,.
|
|
1

static control-flow graph

44

Making Control Explicitly

represent the rest of execution as a function k in the generated code

y = g() __—»def g() = CallO”
z =y + 1 if (sym_cnd) {
. X = 42
} else {
X = 100
}
return x

invoke and fork
k(s1); k(s2)

45

Making Control Explicitly

represent the rest of execution as a function k in the generated code

46

Making Control Explicitly

represent the rest of execution as a function k in the generated code

continuation k

47

Making Control Explicitly

represent the rest of execution as a function k in the generated code

save and pause

scheduler.put(() => k(s))

continuation k

48

Making Control Explicitly

represent the rest of execution as a function k in the generated code

dispatch and resume

k = scheduler.get(); k() \

continuation k

49

Parallelism for Free

scheduler.put (k1) i scheduler.put(k2)

50

Parallelism for Free

scheduler.put (k1) scheduler.put(k2)

thread pool

worker-thread() {
k = scheduler.get(); k()

}

51

Controlling Symbolic Execution

represent the rest of execution as a function k in the generated code

e invoke and fork
k(s1); k(s2)

e save and pause
scheduler.put(() => k(s))

e dispatch and resume
k = scheduler.get(); k()

e dispatch in parallel

52

Compiling Symbolic Execution
with Continuations

Specializing a symbolic interpreter
that itself is written in continuation-passing style

def staged—evalsym(p: Prog, k: Rep[State] => Rep[Unit]): Rep[Unit]

53

A Continuation View of
Symbolic Execution

e Nondeterministic symbolic execution

o Fork, pause, switch, resume, etc.

A Continuation View of
Symbolic Execution

Nondeterministic symbolic execution
o Fork, pause, switch, resume, etc.
Concolic execution
o Deterministic symbolic execution, control guided by concrete inputs
o Ongoing work: concolic execution for WebAssembly
State-merging symbolic execution
o Fork, but with join points
o Idea: Synchronization of two parallel /concurrency continuations

Other strategies or heuristics?

"Eéhié)&&é&@ﬁéi"""'"“"-'"-'"-""“-"""""""'"""l ----------------------------
LLVM IR L Staged o
Input —‘—J Parser Symbolic Graph/CPS IR Slmp'l 1ﬁ'cat1.0n e :
: Optimizations
Interpreter
"Backend Runtime " Precompiled
‘ . Symbolic Library
Path Execution Query Opt. & T
Scheduler SMT Solver : | POSIX Model
Coverage State & Value
Monitor Representation
uClibe
Built-in C++ Output
Symbolic Programs
File System : :
 sbedsssasesiisiasibisses et eaaae® Renoes e
compile & link
o] A
[ICSE ‘23] Compiling parallel o
symbolic execution with continuations. Test Sl
Cases

Takes general
LLVM IR inputs

N

i Frontend Compiler

LLVM IR Simplification &
Input Parser Symbolic Graph/CPS IR e :
Optimizations
Interpreter
"Backend Runtime Precompiled
. Symbolic Library
Path Execution Query Opt. & T
Scheduler SMT Solver POSIX Model
Coverage State & Value
Monitor Representation
uClibe
Built-in C++ Output
Symbolic Programs
File System : :
, sbedsssasesiisiasibisses et eaaae® Renoes e
compile & link
o] A
[ICSE ‘23] Compiling parallel o
symbolic execution with continuations. Test Sl
Cases

57

" Frontend Compiler

LLVM IR
Input

Parser

"Backend Runtime

Path Execution
Scheduler

Coverage
Monitor

Built-in

Symbolic
File System

[ICSE ‘23] Compiling parallel

Written in
Scala/LMS

Symbolic Graph/CPS IR Slmp'l 1ﬁ'cat1.0n e
Optimizations
Interpreter
""""""""""" { Precompiled
. Symbolic Library
Query Opt. & | EE—
SMT Solver POSIX Model
State & Value
Representation
uClibe
C++ Output
Programs
___________ e
compile & link
A
run Executable

symbolic execution with continuations.

Test
Cases

58

" Frontend Compiler

LLVM IR Simplification & |
Input Parser Symbolic Graph/CPS IR e
Optimizations
Interpreter
"Backend Runtime " Precompiled
. Symbolic Library
Path Execution Query Opt. & | EE—
Scheduler SMT Solver POSIX Model
% Outputs C++
Coverage State & Value in CPS
Monitor Representation
Built-in C++ Output
Symbolic Programs
File System
, e O I e
compile & link
. - A
[ICSE ‘23] Compiling parallel o
Executable

Test
Cases

symbolic execution with continuations.

59

GenSym: Performance Evaluation

o KLEE: state-of-the-art symbolic interpreter for LLVM IR
o Actively developed over 15+ years
o Written in C++

e Evaluated on a set of GNU Coreutils programs
o Using POSIX file system and uClibc library
o Average program size: 28k LOC of LLVM IR instructions

60

400

300

200

100

Single-thread Pure Execution

B KLEE [GenSym

base32 base64 cat comm cut dirname echo expand fold join link paste pathchk

~4x speedups

61

Single-thread Throughput

B KLEE [GenSym

4000
3000
2000
1000

0
base32 base64 cat comm cut dirname echo expand fold join link paste pathchk

Number of explored paths per second in 1 hour: 4.3x more paths on avg.
62

Parallel Execution Efficiency

m 4th m 8th 12th

il

base32 base64 cat comm cut dirname echo epand fold join link paste pathchk

) 4 threads - 3.6x
Speedups using more 8 threads - 6.7x

cores/threads 12 threads - 9.3x

63

GenSym : compiling symbolic execution to continuation-passing style to
build high-performance and parallel symbolic execution engine

% Efficient

o Semantics-based compilation
o Outperforms state-of-the-art tools
* Effective
o Branching as concurrency/parallelism
o Path-selection heuristics

Code: https://continuation.passing.style/GenSym
[ICSE ‘23] Compiling parallel symbolic execution with continuations.
[OOPSLA ‘20] Compiling symbolic execution with staging and algebraic effects.

64

https://continuation.passing.style/GenSym

GenSym : compiling symbolic execution to continuation-passing style to
build high-performance and parallel symbolic execution engine

% Efficient

o Semantics-based compilation

o Outperforms state-of-the-art tools Questions?
* Effective

o Branching as concurrency/parallelism

o Path-selection heuristics

Code: https://continuation.passing.style/GenSym
[ICSE ‘23] Compiling parallel symbolic execution with continuations.
[OOPSLA ‘20] Compiling symbolic execution with staging and algebraic effects.

65

https://continuation.passing.style/GenSym

