Compiling Parallel Symbolic
Execution with Continuations

Guannan Wei", Songlin Jia?, Ruigi Gao®, Haotian Deng®,
Shangyin TanB, Oliver Bracevac®, and Tiark Rompf®

PPurdue University, 8UC Berkeley

ICSE 2023 - Remote Presentation

D)
S antd
Q'Q}I}a(’@

Symbolic Execution

mark as X = user_input()
symbolic y = user_input()
if (x > 5) {
if (y < 10) |
} else {
}
} else {

}

Symbolic Execution

mark as X = user_input()
symbolic y = user_input()
if (x > 5) {
if (y < 10) {
. /* path 1 */
} else {
. /* path 2 */
}
} else {
. /* path 3 */
}

y < 10 y = 10

x>5 Ay«<16

Xx>5Ayz=10

Symbolic Execution

mark as X = user_input()
symbolic y = user_input()
if (x > 5) {
if (y < 10) {
. /* path 1 */
} else {
. /* path 2 */
}
} else {
. /* path 3 */
}

y < 10 y = 10

x>5Ay<16 44””:;::;7’

Xx>5Ayz=10

path conditions

Symbolic Execution

mark as X = user_input()
symbolic y = user_input()
if(X>5){ X > 5 X <95
if (y < 10) {
. /* path 1 */
} else { X =9
. /* path 2 *
} /* pa / y < 10 y = 10
} else {
. /* path 3 */
}

solver(x >5 Ay<10) ={x =6, y =9 }

mark as
symbolic

Symbolic Execution

X = user_input()
y = user_input()
if (x > 5) { X > 5 X <5
if (y < 18) {
. /* path 1 */
} else { x =5
. /* path 2 *
} /* pa / y < 10 y > 10
} else {
. /* path 3 */
}

solver(x >5 Ay<10) ={x =6, y =9 }

Useful in program testing, verification, bug finding, etc.

Compiling Symbolic Execution

input symbolic test
program interpreter cases

-
-

input symbolic W S ‘(compiled \1 runtime | test
program compiler J L program J inputs cases

Compiling Symbolic Execution

~
J

~

input symbolic test

program interpreter cases
(N J

input symbolic W S ‘(compiled \1 runtime | test

program compiler J L program inputs cases
AN
Y Y
compilation removes interpretation overhead, runs faster

optimizes programs, etc.

Compiling Symbolic Execution

Our approach: partial evaluation
informs

concrete | 'mjorms - symbolic
interpreter interpreter deriving symbolic-compilers from symbolic-interpreters
via metaprogramming (Wei et al., OOPSLA 2020)
derives

input symbolic W GRS ‘(compiled W runtime | test

program compiler J L program inputs cases
N\ J _ J
Y Y
compilation removes interpretation overhead, runs faster

optimizes programs, etc.

Compiling Symbolic Execution

Concrete Execution Symbolic Execution

\'D)

1 path exponential number of

independent paths

input symbolic generates compiled rgntime test
program compiler program inputs cases
10

Compiling Symbolic Execution

Concrete Execution Symbolic Execution

\'D)

1 path exponential number of

independent paths

Challenge: how can we compile nondeterministic symbolic

execution meanwhile permitting parallelism and search heuristics?

input symbolic generates compiled rgntime test
program compiler program inputs cases
11

Compiling Symbolic Execution

Concrete Execution Symbolic Execution

\'D)

1 path exponential number of

independent paths

Challenge: how can we compile nondeterministic symbolic

execution meanwhile permitting parallelism and search heuristics?

Solution: generating code in continuation-passing style

input symbolic generates compiled rgntime test
program compiler program inputs cases
12

Compiling Symbolic Execution with Continuations

Represent the rest of the execution as a function k in the generated code

-
- ~~

call @ - cnd
y = g() —def 9() = s
z =y + 1 if (sym_cnd) { -\ |
N X = 42 " \!
} else { z=y \
X = 100 \
' '\
return x o\ ret
N

static control-flow graph

13

Compiling Symbolic Execution with Continuations

Represent the rest of the execution as a function k in the generated code

-
- ~~

call @ - cnd
= gq() — = def g() = :
= y _,_'1': if (sym_cnd) { 1N\
I. .o o ! X = 42 Z= +‘I: : \:
. " yelse A S
o A
1 i

return x . _ /E ! \ ret

continuation k Lo o\
| P - Sl .

static control-flow graph

14

Compiling Symbolic Execution with Continuations

Represent the rest of the execution as a function k in the generated code

-
- ~~

call @ - cnd
= gq() — = def g() = :
= y _,_'1': if (sym_cnd) { 1N\
I. .o o ! X = 42 Z= +‘I: : \:
. " yelse A S
o A
1 i

return x . _ /E ! \ ret

continuation k Lo o\
| P - Sl .

Invoke and fork
k(s1); k(s2)

static control-flow graph

15

Compiling Symbolic Execution with Continuations

Represent the rest of the execution as a function k in the generated code

Save and pause

scheduler.put(() => k(s))

continuation Kk

16

Compiling Symbolic Execution with Continuations

Represent the rest of the execution as a function k in the generated code

Saveand pause @ =000/ 0 L --dg----a

scheduler.put(() => k(s))

Dispatch and resume [o ttmmm--

k’ = scheduler.get(); k()

continuation k’

17

Compiling Symbolic Execution with Continuations

Represent the rest of the execution as a function k in the generated code

Save and pause

scheduler.put(() => k(s))

Dispatch and resume

k> = scheduler.get(); k’()
Parallelism for Free scheduler.put(kl) scheduler.put(k2)

new thread { k = scheduler.get(); k() } 18

GenSym Implementation & Evaluation

GenSym
o Compiles LLVM IR to C++
o Written in Scala/LMS as a staged symbolic interpreter
o Implements path forking, switching, and parallelism using continuations

19

GenSym Implementation & Evaluation

GenSym
o Compiles LLVM IR to C++
o Written in Scala/LMS as a staged symbolic interpreter
o Implements path forking, switching, and parallelism using continuations

Benchmarks
o A subset of GNU Coreutils (using POSIX file system and uClibc library)
o Average program size 28334 LOC of LLVM IR

20

GenSym Implementation & Evaluation

GenSym
o Compiles LLVM IR to C++
o Written in Scala/LMS as a staged symbolic interpreter
o Implements path forking, switching, and parallelism using continuations

Benchmarks
o A subset of GNU Coreutils (using POSIX file system and uClibc library)
o Average program size 28334 LOC of LLVM IR

Performance evaluation
o Compared with KLEE, a state-of-the-art symbolic interpreter

21

400

300

200

100

0

base32

base64

GenSym - Evaluation

B KLEE [M GenSym

cat comm cut dirname echo expand fold join

Single-thread pure execution time (sec)
excluding solver: 4x faster on avg

link

paste

pathchk

22

4000

3000

2000

1000

0

base32

GenSym - Evaluation

B KLEE [GenSym

base64 cat comm cut dirname echo expand fold join link paste

Single-thread path throughput
(paths per second) of 1-hour running: 4.3x on avg.

pathchk

23

12

10

base32 base64

cat

GenSym - Evaluation

m 4th m 8th m 12th

comm cut dirname echo epand

Speedups using more threads

fold

join link
4th - 3.6x
8th-6.7x

12th - 9.3x

paste

pathchk

24

More in the Paper

Design and Implementation

An example of compiled code
Parallelism

Compiletime optimizations
Generative environment modeling

Evaluation details (optimizations,
compilation overhead, efc.)

2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE)

Compiling Parallel Symbolic Execution
with Continuations

Guannan Wei*, Songlin Jia*, Ruigi Gao*, Haotian Deng*, Shangyin Tan, Oliver Bratevac*, Tiark Rompf*

*Department of Computer Science, Purdue University

West Lafayette, IN, USA

guannanwei,jial37,ga0606,deng254 bracevac,tiark } @purdue.edu

Abstract—Symbolic execution is a powerful program analysis
and testing technique. Symbolic execution engines are usually
implemented as interpreters, and the induced interpretation over-
head can dramatically inhibit performance. Alternatively, imple-
mentation choices based on instrumentation provide a limited
ability to transform programs. However, the use of compilation
and code generation techniques beyond simple instrumentation
remains underexplored for engine construction, leaving potential
performance gains untapped.

In this paper, we show how to tap some of these gains using
isti ilati i We present GENSYM, an

Department of EECS, UC Berkeley
Berkeley, CA, USA
shangyin@berkeley.edu

as compilers. This practice misses opportunities to further
improve the performance of SE and advance the development
of engines.

In this paper, we study constructing scalable SE engines
using code generation and compiler techniques. We present
the design, implementation, and evaluation of GENSYM, a
symbolic-execution compiler for the LLVM intermediate rep-
resentation (IR). Given an input LLVM IR program, GENSYM
generates C++ code that schedules parallel path exploration
and orchestrates SMT solver invocations. Running this C++

optimizing symbolic-execution compiler that
code which explores paths and generates tests in parallel.
The key insight of GENSYM is to compile symbolic execution
tasks into cooperative concurrency via continuation-passing style,
which further enables efficient parallelism. The design and
implementation of GENSYM is based on partial evaluation and
generative programming techniques, which make it high-level
and performant at the same time. We compare the performance
of GENSYM against the prior symbolic-execution compiler LLSC
and the state-of-the-art symbolic interpreter KLEE. The results
show an average 4.6x speedup for sequential execution and 9.4x
speedup for parallel ion on 20 b prog)
Index T i it il code

metaprogramming, continuation

program generates test cases for explored paths and failed as-
sertions. The novel contribution of GENSYM is its aggressive
use of code generation techniques for a systematic, principled,
and high-level construction process yielding optimized and
performant symbolic execution engines.

From Interpreters to Compilers. Interpreters are an easy
and high-level approach for building symbolic execution en-
gines. However, a naively built interpreter without carefully
engineered optimizations can be orders of magnitude slower
than a compiled program. One of the major contributors to the
slowdown is the interpretation overhead [14] from inspecting

25

Conclusion

compiling symbolic execution to confinuation-passing style to
build high-performance and parallel symbolic execution engine

4 Semantics-based compilation 4 Effectively express concurrency/parallelism
4 Zero interpretation overhead 4 Allow using path-selection heuristics

4+ GenSym: artifact available and reusable

https://continuation.passing.style/GenSym

