
Towards Performant Static Analysis of WebAssembly via
Staging and Continuations

Guannan Wei, INRIA/ENS, Tufts University
with Dinghong Zhong and Alexander Bai

Dagstuhl Seminar 25241

1

Motivation

• Goal: fast, correct, automated static analysis of Wasm programs

• Examples: symbolic execution, abstract interpretation, etc.

• Useful for test case generation, verification, security auditing, etc.

2

Motivation

• The “reference” semantics/interpreter is useful for specifying and implementing
analyses:

• Defines true dynamic behaviors (simulation, Galois connection, etc.)
• Analyses implemented as non-standard interpreters (collecting semantics, SMT

invocation, etc.)

3

Improving Performance of Wasm Static Analysis

• Performance matters

• Interpretation overhead:

• Traverse the program representation (AST, etc.) of multiple paths; fixpoint iteration;
etc.

• angr symbolic execution: 321,000x slower than native execution! (USENIX Sec ’18)

• Staging can help: specialize (i.e. partially evaluate) the non-standard interpreter
to a specific program

• Generate a residual program and removes interpretation overhead

4

Improving Performance of Wasm Static Analysis

• Performance matters

• Interpretation overhead:

• Traverse the program representation (AST, etc.) of multiple paths; fixpoint iteration;
etc.

• angr symbolic execution: 321,000x slower than native execution! (USENIX Sec ’18)

• Staging can help: specialize (i.e. partially evaluate) the non-standard interpreter
to a specific program

• Generate a residual program and removes interpretation overhead

4

Improving Performance of Wasm Static Analysis via Staging

• 1st Futamura projection: a staged interpreter is a “compiler”

• But, not all interpreters can be well staged . . .

5

Improving Performance of Wasm Static Analysis via Staging

• 1st Futamura projection: a staged interpreter is a “compiler”

• But, not all interpreters can be well staged . . .
5

Administrative Instructions Disturb Specialization

• Using “administrative instructions” to represent evaluation context for structured
control flow (blocks, loops, etc.)

• Administrative instructions are not part of the original program (static binding
time), but generated at “runtime” (dynamic binding time)

• Staging requires the whole program to be statically known

6

Administrative Instructions Disturb Specialization

• Using “administrative instructions” to represent evaluation context for structured
control flow (blocks, loops, etc.)

• Administrative instructions are not part of the original program (static binding
time), but generated at “runtime” (dynamic binding time)

• Staging requires the whole program to be statically known

6

Non-Compositionality

• Compositionality: obtain the “meaning” of the larger program by composing the
meaning of smaller programs

• Much easier for program reasoning and transformation (e.g. partial evaluation)

7

An Alternative CPS Semantics for Wasm

• An alternative to reduction semantics of Wasm:

• “Rewriting” vs “denotation”

• Rather than the first-order representation for control structures, we use continuation
functions in the meta-language to represent control semantics

• A compositional control-flow semantics for core Wasm in continuation-passing style
(CPS)

• Paper at Trends in Functional Programming 2025: Reconstructing
Continuation-Passing Semantics for WebAssembly

8

An Alternative CPS Semantics for Wasm

• An alternative to reduction semantics of Wasm:

• “Rewriting” vs “denotation”

• Rather than the first-order representation for control structures, we use continuation
functions in the meta-language to represent control semantics

• A compositional control-flow semantics for core Wasm in continuation-passing style
(CPS)

• Paper at Trends in Functional Programming 2025: Reconstructing
Continuation-Passing Semantics for WebAssembly

8

An Alternative CPS Semantics for Wasm

• An alternative to reduction semantics of Wasm:

• “Rewriting” vs “denotation”

• Rather than the first-order representation for control structures, we use continuation
functions in the meta-language to represent control semantics

• A compositional control-flow semantics for core Wasm in continuation-passing style
(CPS)

• Paper at Trends in Functional Programming 2025: Reconstructing
Continuation-Passing Semantics for WebAssembly

8

Syntax of µWasm

ℓ ∈ Label = N

x ∈ Identifier = N

t ∈ ValueType ::= i32 | i64 | . . .

ft ∈ FunctionType ::= t∗ → t∗

e ∈ Instruction ::= nop | t.const c | t.{add, sub, eq, . . . }

| block ft es | loop ft es

| br ℓ | call x | return

| . . .

es ∈ Instructions = List[Instruction]

f ∈ Function ::= func x {type : ft, locals : t∗, body : es}

m ∈ Module ::= module f ∗

9

Semantics Definition

Evaluation function: J·K : List[Inst] → (Stack × Env × Cont×Trail) → Ans

v ∈ Value = Z

σ ∈ Stack = List[Value]
ρ ∈ Env = List[Value]
κ ∈ Cont = Stack × Env → Ans

• So far it is a standard “interpreter” in CPS, well-known from the 70s

10

Semantics Definition

Evaluation function: J·K : List[Inst] → (Stack × Env × Cont × Trail) → Ans

v ∈ Value = Z

σ ∈ Stack = List[Value]
ρ ∈ Env = List[Value]
κ ∈ Cont = Stack × Env → Ans
θ ∈ Trail = List[Cont]

11

The CPS Semantics – Empty List of Inst

Evaluation function: J·K : List[Inst] → (Stack × Env × Cont × Trail) → Ans

JnilK(σ, ρ, κ, θ) = κ(σ, ρ)

12

The CPS Semantics – Stack Manipulation

Evaluation function: J·K : List[Inst] → (Stack × Env × Cont × Trail) → Ans

Jnop :: restK(σ, ρ, κ, θ) = JrestK(σ, ρ, κ, θ)
Jt.const c :: restK(σ, ρ, κ, θ) = JrestK(c :: σ, ρ, κ, θ)
Jt.add :: restK(v1 :: v2 :: σ, ρ, κ, θ) = JrestK(v1 + v2 :: σ, ρ, κ, θ)

13

The CPS Semantics – Block

Evaluation function: J·K : List[Inst] → (Stack × Env × Cont × Trail) → Ans

Jblock (tm → tn) es :: restK(σarg m++ σ, ρ, κ, θ) = ???
Jbr ℓ :: restK(σ, ρ, κ, θ) = ???

14

Wasm Control Flow - Blocks

• Blocks are structured and can be nested
• A block has a label (either named or nameless as de

Bruijn indices)

block ℓ1
...
block ℓ2

...
br ℓ2
...
br ℓ1
...

end
...
br ℓ1
...

end
...

15

Wasm Control Flow - Blocks

• Blocks are structured and can be nested
• A block has a label (either named or nameless as de

Bruijn indices)
• The label serves as a branch target, jumping to the

instruction after the block
• Idea: we need to remember the “escaping

continuation” of every block introduced in the scope

block ℓ1
...
block ℓ2

...
br ℓ2
...
br ℓ1
...

end
...
br ℓ1
...

end
...

16

The CPS Semantics – Block

Jblock (tm → tn) es :: restK(σarg m++ σ, ρ, κ, θ) =
let κ1 := λ(σ1, ρ1).JrestK(⌊σ1⌋n ++ σ, ρ1, κ, θ) in
JesK(σarg , ρ, κ1, κ1 :: θ)

Jbr ℓ :: restK(σ, ρ, κ, θ) =
θ(ℓ)(σ, ρ)

• The new continuation κ1 is shared as ordinary continuation and
escape/branch continuation

• ℓ is the de Bruijn index of the target label of the block, so θ(ℓ) is
the corresponding escaping continuation

block ℓ
...
br ℓ
...

end
...

17

The CPS Semantics – Block

Jblock (tm → tn) es :: restK(σarg m++ σ, ρ, κ, θ) =
let κ1 := λ(σ1, ρ1).JrestK(⌊σ1⌋n ++ σ, ρ1, κ, θ) in
JesK(σarg , ρ, κ1 , κ1 :: θ)

Jbr ℓ :: restK(σ, ρ, κ, θ) =
θ(ℓ)(σ, ρ)

• The new continuation κ1 is shared as ordinary continuation and
escape/branch continuation

• ℓ is the de Bruijn index of the target label of the block, so θ(ℓ) is
the corresponding escaping continuation

block ℓ
...
br ℓ
...

end
...

18

Wasm Control Flow – Loops

• Similar to blocks, loops also introduce a label as jump
target

• But branching to that label will jump back to the
beginning of the loop!

• If no branching happens, the loop finishes

loop ℓ1
...
block ℓ2

...
br ℓ2
...
br ℓ1
...

end
...
br ℓ1
...

end
...

19

Wasm Control Flow – Loops

• Similar to blocks, loops also introduce a label as jump
target

• But branching to that label will jump back to the
beginning of the loop!

• If no branching happens, the loop finishes
• Idea: we need to remember two different kinds of

continuations for loops!

loop ℓ1
...
block ℓ2

...
br ℓ2
...
br ℓ1
...

end
...
br ℓ1
...

end
...

20

The CPS Semantics – Loops

Jloop (tm → tn) es :: restK(σarg m++ σ, ρ, κ, θ) =
let κ1 := λ(σ1, ρ1).JrestK(⌊σ1⌋n ++ σ, ρ1, κ, θ) in
fix κ2 := λ(σ2, ρ2).JesK(⌊σ2⌋m , ρ2, κ1 , κ2 :: θ) in
κ2(σarg , ρ)

• κ2 is both the body of the loop and the branch
continuation

• Therefore defined recursively and appended to the trail

loop ℓ1
...

block ℓ2
...
br ℓ2
...
br ℓ1
...

end
...
br ℓ1
...

end
...

21

Call and Return

Jcall x :: restK(σarg m++ σ, ρ, κ, θ) =
let {type : tm → tn, locals : ts, body : es} := lookupFunc(x) in
let ρ1 := buildEnv(σarg , ts) in
let κ1 := λ(σ1, ρ1).JrestK(⌊σ1⌋n ++σ, ρ, κ, θ) in

JesK([], ρ1, κ1, [κ1])

Jreturn :: restK(σ, ρ, κ, θ) = θ.last(σ, ρ)

• Discard the current trail, and install a new singleton trail containing the return
continuation

• The last continuation in the trail is always the return continuation (function body is
also a block, implicitly)

22

Tail Call

• Since h is a tail call, it returns to the caller of g
• The rest computation after return_call h in g is

discarded
• Can be considered as first return, then call

(func f
...
call g
...)

(func g
...
return_call h
...)

(func h
...
return)

23

Tail Call

Jreturn_call x :: restK(σarg m++ σ, ρ, κ, θ) =
let {type : tm → tn, locals : ts, body : es} := lookupFunc(x) in
let ρ1 := buildEnv(σarg , ts) in

JesK([], ρ1, θ.last , [θ.last])

• Instead of constructing new continuation with rest, using the return continuation
from the current context

• So that when return from the function body, we discard the current frame/context

• Equational reasoning to calculate:

Jreturn_call x :: restK(σ, ρ, κ, θ) = Jcall x :: return :: restK(σ, ρ, κ, θ)
24

Extending the CPS Semantics

• WasmFX-style effect handlers
• cont.new, resume, suspend
• Augment the semantics with another trail of continuations

• . . .

25

Interpreter

• Now we have demonstrated the core CPS semantics

J·K : List[Inst] → (Stack × Env × Cont × List[Cont]) → Ans

• Trail nicely gives semantics for block, loop, br, call, and return
• Compositional and tail recursive

• Can be easily implemented as a concise definitional interpreter for Wasm

26

From Interpreter to Compiler

• A staged concrete Wasm interpreter:

J·K↑↓ : List[Inst] → (Rep[Stack]×Rep[Env]×Rep[Cont]×List[Rep[Cont]]) → Rep[Ans]

• Trail is eliminated at compile/staging-time (in contrast to Rep[List[Cont]])

• Generating C/C++ code using Scala/LMS, no fancy optimizations yet
• Preliminary result: 7-12x speedup vs our Scala CPS interpreter on some micro

benchmarks

• Next step: specialize a symbolic interpreter J·KS↑↓ and generate C/C++ code to
perform symbolic execution

27

From Interpreter to Compiler

• A staged concrete Wasm interpreter:

J·K↑↓ : List[Inst] → (Rep[Stack]×Rep[Env]×Rep[Cont]×List[Rep[Cont]]) → Rep[Ans]

• Trail is eliminated at compile/staging-time (in contrast to Rep[List[Cont]])

• Generating C/C++ code using Scala/LMS, no fancy optimizations yet
• Preliminary result: 7-12x speedup vs our Scala CPS interpreter on some micro

benchmarks

• Next step: specialize a symbolic interpreter J·KS↑↓ and generate C/C++ code to
perform symbolic execution

27

From Interpreter to Compiler

• A staged concrete Wasm interpreter:

J·K↑↓ : List[Inst] → (Rep[Stack]×Rep[Env]×Rep[Cont]×List[Rep[Cont]]) → Rep[Ans]

• Trail is eliminated at compile/staging-time (in contrast to Rep[List[Cont]])

• Generating C/C++ code using Scala/LMS, no fancy optimizations yet
• Preliminary result: 7-12x speedup vs our Scala CPS interpreter on some micro

benchmarks

• Next step: specialize a symbolic interpreter J·KS↑↓ and generate C/C++ code to
perform symbolic execution

27

Bigger Picture

• CPS semantics is more friendly for staging and spcifying executable analysis

28

Bigger Picture

• Olivier Danvy’s agenda on interderivable semantic specifications

• Example: Towards Compatible and Interderivable Semantic Specifications for the
Scheme Programming Language

29

Conclusion

• SpecTec seems to be a good playground for interderivable semantics

• Choose one and automatically derive the others?

• Performant static analysis

• Staging + compositional interpreter with continuation + analysis semantics

30

