Towards Performant Static Analysis of WebAssembly via
Staging and Continuations

Guannan Wei, INRIA/ENS, Tufts University
with Dinghong Zhong and Alexander Bai

Dagstuhl Seminar 25241

= Goal: fast, correct, automated static analysis of Wasm programs
= Examples: symbolic execution, abstract interpretation, etc.

= Useful for test case generation, verification, security auditing, etc.

Motivation

small-ste|
ep fast and correct
reduction

static analysis

semantics

= The “reference” semantics/interpreter is useful for specifying and implementing
analyses:

= Defines true dynamic behaviors (simulation, Galois connection, etc.)

= Analyses implemented as non-standard interpreters (collecting semantics, SMT
invocation, etc.)

Improving Performance of Wasm Static Analysis

= Performance matters

= Interpretation overhead:

= Traverse the program representation (AST, etc.) of multiple paths; fixpoint iteration;
etc.

= angr symbolic execution: 321,000x slower than native execution! (USENIX Sec '18)

Improving Performance of Wasm Static Analysis

= Performance matters

= Interpretation overhead:

= Traverse the program representation (AST, etc.) of multiple paths; fixpoint iteration;
etc.

= angr symbolic execution: 321,000x slower than native execution! (USENIX Sec '18)

= Staging can help: specialize (i.e. partially evaluate) the non-standard interpreter
to a specific program

= Generate a residual program and removes interpretation overhead

Improving Performance of Wasm Static Analysis via Staging

generated
program

staged
inferpreter

program result

dynamic
argument

interpreter

= 1st Futamura projection: a staged interpreter is a “compiler”

Improving Performance of Wasm Static Analysis via Staging

generated
program

staged
inferpreter

program result

dynamic
argument

interpreter

= 1st Futamura projection: a staged interpreter is a “compiler”

= But, not all interpreters can be well staged ...

Administrative Instructions Disturb Specialization

= Using “administrative instructions” to represent evaluation context for structured

control flow (blocks, loops, etc.)

loop loop
i32.const 4 i32.const 4
i32.const 2 label{...} i32.const 2
i32.const 1 i32.const 4 i32.const 1
i32.add > i32.const 3 N\ 1label{...} N> i32.add
i32.add i32.add i32.const 7 i32.add
br O br 0 br 0 br 0

end end end end

Administrative Instructions Disturb Specialization

= Using “administrative instructions” to represent evaluation context for structured

control flow (blocks, loops, etc.)

loop loop
i32.const 4 i32.const 4
i32.const 2 label{...} i32.const 2
i32.const 1 i32.const 4 i32.const 1
i32.add > i32.const 3 N\ 1label{...} N> i32.add
i32.add i32.add i32.const 7 i32.add
br O br 0 br 0 br 0

end end end end

= Administrative instructions are not part of the original program (static binding
time), but generated at “runtime” (dynamic binding time)

= Staging requires the whole program to be statically known

Non-Compositionality

= Compositionality: obtain the “meaning” of the larger program by composing the
meaning of smaller programs

= Much easier for program reasoning and transformation (e.g. partial evaluation)

An Alternative CPS Semantics for Wasm

= An alternative to reduction semantics of Wasm:
= “Rewriting” vs “denotation”

= Rather than the first-order representation for control structures, we use continuation
functions in the meta-language to represent control semantics

An Alternative CPS Semantics for Wasm

= An alternative to reduction semantics of Wasm:
= “Rewriting” vs “denotation”

= Rather than the first-order representation for control structures, we use continuation
functions in the meta-language to represent control semantics

= A compositional control-flow semantics for core Wasm in continuation-passing style
(CPS)

An Alternative CPS Semantics for Wasm

= An alternative to reduction semantics of Wasm:
= “Rewriting” vs “denotation”

= Rather than the first-order representation for control structures, we use continuation
functions in the meta-language to represent control semantics

= A compositional control-flow semantics for core Wasm in continuation-passing style

(CPS)

= Paper at Trends in Functional Programming 2025: Reconstructing
Continuation-Passing Semantics for WebAssembly

Syntax of Wasm

¢ € Label =N
x € ldentifier =N
t € ValueType ==1i32]i64]...

ft € FunctionType ::=t* — t*
e € Instruction 1= nop | t.const c | t.{add,sub,eq,...}
| block ft es | loop ft es

| br £ | call x | return

es € Instructions = List[Instruction]
f € Function ::= func x {type : ft,locals : t*, body : es}
m € Module ::= module f*

Semantics Definition

Evaluation function: [-] : List[Inst] — (Stack x Env x Cont) — Ans

v € Value =7

o € Stack = List[Value]

p € Env = List[Value]

k € Cont = Stack x Env — Ans

= So far it is a standard “interpreter” in CPS, well-known from the 70s

10

Semantics Definition

Evaluation function: [-] : List[Inst] — (Stack x Env x Cont x Trail) — Ans

v € Value=12

o € Stack = List[Value]

p € Env = List[Value]

k € Cont = Stack x Env — Ans
6 € Trail = List[Cont]

11

The CPS Semantics — Empty List of Inst

Evaluation function: [-] : List[Inst] — (Stack x Env x Cont x Trail) — Ans

[nil](o, p, K, 0) = k(o p)

12

The CPS Semantics — Stack Manipulation

Evaluation function: [-] : List[Inst] — (Stack x Env x Cont x Trail) — Ans

[nop :: rest] (o, p, K, 0) = [rest](o, p, K, 0)
[t.const c :: rest](o, p, k,0) = [rest](c :: o, p, k,0)
[t.add :: rest](vi :: va i 0, p, K, 0) = [rest](vi + v2 :: 0, p, K, 0)

13

The CPS Semantics — Block

Evaluation function: [-] : List[Inst] — (Stack x Env x Cont x Trail) — Ans

[block (t™ — t") es :: rest](Carg mH 0, p, K, 0) = 777
[br ¢ :: rest] (o, p, k,0) =777

14

Wasm Control Flow - Blocks

block /;
= Blocks are structured and can be nested o
block /5
= A block has a label (either named or nameless as de -
Bruijn indices) br £
br fl
end
br /;
end

15

Wasm Control Flow - Blocks

block /;

= Blocks are structured and can be nested S
block /5

= A block has a label (either named or nameless as de -
br fg

Bruijn indices)

s The label serves as a branch target, jumping to the br A

instruction after the block
= |dea: we need to remember the “escaping
continuation” of every block introduced in the scope

16

The CPS Semantics — Block

[block (t™ — t") es :: rest](Targ mH 0, p, K, 0) = block /

let [l = Mo, p1)-[rest]([o1) , ++ o, p1, 5,) in br /
les[(arg, ps K1, K1 22 6) end /
[br ¢ :: rest](o, p, K, 6) =
0(0)(o; p)
= The new continuation k1 is shared as ordinary continuation and
escape/branch continuation

» / is the de Bruijn index of the target label of the block, so 6(¢) is
the corresponding escaping continuation

17

The CPS Semantics — Block

[block (t™ — t") es :: rest](Targ mH 0, p, K, 0) = block /

let [l = Mo, p1)-[rest]([o1) , ++ o, p1, 5,) in br /
les[(oarg, Py K1, K1 =2 0) end /
[br ¢ :: rest](o, p, K, 6) =
0(0)(o; p)
= The new continuation k1 is shared as ordinary continuation and
escape/branch continuation

» / is the de Bruijn index of the target label of the block, so 6(¢) is
the corresponding escaping continuation

18

Wasm Control Flow — Loops

loop /

= Similar to blocks, loops also introduce a label as jump block [

target br /;

= But branching to that label will jump back to the

br 4
beginning of the loop!
= If no branching happens, the loop finishes

br fl

end

19

Wasm Control Flow — Loops

loop /

= Similar to blocks, loops also introduce a label as jump block [

target br /;

= But branching to that label will jump back to the Sy
r

beginning of the loop! !

= If no branching happens, the loop finishes

= ldea: we need to remember two different kinds of br ‘0
continuations for loops! -

end

20

The CPS Semantics — Loops

loop /

[loop (t™ — t") es :: rest](Carg mH 0, p,K,0) = m:k ty
let k1 = A(o1, p1).[rest](|o1], + o, p1,K,0) in
fix @ = o2, p2)-[es](lo2] P2, K1, 8 -) in

’42(Uarg; p)

br 62

br 61

= K is both the body of the loop and the branch

continuation br 4

= Therefore defined recursively and appended to the trail end

21

Call and Return

[call x :: rest](Targ mH 0, p, K, 0) =
let {type: t™ — t",locals : ts, body : es} = lookupFunc(x) in
let p1 := buildEnv(c g, ts) in
let k1 := X(o1, p1).-[rest](|o1], Ho,p, K, 0) in
[esI([], p1, 51, [Ka])
[return :: rest](o, p, k,) = f.last(o, p)

= Discard the current trail, and install a new singleton trail containing the return
continuation
= The last continuation in the trail is always the return continuation (function body is

also a block, implicitly)
22

Tail Call

= Since h is a tail call, it returns to the caller of g (func f
= The rest computation after return_call hin gis e
. call g
discarded)
= Can be considered as first return, then call
(func g

return_call h

= o)
f(func h

return)

23

Tail Call

[return_call x :: rest](carg mH o, p, K, 0) =
let {type : t™ — t",locals : ts,body : es} := lookupFunc(x) in
let p1 := buildEnv(oarg, ts) in
Tes]([], p1, @.last , [O.last])

= |nstead of constructing new continuation with rest, using the return continuation

from the current context

= So that when return from the function body, we discard the current frame/context

= Equational reasoning to calculate:

[return_call x :: rest](o, p, k,0) = [call x :: return :: rest](o, p, k,)
24

Extending the CPS Semantics

= WasmFX-style effect handlers
= cont.new, resume, suspend
= Augment the semantics with another trail of continuations

23

Interpreter

= Now we have demonstrated the core CPS semantics

[-] : List[Inst] — (Stack x Env x Cont x List[Cont]) — Ans

= Trail nicely gives semantics for block, loop, br, call, and return
= Compositional and tail recursive

= Can be easily implemented as a concise definitional interpreter for Wasm

26

From Interpreter to Compiler

= A staged concrete Wasm interpreter:

[-I4; : List[Inst] — (Rep[Stack]x Rep[Env]xRep[Cont]x List[Rep[Cont]]) — Rep[Ans]

= Trail is eliminated at compile/staging-time (in contrast to Rep[List[Cont]])

27

From Interpreter to Compiler

= A staged concrete Wasm interpreter:
[-I4; : List[Inst] — (Rep[Stack]x Rep[Env]xRep[Cont]x List[Rep[Cont]]) — Rep[Ans]

= Trail is eliminated at compile/staging-time (in contrast to Rep[List[Cont]])

= Generating C/C++ code using Scala/LMS, no fancy optimizations yet
= Preliminary result: 7-12x speedup vs our Scala CPS interpreter on some micro
benchmarks

27

From Interpreter to Compiler

= A staged concrete Wasm interpreter:

[-I4; : List[Inst] — (Rep[Stack]x Rep[Env]xRep[Cont]x List[Rep[Cont]]) — Rep[Ans]

= Trail is eliminated at compile/staging-time (in contrast to Rep[List[Cont]])

= Generating C/C++ code using Scala/LMS, no fancy optimizations yet
= Preliminary result: 7-12x speedup vs our Scala CPS interpreter on some micro
benchmarks

= Next step: specialize a symbolic interpreter [H]% and generate C/C++ code to
perform symbolic execution

27

Bigger Picture

= CPS semantics is more friendly for staging and spcifying executable analysis

Staged Staged Symbolic

CPS semantics CPS semantics

small-step
reduction
semantics

_| Symbolic CPS

semantics

semantics

first-order higher-order
representation representation Abstract|CPS
of control of control S

28

Bigger Picture

= Olivier Danvy’s agenda on interderivable semantic specifications

= Example: Towards Compatible and Interderivable Semantic Specifications for the
Scheme Programming Language

Pictorially:
Clinger’s small-step abstract machine
(Figures 1 and 2 in Section 6)
ilightweight fusion

big-step abstract machine
(Figures 3 and 4 in Section 7)

adjustment

big-step abstract machine in defunctionalized form
(Figures 5 and 6 in Section 8)

defunctionalizationT lrefunctionalization

natural semantics in continuation style
(Figures 7 and 8 in Section 9)

closure conversionT lclosure unconversion

denotational semantics 29
(Figure 9 in Section 10)

Conclusion

= SpecTec seems to be a good playground for interderivable semantics

= Choose one and automatically derive the others?

= Performant static analysis

= Staging + compositional interpreter with continuation + analysis semantics

30

