Towards Performant Static Analysis of WebAssembly via Staging and Continuations

Guannan Wei, INRIA/ENS, Tufts University with Dinghong Zhong and Alexander Bai

Dagstuhl Seminar 25241

- Goal: fast, correct, automated static analysis of Wasm programs
 - Examples: symbolic execution, abstract interpretation, etc.
 - Useful for test case generation, verification, security auditing, etc.

Motivation

- The "reference" semantics/interpreter is useful for specifying and implementing analyses:
- Defines true dynamic behaviors (simulation, Galois connection, etc.)
- Analyses implemented as non-standard interpreters (collecting semantics, SMT invocation, etc.)

Improving Performance of Wasm Static Analysis

- Performance matters
- Interpretation overhead:
 - Traverse the program representation (AST, etc.) of multiple paths; fixpoint iteration; etc.
 - angr symbolic execution: 321,000x slower than native execution! (USENIX Sec '18)

Improving Performance of Wasm Static Analysis

- Performance matters
- Interpretation overhead:
 - Traverse the program representation (AST, etc.) of multiple paths; fixpoint iteration; etc.
 - angr symbolic execution: 321,000x slower than native execution! (USENIX Sec '18)
- **Staging can help**: specialize (i.e. partially evaluate) the non-standard interpreter to a specific program
 - Generate a residual program and removes interpretation overhead

Improving Performance of Wasm Static Analysis via Staging

1st Futamura projection: a staged interpreter is a "compiler"

Improving Performance of Wasm Static Analysis via Staging

- 1st Futamura projection: a staged interpreter is a "compiler"
- But, not all interpreters can be well staged

Administrative Instructions Disturb Specialization

 Using "administrative instructions" to represent evaluation context for structured control flow (blocks, loops, etc.)

Administrative Instructions Disturb Specialization

 Using "administrative instructions" to represent evaluation context for structured control flow (blocks, loops, etc.)

loop						loop	
i32.const 4						i32.const	4
i32.const 2		<pre>label{}</pre>				i32.const	2
i32.const 1		i32.const 4				i32.const	1
i32.add	\rightarrow	i32.const 3	\rightarrow	$label{}$	\rightarrow	i32.add	
i32.add		i32.add		i32.const 7		i32.add	
br O		br O		br O		br O	
end	end		end		end		

- Administrative instructions are not part of the original program (static binding time), but generated at "runtime" (dynamic binding time)
- Staging requires the whole program to be statically known

- Compositionality: obtain the "meaning" of the larger program by composing the meaning of smaller programs
- Much easier for program reasoning and transformation (e.g. partial evaluation)

An Alternative CPS Semantics for Wasm

- An alternative to reduction semantics of Wasm:
 - "Rewriting" vs "denotation"
 - Rather than the first-order representation for control structures, we use continuation functions in the meta-language to represent control semantics

An Alternative CPS Semantics for Wasm

- An alternative to reduction semantics of Wasm:
 - "Rewriting" vs "denotation"
 - Rather than the first-order representation for control structures, we use continuation functions in the meta-language to represent control semantics
- A compositional control-flow semantics for core Wasm in *continuation-passing style* (CPS)

An Alternative CPS Semantics for Wasm

- An alternative to reduction semantics of Wasm:
 - "Rewriting" vs "denotation"
 - Rather than the first-order representation for control structures, we use continuation functions in the meta-language to represent control semantics
- A compositional control-flow semantics for core Wasm in *continuation-passing style* (CPS)
- Paper at Trends in Functional Programming 2025: Reconstructing Continuation-Passing Semantics for WebAssembly

Syntax of μ Wasm

 $\ell \in \mathsf{Label} = \mathbb{N}$ $x \in \mathsf{Identifier} = \mathbb{N}$ $t \in ValueType$::= i32 | i64 | ... $ft \in \mathsf{FunctionType} ::= t^* \to t^*$ $e \in \text{Instruction}$::= nop | t.const $c \mid t.$ {add, sub, eq, ...} block ft es | loop ft es br $\ell \mid call \mid x \mid return$ | . . . $es \in \mathsf{Instructions}$ = List[Instruction] $f \in Function$::= func x {type : ft, locals : t^* , body : es} $m \in Module$::= module f^*

Evaluation function: $\llbracket \cdot \rrbracket$: List[Inst] \rightarrow (Stack \times Env \times Cont

$$\begin{split} \mathbf{v} \in \mathsf{Value} &= \mathbb{Z} \\ \sigma \in \mathsf{Stack} &= \mathsf{List}[\mathsf{Value}] \\ \rho \in \mathsf{Env} &= \mathsf{List}[\mathsf{Value}] \\ \kappa \in \mathsf{Cont} &= \mathsf{Stack} \times \mathsf{Env} \to \mathsf{Ans} \end{split}$$

• So far it is a standard "interpreter" in CPS, well-known from the 70s

 $\textbf{Evaluation function:} \quad [\![\cdot]\!]: \mathsf{List}[\mathsf{Inst}] \to (\mathsf{Stack} \times \mathsf{Env} \times \mathsf{Cont} \times \mathsf{Trail}) \to \mathsf{Ans}$

$$\begin{split} \mathbf{v} \in \mathsf{Value} &= \mathbb{Z} \\ \sigma \in \mathsf{Stack} = \mathsf{List}[\mathsf{Value}] \\ \rho \in \mathsf{Env} &= \mathsf{List}[\mathsf{Value}] \\ \kappa \in \mathsf{Cont} &= \mathsf{Stack} \times \mathsf{Env} \to \mathsf{Ans} \\ \theta \in \mathsf{Trail} &= \mathsf{List}[\mathsf{Cont}] \end{split}$$

$\textbf{Evaluation function:} \quad [\![\cdot]\!]: \mathsf{List}[\mathsf{Inst}] \to (\mathsf{Stack} \times \mathsf{Env} \times \mathsf{Cont} \times \mathsf{Trail}) \to \mathsf{Ans}$

 $\llbracket \mathsf{nil} \rrbracket (\sigma, \rho, \kappa, \theta) = \kappa(\sigma, \rho)$

Evaluation function: $\llbracket \cdot \rrbracket$: List[Inst] \rightarrow (Stack \times Env \times Cont \times Trail) \rightarrow Ans

 $[nop :: rest](\sigma, \rho, \kappa, \theta) = [rest](\sigma, \rho, \kappa, \theta)$ $[t.const c :: rest](\sigma, \rho, \kappa, \theta) = [rest](c :: \sigma, \rho, \kappa, \theta)$ $[t.add :: rest](v_1 :: v_2 :: \sigma, \rho, \kappa, \theta) = [rest](v_1 + v_2 :: \sigma, \rho, \kappa, \theta)$

$\textbf{Evaluation function:} \quad \llbracket \cdot \rrbracket : \mathsf{List}[\mathsf{Inst}] \to (\mathsf{Stack} \times \mathsf{Env} \times \mathsf{Cont} \times \mathsf{Trail}) \to \mathsf{Ans}$

$$[block (t^m \to t^n) es :: rest](\sigma_{arg m} + \sigma, \rho, \kappa, \theta) = ???$$
$$[br \ \ell :: rest](\sigma, \rho, \kappa, \theta) = ???$$

- Blocks are structured and can be nested
- A block has a label (either named or nameless as de Bruijn indices)

- Blocks are structured and can be nested
- A block has a label (either named or nameless as de Bruijn indices)
- The label serves as a branch target, jumping to the instruction after the block
- Idea: we need to remember the "escaping continuation" of every block introduced in the scope

$$\begin{split} \llbracket \mathsf{block} \ (t^m \to t^n) \ es :: rest \rrbracket (\sigma_{\operatorname{arg} m} + \sigma, \rho, \kappa, \theta) = & \mathsf{block} \ \ell \\ & [\mathsf{t} \ \kappa_1 := \lambda(\sigma_1, \rho_1).\llbracket rest \rrbracket (\lfloor \sigma_1 \rfloor_n + \sigma, \rho_1, \kappa, \theta) \ \mathsf{in} \\ & \llbracket es \rrbracket (\sigma_{\operatorname{arg}}, \rho, \kappa_1, \kappa_1 :: \theta) & \mathsf{end} \\ & \llbracket \mathsf{br} \ \ell :: rest \rrbracket (\sigma, \rho, \kappa, \theta) & = & \mathsf{ord} \\ & \theta(\ell)(\sigma, \rho) & \end{split}$$

- The new continuation κ₁ is shared as ordinary continuation and escape/branch continuation
- *l* is the de Bruijn index of the target label of the block, so θ(*l*) is
 the corresponding escaping continuation

$$\begin{split} \llbracket \text{block } (t^m \to t^n) \text{ es :: } \operatorname{rest} \rrbracket (\sigma_{\arg m} + \sigma, \rho, \kappa, \theta) = & \qquad \texttt{block } \ell \\ & \underset{\kappa_1}{ \mathrel{let } \kappa_1} \coloneqq \lambda(\sigma_1, \rho_1) . \llbracket \operatorname{rest} \rrbracket (\lfloor \sigma_1 \rfloor_n + \sigma, \rho_1, \kappa, \theta) \text{ in } & \qquad \underset{m}{ \mathrel{les } \rrbracket} (\sigma_{\arg}, \rho, \frac{\kappa_1}{\kappa_1}, \frac{\kappa_1}{\kappa_1} :: \theta) & \qquad \underset{\ell}{ \mathrel{les } \amalg} (\sigma, \rho, \kappa, \theta) = & \qquad \underset{\ell}{ \mathrel{les } \varPi} (\sigma, \rho, \kappa, \theta) = & \qquad \underset{\ell}{ \mathrel{les } \varPi} (\sigma, \rho, \kappa, \theta) = & \qquad \underset{\ell}{ \mathrel{les } \varPi} (\sigma, \rho, \kappa, \theta) = & \qquad \underset{\ell}{ \mathrel{les } \varPi} (\sigma, \rho, \kappa, \theta) = & \qquad \underset{\ell}{ \mathrel{les } \varPi} (\sigma, \rho, \kappa, \theta) = & \qquad \underset{\ell}{ \mathrel{les } \varPi} (\sigma, \rho, \kappa, \theta) = & \qquad \underset{\ell}{ \mathrel{les } \varPi} (\sigma, \rho, \kappa, \theta) = & \qquad \underset{\ell}{ \mathrel{les } \varPi} (\sigma, \rho, \kappa, \theta) = & \qquad \underset{\ell}{ \mathrel{les } \varPi} (\sigma, \rho, \kappa, \theta) = & \qquad \underset{\ell}{ \mathrel{les } \varPi} (\sigma, \rho, \kappa, \theta) = & \qquad \underset{\ell}{ \mathrel{les } \varPi} (\sigma, \rho, \kappa, \theta) = & \qquad \underset{\ell}{ \mathrel{les } \varPi} (\sigma, \rho, \kappa, \theta) = & \qquad \underset{\ell}{ \mathrel{les } \varPi} (\sigma, \rho, \kappa, \theta) = & \qquad \underset{\ell}{ \mathrel{les } \varPi} (\sigma, \rho, \kappa, \theta) = & \qquad \underset{\ell}{ \mathrel{les } \varPi} (\sigma, \rho, \kappa, \theta) = & \qquad \underset{\ell}{ \mathrel{les } \varPi} (\sigma, \rho, \kappa, \theta) = & \qquad \underset{\ell}{ \mathrel{les } \varPi} (\sigma, \rho, \kappa, \theta) = & \qquad \underset{\ell}{ \mathrel{les } \varPi} (\sigma, \rho, \kappa, \theta) = & \qquad \underset{\ell}{ \mathrel{les } \varPi} (\sigma, \rho, \kappa, \theta) = & \qquad \underset{\ell}{ \mathrel{les } \varPi} (\sigma, \rho, \kappa, \theta) = & \qquad \underset{\ell}{ \mathrel{les } \varPi} (\sigma, \rho, \kappa, \theta) = & \qquad \underset{\ell}{ \mathrel{les } \varPi} (\sigma, \rho, \kappa, \theta) = & \qquad \underset{\ell}{ \mathrel{les } \varPi} (\sigma, \rho, \kappa, \theta) = & \qquad \underset{\ell}{ \mathrel{les } \varPi} (\sigma, \rho, \kappa, \theta) = & \qquad \underset{\ell}{ \mathrel{les } \varPi} (\sigma, \rho, \kappa, \theta) = & \qquad \underset{\ell}{ \mathrel{les } \varPi} (\sigma, \rho, \kappa, \theta) = & \qquad \underset{\ell}{ \mathrel{les } \varPi} (\sigma, \rho, \kappa, \theta) = & \qquad \underset{\ell}{ \mathrel{les } \varPi} (\sigma, \rho, \kappa, \theta) = & \qquad \underset{\ell}{ \mathrel{les } \varPi} (\sigma, \rho, \kappa, \theta) = & \qquad \underset{\ell}{ \mathrel{les } \varPi} (\sigma, \rho, \kappa, \theta) = & \qquad \underset{\ell}{ \mathrel{les } \varPi} (\sigma, \rho, \eta) = & \qquad \underset{\ell}{ \mathrel{les } \varPi} (\sigma, \rho) = & \qquad \underset{\ell}{ \mathrel{les } \varPi} (\sigma, \rho) = & \qquad \underset{\ell}{ \mathrel{les } \varPi} (\sigma, \rho) = & \qquad \underset{\ell}{ \mathrel{les } \varPi} (\sigma, \rho) = & \qquad \underset{\ell}{ \mathrel{les } \varPi} (\sigma, \rho) = & \qquad \underset{\ell}{ \mathrel{les } \varPi} (\sigma, \rho) = & \qquad \underset{\ell}{ \mathrel{les } \varPi} (\sigma, \rho) = & \qquad \underset{\ell}{ \mathrel{les } \varPi} (\sigma, \rho) = & \qquad \underset{\ell}{ \mathrel{les } \varPi} (\sigma, \rho) = & \qquad \underset{\ell}{ \mathrel{les } \varPi} (\sigma, \rho) = & \qquad \underset{\ell}{ \mathrel{les } \varPi} (\sigma, \rho) = & \qquad \underset{\ell}{ \mathrel{les } \varPi} (\sigma, \rho) = & \qquad \underset{\ell}{ \mathrel{les } \varPi} (\sigma, \rho) = & \qquad \underset{\ell}{ \mathrel{les } \varPi} (\sigma, \rho) = & \qquad \underset{\ell}{ \mathrel{les } \varPi} (\sigma, \rho) = & \qquad \underset{\ell}{ \mathrel{les } \varPi} (\sigma, \rho) = & \qquad \underset{\ell}{ \mathrel{les } \varPi} (\sigma, \rho) = & \qquad \underset{\ell}{ \mathrel{les } \varPi} (\sigma, \rho) = & \qquad \underset{\ell}{ \mathrel{les } \varPi} (\sigma, \rho) = & \qquad \underset{\ell}{ \mathrel{les } \varPi} (\sigma, \rho) = & \qquad \underset{\ell}{ \mathrel{les } \varPi} (\sigma, \rho) = & \qquad \underset{\ell}{ \mathrel{les } \varPi} (\sigma,$$

- The new continuation κ₁ is shared as ordinary continuation and escape/branch continuation
- ℓ is the de Bruijn index of the target label of the block, so $\theta(\ell)$ is the corresponding escaping continuation

- Similar to blocks, loops also introduce a label as jump target
- But branching to that label will jump back to the beginning of the loop!
- If no branching happens, the loop finishes

- Similar to blocks, loops also introduce a label as jump target
- But branching to that label will jump back to the beginning of the loop!
- If no branching happens, the loop finishes
- Idea: we need to remember two different kinds of continuations for loops!

The CPS Semantics – Loops

$$\begin{bmatrix} \text{loop} (t^m \to t^n) \text{ es :: } \text{rest} \end{bmatrix} (\sigma_{\text{arg } m} + \sigma, \rho, \kappa, \theta) = \\ \text{let } \kappa_1 \coloneqq \lambda(\sigma_1, \rho_1) . \llbracket \text{rest} \rrbracket (\lfloor \sigma_1 \rfloor_n + \sigma, \rho_1, \kappa, \theta) \text{ in} \\ \text{fix } \kappa_2 \coloneqq \lambda(\sigma_2, \rho_2) . \llbracket \text{es} \rrbracket (\lfloor \sigma_2 \rfloor_m, \rho_2, \kappa_1, \kappa_2 :: \theta) \text{ in} \\ \kappa_2(\sigma_{\text{arg}}, \rho) \end{aligned}$$

- κ₂ is both the body of the loop and the branch continuation
- Therefore defined recursively and appended to the trail

Call and Return

$$\begin{split} \llbracket \text{call } x :: rest \rrbracket (\sigma_{arg \ m} \# \ \sigma, \rho, \kappa, \theta) = \\ & \text{let } \{ \text{type } : t^m \to t^n, \text{locals } : ts, \text{body } : es \} \coloneqq \text{lookupFunc}(x) \text{ in} \\ & \text{let } \rho_1 \coloneqq \text{buildEnv}(\sigma_{arg}, ts) \text{ in} \\ & \text{let } \kappa_1 \coloneqq \lambda(\sigma_1, \rho_1).\llbracket rest \rrbracket (\lfloor \sigma_1 \rfloor_n \# \sigma, \rho, \kappa, \theta) \text{ in} \\ & \llbracket es \rrbracket (\llbracket, \rho_1, \kappa_1, \llbracket \kappa_1 \rrbracket) \\ \llbracket \text{return } :: rest \rrbracket (\sigma, \rho, \kappa, \theta) = \theta. \text{last}(\sigma, \rho) \end{split}$$

- Discard the current trail, and install a new singleton trail containing the return continuation
- The last continuation in the trail is always the return continuation (function body is also a block, implicitly)

- Since h is a tail call, it returns to the caller of g
- The rest computation after return_call h in g is discarded
- Can be considered as first return, then call

 $[[return_call x :: rest]](\sigma_{arg m} + \sigma, \rho, \kappa, \theta) = \\ let \{type : t^m \to t^n, locals : ts, body : es\} := lookupFunc(x) in \\ let \rho_1 := buildEnv(\sigma_{arg}, ts) in \\ [[es]]([], \rho_1, \theta.last, [\theta.last])$

- Instead of constructing new continuation with *rest*, using the return continuation from the current context
- So that when return from the function body, we discard the current frame/context
- Equational reasoning to calculate:

 $\llbracket \mathsf{return_call} \ x :: \mathit{rest} \rrbracket (\sigma, \rho, \kappa, \theta) = \llbracket \mathsf{call} \ x :: \mathsf{return} :: \mathit{rest} \rrbracket (\sigma, \rho, \kappa, \theta)$

- WasmFX-style effect handlers
 - cont.new, resume, suspend
 - Augment the semantics with another trail of continuations

• • • • •

Now we have demonstrated the core CPS semantics

 $\llbracket \cdot \rrbracket : \mathsf{List}[\mathsf{Inst}] \to (\mathsf{Stack} \times \mathsf{Env} \times \mathsf{Cont} \times \mathsf{List}[\mathsf{Cont}]) \to \mathsf{Ans}$

- Trail nicely gives semantics for block, loop, br, call, and return
- Compositional and tail recursive
- Can be easily implemented as a concise definitional interpreter for Wasm

• A staged concrete Wasm interpreter:

 $[\![\cdot]\!]_{\uparrow\downarrow}:\mathsf{List}[\mathsf{Inst}]\to(\mathsf{Rep}[\mathsf{Stack}]\times\mathsf{Rep}[\mathsf{Env}]\times\mathsf{Rep}[\mathsf{Cont}]\times\mathsf{List}[\mathsf{Rep}[\mathsf{Cont}]])\to\mathsf{Rep}[\mathsf{Ans}]$

Trail is eliminated at compile/staging-time (in contrast to Rep[List[Cont]])

• A staged concrete Wasm interpreter:

 $[\![\cdot]\!]_{\uparrow\downarrow}:\mathsf{List}[\mathsf{Inst}]\to(\mathsf{Rep}[\mathsf{Stack}]\times\mathsf{Rep}[\mathsf{Env}]\times\mathsf{Rep}[\mathsf{Cont}]\times\mathsf{List}[\mathsf{Rep}[\mathsf{Cont}]])\to\mathsf{Rep}[\mathsf{Ans}]$

- Trail is eliminated at compile/staging-time (in contrast to Rep[List[Cont]])
- Generating C/C++ code using Scala/LMS, no fancy optimizations yet
- Preliminary result: 7-12x speedup vs our Scala CPS interpreter on some micro benchmarks

• A staged concrete Wasm interpreter:

 $[\![\cdot]\!]_{\uparrow\downarrow}:\mathsf{List}[\mathsf{Inst}]\to(\mathsf{Rep}[\mathsf{Stack}]\times\mathsf{Rep}[\mathsf{Env}]\times\mathsf{Rep}[\mathsf{Cont}]\times\mathsf{List}[\mathsf{Rep}[\mathsf{Cont}]])\to\mathsf{Rep}[\mathsf{Ans}]$

- Trail is eliminated at compile/staging-time (in contrast to Rep[List[Cont]])
- Generating C/C++ code using Scala/LMS, no fancy optimizations yet
- Preliminary result: 7-12x speedup vs our Scala CPS interpreter on some micro benchmarks
- Next step: specialize a symbolic interpreter $[\![\cdot]\!]_{\uparrow\downarrow}^{\mathbb{S}}$ and generate C/C++ code to perform symbolic execution

Bigger Picture

- CPS semantics is more friendly for staging and spcifying executable analysis

Bigger Picture

- Olivier Danvy's agenda on interderivable semantic specifications
- Example: Towards Compatible and Interderivable Semantic Specifications for the Scheme Programming Language

- SpecTec seems to be a good playground for interderivable semantics
 - Choose one and automatically derive the others?
- Performant static analysis
 - Staging + compositional interpreter with continuation + analysis semantics