Reconstructing Continuation-Passing Semantics for
WebAssembly

Guannan Wei ' 2 Alexander Bai >3 Dinghong Zhong * Jiatai Zhang 2

Wasm Research Day
Feb 11, 2025

1INRIA/ENS—PSL, 2Tufts University, 3MPI-SWS, “Unaffliated

WebAssembly

= A stack-based, low-level, fast IR for the web, now supported in major browsers

= Official formalized semantics

= Small-step reduction dynamic semantics
= Static type system that constrains the shape of the stack
= Soundness and safety

WebAssembly

= A stack-based, low-level, fast IR for the web, now supported in major browsers

= Official formalized semantics

= Small-step reduction dynamic semantics
= Static type system that constrains the shape of the stack
= Soundness and safety

= Many work-in-progress new features, e.g., effect handlers (WasmFX), GC, etc.

Wasm’s Reference Small-step Semantics

= Reduction: s;v*;e* — s;v*; e*

Wasm’s Reference Small-step Semantics

= Reduction: s;v*;e* — s;v*; e*

= Use explicit “administrative instructions” to represent evaluation context

loop loop
i32.const 4 i32.const 4
i32.const 2 labelq{...} i32.const 2
i32.const 1 i32.const 4 i32.const 1
i32.add > i32.const 3 N\ label{...} > i32.add
i32.add i32.add i32.const 7 i32.add
br 0 br 0 br O br 0

end end end end

Wasm’s Reference Small-step Semantics

= Reduction: s;v*;e* — s;v*; e*

= Use explicit “administrative instructions” to represent evaluation context

loop loop
i32.const 4 i32.const 4
i32.const 2 labelq{...} i32.const 2
i32.const 1 i32.const 4 i32.const 1
i32.add > i32.const 3 N\ label{...} > i32.add
i32.add i32.add i32.const 7 i32.add
br 0 br 0 br O br 0

end end end end

= Standard approach in formalizing the semantics, straightforward to translate to an

implementation of interpreters

Why Do Want an Alternative?

= Expensive and verbose administrative instructions
= Time: searching on the stack in deeply nested frames/labels

= Space: duplication of syntactic constructs

Why Do Want an Alternative?

= Expensive and verbose administrative instructions
= Time: searching on the stack in deeply nested frames/labels
= Space: duplication of syntactic constructs

= The reduction semantics is not compositional

= Compositionality: obtain the “meaning” of the larger program by composing the
meaning of smaller programs

= Compositionality makes it easier for program reasoning and transformation
(e.g. partial evaluation)

This Work

= An alternative to reduction semantics of Wasm:
= Rather than the first-order representation for control structures, we use continuation
functions in the meta-language to represent control semantics

This Work

= An alternative to reduction semantics of Wasm:
= Rather than the first-order representation for control structures, we use continuation
functions in the meta-language to represent control semantics

= A compositional and tail recursive semantics for core Wasm in continuation-passing
style (CPS)
= |Implemented as a big-step interpreter
= Or, can be viewed as a CPS transformer

Syntax of Wasm

¢ € Label =N
x € ldentifier =N
t € ValueType ==1i32]i64]...

ft € FunctionType ::=t* — t*

e € Instruction 1= nop | t.const c | t.{add,sub,eq,...}
| local.get x | local.set x
| block ft es | loop ft es | if ft es es

| br ¢ | call x | return

es € Instructions = List[Instruction]
f € Function ::= func x {type : ft,locals : t*, body : es}
m € Module ::= module f*

Syntax of Wasm

¢ € Label =N
x € ldentifier =N
t € ValueType ==1i32]i64]...

ft € FunctionType ::=t* — t*

e € Instruction 1= nop | t.const c | t.{add,sub,eq,...}
| local.get x | local.set x
| block ft es | loop ft es | if ft es es

| br ¢ | call x | return

es € Instructions = List[Instruction]
f € Function ::= func x {type : ft,locals : t*, body : es}
m € Module ::= module f*

Syntax of Wasm

¢ € Label =N
x € |dentifier =N
t € ValueType :=1i32|i64]...

ft € FunctionType ::=t* — t*

e € Instruction 1= nop | t.const c | t.{add,sub,eq,...}
| local.get x | local.set x
| block ft es | loop ft es | if ft es es

| br ¢ | call x | return

es € Instructions = List[Instruction]
f € Function ::= func x {type : ft,locals : t*, body : es}
m € Module ::= module f*

Syntax of Wasm

¢ € Label =N
x € |dentifier =N
t € ValueType :=1i32|i64]...

ft € FunctionType ::=t* — t*

e € Instruction 1= nop | t.const c | t.{add,sub,eq,...}
| local.get x | local.set x
| block ft es | loop ft es | if ft es es

| br £ | call x | return

es € Instructions = List[Instruction]
f € Function ::= func x {type : ft,locals : t*, body : es}
m € Module ::= module f*

Syntax of Wasm

¢ € Label =N
x € ldentifier =N
t € ValueType ==1i32]i64]...

ft € FunctionType ::=t* — t*
e € Instruction 1= nop | t.const c | t.{add,sub,eq,...}

local.get x | local.set x
g
| block ft es | loop ft es | if ft es es

| br £ | call x | return

es € Instructions = List[Instruction]
f € Function ::= func x {type : ft,locals : t*, body : es}
m € Module ::= module f*

10

Semantics Definition

Evaluation function: [-] : List[Inst] — (Stack x Env x Cont) — Ans

v € Value =7

o € Stack = List[Value]

p € Env = List[Value]

k € Cont = Stack x Env — Ans

= So far it is a standard CPS “interpreter”, well-known from the 70s

11

Semantics Definition

Evaluation function: [-] : List[Inst] — (Stack x Env x Cont x Trail) — Ans

v € Value=12

o € Stack = List[Value]

p € Env = List[Value]

k € Cont = Stack x Env — Ans
6 € Trail = List[Cont]

12

The CPS Semantics — Empty List of Inst

Evaluation function: [-] : List[Inst] — (Stack x Env x Cont x Trail) — Ans

[nil](o, p, K, 0) = k(o p)

13

The CPS Semantics — Stack Manipulation

Evaluation function: [-] : List[Inst] — (Stack x Env x Cont x Trail) — Ans

[nop :: rest] (o, p, K, 0) = [rest](o, p, K, 0)
[t.const c :: rest](o, p, k,0) = [rest](c :: o, p, k,0)
[t.add :: rest](vi :: va i 0, p, K, 0) = [rest](vi + v2 :: 0, p, K, 0)

14

The CPS Semantics — Local Registers

Evaluation function: [-] : List[Inst] — (Stack x Env x Cont x Trail) — Ans

[local.get x :: rest](o, p,k,0) = [rest](p(x) :: 0, p, K, 0)

[local.set x :: rest](v :: o, p, k,0) = [rest](o, p[x — V], k,0)

15

The CPS Semantics — Block and Branch

Evaluation function: [-] : List[Inst] — (Stack x Env x Cont x Trail) — Ans

[block (t™ — t") es :: rest](Carg mH 0, p, K, 0) = 777
[br ¢ :: rest] (o, p, k,0) =777

16

Wasm Control Flow - Blocks

block /;
= Blocks are structured and can be nested o
block /5
= A block has a label (either named or nameless as de -
Bruijn indices) br £
br fl
end
br /;
end

17

Wasm Control Flow - Blocks

block /;

= Blocks are structured and can be nested S
block /5

= A block has a label (either named or nameless as de -
br fg

Bruijn indices)

s The label serves as a branch target, jumping to the br A

instruction after the block
= |dea: we need to remember the “escaping
continuation” of every block introduced in the scope

18

The CPS Semantics — Block and Branch

[block (t™ — t") es :: rest](Targ mt 0, ps K, 0) = block /
let 1K1l = A(ow, p1)-[rest](lo1], ++ o, p1, &, 8) in br /
les[(arg, ps K1, K1 22 6) end /
[br ¢ :: rest](o, p, K, 6) =
0(¢)(a, p)

= The new continuation k1 is shared as ordinary continuation and
escape/branch continuation

» / is the de Bruijn index of the target label of the block, so 6(¢) is
the corresponding escaping continuation

19

The CPS Semantics — Block and Branch

[block (t™ — t") es :: rest](Targ mt 0, ps K, 0) = block /
let 1K1l = A(ow, p1)-[rest](lo1], ++ o, p1, &, 8) in br /
les[(oarg, Py K1, K1 =2 0) end /
[br ¢ :: rest](o, p, K, 6) =
0(¢)(a, p)

= The new continuation k1 is shared as ordinary continuation and
escape/branch continuation

» / is the de Bruijn index of the target label of the block, so 6(¢) is
the corresponding escaping continuation

20

Wasm Control Flow — Loops

loop /

= Similar to blocks, loops also introduce a label as jump block [

target br /;

= But branching to that label will jump back to the

br 4
beginning of the loop!
= If no branching happens, the loop finishes

br fl

end

21

Wasm Control Flow — Loops

loop /

= Similar to blocks, loops also introduce a label as jump block [

target br /;

= But branching to that label will jump back to the Sy
r

beginning of the loop! !

= If no branching happens, the loop finishes

= ldea: we need to remember two different kinds of br ‘0
continuations for loops! -

end

22

The CPS Semantics — Loops

loop /

[loop (t™ — t") es :: rest](Carg mH 0, p,K,0) = m:k ty
let k1 = A(o1, p1).[rest](|o1], + o, p1,K,0) in
fix @ = o2, p2)-[es](lo2] P2, K1, 8 -) in

’42(Uarg; p)

br 62

br 61

= K is both the body of the loop and the branch

continuation br 4

= Therefore defined recursively and appended to the trail end

23

Call and Return

[call x :: rest](Targ mH 0, p, K, 0) =
let {type: t™ — t",locals : ts, body : es} = lookupFunc(x) in
let p1 := buildEnv(c g, ts) in
let k1 := X(o1, p1).-[rest](|o1], Ho,p, K, 0) in
[esI([], p1, 51, [Ka])
[return :: rest](o, p, k,) = f.last(o, p)

= Discard the current trail, and install a new singleton trail containing the return
continuation
= The last continuation in the trail is always the return continuation (function body is

also a block, implicitly)
24

What is it good for?

= Now we have demonstrated the core CPS semantics

[-] : List[Inst] — (Stack x Env x Cont x Trail) — Ans

= Trail nicely gives semantics for block, loop, br, call, and return
= Compositional and tail recursive

25

What is it good for?

= Now we have demonstrated the core CPS semantics

[-] : List[Inst] — (Stack x Env x Cont x Trail) — Ans

= Trail nicely gives semantics for block, loop, br, call, and return
= Compositional and tail recursive

= What is it good for?
= Specify new extensions
= Equational reasoning
= Run Wasm programs: interpreter
= Transform Wasm programs: partial evaluator

23

Extending yWasm

= Structured loops

= Tail calls

= Exceptions

= Resumable exceptions

= WasmFX-style effect handlers (ongoing)

26

Extension 1: Tail Call

= Modeled after the current tail call proposal for WebAssembly

= Explicitly enables tail-call optimization

e € Instruction ::= - - - | return_call x

27

Extension 1: Tail Call

= Since h is a tail call, it returns to the caller of g (func f
= The rest computation after return_call hin gis e
. call g
discarded)
= Can be considered as first return, then call
(func g

return_call h

= o)
f(func h

return)

28

Extension 1: Tail Call - CPS Semantics

[return_call x :: rest](carg mH 0, p, 5, 0) =
let {type: t™ — t", locals : ts, body : es} = lookupFunc(x) in
let p1 := buildEnv(o g, ts) in
Tes]([], p1, @.last , [6.last])

= |nstead constructing new continuations as in ordinary call, using the return
continuation from the current context

= So that when return from the function body, we discard the current frame/context

29

Equational Reasoning for Tail Call

= Justifying the semantics of return_call by calculating it from the semantics of

return and call

30

Equational Reasoning for Tail Call

= Justifying the semantics of return_call by calculating it from the semantics of

return and call

= Now let’s pretend a call is made at a tail position:

[call x :: RS (72 - 0. p, . 0)

= {unfold call x}
let {type: t™ — t",locals : ts, body : es} = lookupFunc(x) in
let p1 := buildEnv(o g, ts) in
et k1 = Ao, o). RG] (|1, 40, p. v, 0) in
[esI(l], pr, 1, [a])

30

[call x :: return :: rest](0arg mH 0, p, K, 0)

= {unfold call x}
let {type: t™ — t", locals : ts, body : es} = lookupFunc(x) in
let p1 := buildEnv(o g, ts) in
let k1 == A(o1, p1). [INCEURM :: rest] (o], +0, p, K, 0) in
[esI(1l, p1, 51, [Ka])

= {unfold return}
let {type: t™ — t",locals : ts, body : es} = lookupFunc(x) in
let p1 == buildEnv(carg, ts) in

et w1 = Mow, 1) [

[[es]]([]a P1, K1, [’il])

31

let {type : t™ — t",locals : ts, body : es} := lookupFunc(x) in
let p1 := buildEnv(carg, ts) in
let k1 == A(o1, p1).0.1ast(|o1],, +o0,p) in

lesl(0, o+ i, [
= {K1 is n-equivalent to f.last, inlining x1}
let {type: t™ — t", locals : ts, body : es} = lookupFunc(x) in
let py := buildEnv(o g, ts) in
[es (0], o+, IERNERE, [ONISSED)
= {definition of return_call}

[return_call x :: rest](Carg mH 0, p, K, 0)

32

Extension 2: Try-Catch-Resume

= A hypothetical extension of resumable exceptions

= Or, effect handlers with unlabeled single operation

e € Instruction ::= - - | try es; catch esy | throw | resume

83

try

= Resumption continuation is a proper value

i32.const -1 ;; error code on the stack

throw = The resumable continuation is delimited
i32.const 2 L

call $print within the try block

cee = When try block finishes, the control flow
catch

. stack: continues to the instruction after resume
;; [-1, resumption] = How do we express this behavior?

call $print

5, Stack:

;5 [resumption]
resume

end

34

Semantics for resumable exception

» Extend continuations with meta-continuations !

k € Cont = Stack x Env x MCont — Ans
m € MCont = Stack x Env — Ans
~ € Handler = Stack x Env x Cont x MCont — Ans

v,r € Value = ... Stack x Env x MCont x Handler — Ans

lDanvy, O., Filinski, A.: Abstracting control.

85

Semantics for resumable exception

[try esi catch es; :: rest](o, p, K, 0, m,y) =
let my := A.(01, p1)-[rest](o1, p1,k,0, m,~)

let v := (o1, p1, K1, m).[es2] (o1, p1, K1, [], m1,7) in

[[esl]]([]ﬂpv "<‘30707 mla'Yl)
[throw :: rest](v :: o, p, Kk, 0, m,~)

let r:= A(01, p1, m1,71)-[rest] (o1, p1, K, 0, m1,71) in

’7([‘/7 f], p; Ko, m)

[resume :: rest](r :: o, p, k,0, m,)

let my := A.(01, p1).[rest](o1, p1,k,0, m,7)

r({l, p, m1,7)

36

Ongoing Work

= Towards CPS Semantics of WasmFX
= Working implementation for WasmFX's sheep handler semantics
= Use another trail of continuations (instead of meta-continuations)
= Formalization work-in-progress

= Implementation (in Scala) and validating against the official Wasm test suite

37

= Staging the interpreter for partial evaluation
= Turn the interpreter into a code generator
= |nterderivation and mechanization of semantics
= Correspondence the big-step / CPS / small-step semantics 23
= SpecTec
= Mechanization in theorem provers

2Danvy, 0., Millikin, K.: Refunctionalization at Work.
3Danvy, 0., Nielsen, L.R.: Defunctionalization at work.

38

= A CPS semantics for Wasm

= Use a stack of continuations for block, loop, br, call, and return
= Compositional and tail recursive
= Can be implemented as a big-step interpreter or CPS transformer

= Possible extensions

= (Hypothetical) Structured loops, try/catch, and resumable exceptions
= (Wasm Proposals): tail calls, WasmFX

= Implementation: https://github.com/Generative-Program-Analysis/wasm-cps

= Paper to appear in the proceedings of Trends in Functional Programming 2025

39

