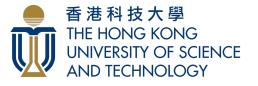
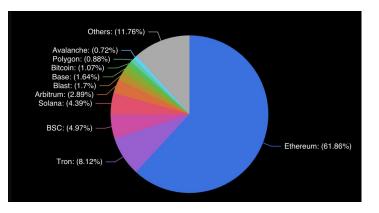
Contracts for Contracts


Consolidating Smart Contracts with Behavioral Contracts

Guannan Wei, Danning Xie, Wuqi Zhang, Yongwei Yuan, Zhuo Zhang

PLDI 2024 @ Copenhagen, Denmark

Smart Contracts


• Smart contracts

- specifying assumptions/guarantees of transactions between business parties
- autonomous programs signed and stored on a blockchain, enforcing the agreement between parties

Smart Contracts

• Smart contracts

- specifying assumptions/guarantees of transactions between business parties
- autonomous programs signed and stored on a blockchain, enforcing the agreement between parties
- **Solidity** the most popular smart contract languages to build decentralized financial applications on the Ethereum blockchain

\$59B total value locked on Ethereum

Smart Contracts - Solidity

- **Solidity** the most popular smart contract languages to build decentralized financial applications on the Ethereum blockchain
- Bugs/attacks in Solidity programs can lead to real money loss!
 - Lack of clearly specified safety conditions.

A	ttacks	Bug Bounties			
# Bugs	Fund loss	# Bugs	Bounties		
1	\$ 5,000K	2	\$ 1,630K		
7	\$ 13,950K	3	\$ 65K		
6	\$ 20,300K	1	\$ 10K		
3	\$ 5,600K	2	\$ 610K		
-	-	2	\$ 200K		
1	\$ 2,100K	2	\$ 300K		
2	1,127K	1	\$ 50K		
5	\$211,360K	-	-		
-	-	1	\$ 90K		
1	\$ 20K	-	-		
2	\$ 5,800K	-	-		
-	· -	1	\$10,000K		
-	-	1	\$ 1,050K		
28	\$265,257K	16	\$14,005K		
	# Bugs 1 7 6 3 - 1 2 5 - 1 2 5 - 1 2	1 \$ 5,000K 7 \$ 13,950K 6 \$ 20,300K 3 \$ 5,600K - - 1 \$ 2,100K 2 \$ 1,127K 5 \$211,360K - - 1 \$ 20K 2 \$ 5,800K - - - -	# Bugs Fund loss # Bugs 1 \$ 5,000K 2 7 \$ 13,950K 3 6 \$ 20,300K 1 3 \$ 5,600K 2 - - 2 1 \$ 2,100K 2 2 \$ 1,127K 1 5 \$211,360K - - - 1 1 \$ 20K - 2 \$ 5,800K - - - 1		

Zhang et al. ICSE 2023

Smart Contracts - Solidity

- **Solidity** the most popular smart contract languages to build decentralized financial applications on the Ethereum blockchain
- Bugs/attacks in Solidity programs can lead to real money loss!
 - Lack of clearly specified safety conditions.
- Solidity has not provided enough mechanisms for programmers to specify & enforce safety conditions.

Cotogoniog	Α	ttacks	Bug Bounties			
Categories	# Bugs	Fund loss	# Bugs	Bounties		
Lending	1	\$ 5,000K	2	\$ 1,630K		
Dexes	7	\$ 13,950K	3	\$ 65K		
Yield	6	\$ 20,300K	1	\$ 10K		
Services	3	\$ 5,600K	2	\$ 610K		
Derivatives	-	-	2	\$ 200K		
Yield Aggregator	1	\$ 2,100K	2	\$ 300K		
Real World Assets	2	\$ 1,127K	1	\$ 50K		
Stablecoins	5	\$211,360K	-			
Indexes	-	-	1	\$ 90K		
NFT Marketplace	1	\$ 20K	-			
NFT Lending	2	\$ 5,800K	-			
Cross Chain	-	-	1	\$10,000K		
Others	-	-	1	\$ 1,050K		
Total	28	\$265,257K	16	\$14,005K		

Zhang et al. ICSE 2023

Behavioral Contracts

• Smart contracts

- specifying assumptions/guarantees of transactions between business parties
- autonomous programs signed and stored on a blockchain, enforcing the agreement between parties

• Behavioral contracts

 specifying assumptions/guarantees between software components

Behavioral Contracts

• Smart contracts

- specifying assumptions/guarantees of transactions between business parties
- autonomous programs signed and stored on a blockchain, enforcing the agreement between parties

• Behavioral contracts

- specifying assumptions/guarantees between software components
- allowing programmers to write executable specifications in the same host language
- monitoring violations at runtime, further help with maintenance, debugging etc.

Behavioral Contracts

• Smart contracts

- specifying assumptions/guarantees of transactions between business parties
- autonomous programs signed and stored on a blockchain, enforcing the agreement between parties

Behavioral contracts

- specifying assumptions/guarantees between software components
- allowing programmers to write executable specifications in the same host language
- monitoring violations at runtime, further help with maintenance, debugging etc.

Applying "Design by Contract"

Bertrand Meyer Interactive Software Engineering

> sobject-oriented techniques steadily gain ground in the world of software development, users and prospective users of these techniques are clamoring more and more loudly for a "methodology" of object-oriented software construction — or at least for some methodological guidelines. This article presents such guidelines, whose main goal is to help improve the reliability of software systems. *Reliability* is here defined as the combination of correctness and robustness or, more prosaically, as the absence of bugs.

> Everyone developing software systems, or just using them, knows how pressing this question of reliability is in the current state of software engineering. Yet the rapidly growing literature on object-oriented analysis, design, and programming includes remarkably few contributions on how to make object-oriented software more reliable. This is surprising and regretrable, since at least three reasons justify devoting particular attention to reliability in the context of object-oriented development:

This Work - ConSol:

A linguistic extension to Solidity and a transpiler that supports expressing and monitoring rich pre/post-conditions as specifications.

- runtime validation
- improve readability & maintainability
- can be used to guide fuzzing, static verification, etc.

This Work - ConSol:

A linguistic extension to Solidity and a transpiler that supports expressing and monitoring rich pre/post-conditions as specifications.

```
function getPrice(address chainlink) returns (uint256) {
    (_, uint256 ethPrice, _, _, _) = chainlink.latestRoundData();
    return ORACLE.getRate() * ethPrice;
}
```

getPrice(a_chainlink_address)

This Work - ConSol:

A linguistic extension to Solidity and a transpiler that supports expressing and monitoring rich pre/post-conditions as specifications.

```
getPrice(chainlink) returns (price)
ensures price * 0.95 < ORACLE.getLatestPrice() && price * 1.05 > ORACLE.getLatestPrice()
function getPrice(address chainlink) returns (uint256) {
    (_, uint256 ethPrice, _, _, _) = chainlink.latestRoundData();
    return ORACLE.getRate() * ethPrice;
}
```

```
ensure the post-condition
```

getPrice(a_chainlink_address)

This Work - ConSol:

A linguistic extension to Solidity and a transpiler that supports expressing and monitoring rich pre/post-conditions as specifications.

```
getPrice(chainlink) returns (price)
ensures price * 0.95 < ORACLE.getLatestPrice() && price * 1.05 > ORACLE.getLatestPrice()

function getPrice(address chainlink) returns (uint256) {
    (_, uint256 ethPrice, _, _, _) = chainlink.latestRoundData();
    return ORACLE.getRate() * ethPrice;
}

ensure the post-condition
getPrice(a_chainlink_address)
check at call-sites
during runtime
Excerpted from the Sturdy confract
```

This Work - ConSol:

A linguistic extension to Solidity and a transpiler that supports expressing and monitoring rich pre/post-conditions as specifications.

what if we want to say something about the argument chainlink?

getPrice(chainlink) returns (price)

ensures price * 0.95 < ORACLE.getLatestPrice() && price * 1.05 > ORACLE.getLatestPrice()

```
function getPrice(address chainlink) returns (uint256) {
    (_, uint256 ethPrice, _, _, _) = chainlink.latestRoundData();
    return ORACLE.getRate() * ethPrice;
}    - 160-bits integers
```

- first-class values

getPrice(a_chainlink_address)

Excerpted from the Sturdy contract

This Work - ConSol:

A linguistic extension to Solidity and a transpiler that supports expressing and monitoring rich pre/post-conditions as specifications.

what if we want to say something

about the argument chainlink?

getPrice(chainlink) returns (price)

ensures price * 0.95 < ORACLE.getLatestPrice() & & price * 1.05 > ORACLE.getLatestPrice()

```
function getPrice(address chainlink) returns (uint256) {
    (_, uint256 ethPrice, _, _, _) = chainlink.latestRoundData();
    return ORACLE.getRate() * ethPrice;
}
```

- 160-bits integers
- first-class values
- contains callable functions

Excerpted from the Sturdy contract

getPrice(a_chainlink_address)

calling getPrice

This Work - ConSol:

A linguistic extension to Solidity and a transpiler that supports expressing and monitoring rich pre/post-conditions as specifications.

what if we want to say something

about the argument chainlink?

getPrice(chainlink) returns (price)

ensures price * 0.95 < ORACLE.getLatestPrice() && price * 1.05 > ORACLE.getLatestPrice()

```
function getPrice(address chainlink) returns (uint256) {
    (_, uint256 ethPrice, _, _, _) = chainlink.latestRoundData();
    return ORACLE.getRate() * ethPrice;
}
```

getPrice(a_chainlink_address) cannot be checked when

- 160-bits integers
- first-class values
- contains callable functions

Excerpted from the Sturdy contract

This Work - ConSol:

A linguistic extension to Solidity and a transpiler that supports expressing and monitoring rich pre/post-conditions as specifications.

★ Expressing and monitoring conditions for addresses and their latent calls.

This Work - ConSol:

A linguistic extension to Solidity and a transpiler that supports expressing and monitoring rich pre/post-conditions as specifications.

Expressing and monitoring conditions for addresses and their latent calls. ★

Contracts for High	er-Order Functions
Northeaster College of Cor	Matthias Felleisen rn University mputer Science usetts 02115, USA
Abstract	1 Introduction
Assertions play an important role in the construction of robust soft- ware. Their use in programming languages dates back to the 1970s. Eiffel, an object-oriented programming language, wholeheartedly adopted assertions and developed the "Design by Contract" philos- ophy. Indeed, the entire object-oriented community recognizes the value of exercision band opartment on workshole.	Dynamically enforced pre- and post-condition contrac widely used in procedural and object-oriented langua 17, 20, 21, 22, 25, 31]. As Rosenblum [27] has shown, these contracts have great practical value in improvin ness of systems in procedural languages. Eiffel [22] ev mention in the product of the product of the product of the mention of the product of the product of the product of the mention of the product of the product of the product of the mention of the product of the product of the product of the mention of the product of the product of the product of the product of the product of the product of the product of the mention of the product of the produ

In contrast, languages with higher-order functions do not support assertion-based contracts. Because predicates on functions are

ts have been ges [11, 14 for example the robust by Contract"). Although Java [12] does not support contracts, it i one of the most requested extensions

borrowing ideas from "Contracts for Higher-Order Functions", delaying the check of behaviors of functions as values

★ Expressing and monitoring conditions for addresses and their latent calls.

post-conditions of calling

chainlink

```
function getPrice(address chainlink) returns (uint256) {
    (_, uint256 ethPrice, _, uint256 updatedAt, _) = chainlink.latestRoundData();
    require(updatedAt > block.timestamp - 1 days);
    require(ethPrice > 0);
    return ORACLE.getRate() * ethPrice;
}
```

★ Expressing and monitoring conditions for addresses and their latent calls.

```
getPrice(chainlink) returns (price)
ensures price * 0.95 < ORACLE.getLatestPrice() & & price * 1.05 > ORACLE.getLatestPrice()
where {
    chainlink.latestRoundData() returns (, answer, , updatedAt, )
+
                                                                      post-conditions of calling
    ensures updatedAt > block.timestamp - 1 days && answer > 0
+
                                                                              chainlink
function getPrice(address chainlink) returns (uint256) {
    (_, uint256 ethPrice, _, uint256 updatedAt, _) = chainlink.latestRoundData();
    require(updatedAt > block.timestamp - 1 days);
    require(ethPrice > 0);
    return ORACLE.getRate() * ethPrice;
                                                                            Excerpted from the Sturdy contract
```

★ Expressing and monitoring conditions for addresses and their latent calls.

```
getPrice(chainlink) returns (price)
ensures price * 0.95 < ORACLE.getLatestPrice() && price * 1.05 > ORACLE.getLatestPrice()
where {
+ chainlink.latestRoundData() returns (_, answer, _, updatedAt, _)
+ ensures updatedAt > block.timestamp - 1 days && answer > 0
} post-conditions of calling
chainlink
function getPrice(address chainlink) returns (uint256) {
    (_, uint256 ethPrice, _, uint256 updatedAt, _) = chainlink.latestRoundData();
    return ORACLE.getRate() * ethPrice;
}
```

- ★ Expressing and monitoring conditions for addresses and their latent calls.
- ★ Good for decoupling repeated, low-level checks from business logic.

- ★ Expressing and monitoring conditions for addresses and their latent calls.
- **Good for** decoupling repeated, low-level checks from business logic.
 - ? **Need to** know when to perform the checks of address calls.

Challenge: addresses are first-class values and can flow around!

Implementation

• ConSol implements a whole-program transformation.

Solidity programs with spec annotations.

Ordinary Solidity programs.

 $F[f(x_1,\ldots):(y_1,\ldots)]$ requires e_1 ensures e_2 where (σ_1,\ldots) fun $f(t_1 x_1,...): (r_1,...) m \{s\}$ fun $f(t_1 x_1, ...) : (r_1, ...) m$ { return $unwrap(f_{guard}(wrap(x_1), \ldots))$ } fun $f_{pre}(t_1^{\uparrow} x_1, \ldots)$: () private { require(E $\llbracket e_1 \rrbracket$) } fun $f_{post}(t_1^{\uparrow} x_1, \dots, r_1^{\uparrow} y_1, \dots)$: () private { require(E[[e_1]]) } fun $f_{guard}(t_1^{\uparrow} x_1, \ldots) : (r_1^{\uparrow}, \ldots)$ private { $f_{pre}(x_1,...)$ attachSpec $(x_1, ..., \sigma_1, ...)$ $(r_1^{\uparrow} y_1, ...) = f_{worker}(x_1, ...)$ attachSpec $(y_1, ..., \sigma_1, ...)$ $f_{post}(x_1,\ldots,y_1,\ldots)$ return (y_1, \ldots) } fun $f_{worker}(t_1^{\uparrow} x_1, \ldots) : (r_1^{\uparrow}, \ldots)$ private { S[[s]] } Fig. 4. The translation semantics of λ_{ConSoL} (functions).

more details in the paper

- Change the value representation of addresses so that we can encode additional information about conditions.
- When calling the addresses, we decode and decide what condition of the address call should be checked.

```
F[f(x_1,\ldots):(y_1,\ldots)] requires e_1 ensures e_2 where (\sigma_1,\ldots)
  fun f(t_1 x_1,...): (r_1,...) m \{s\}
    fun f(t_1 x_1,...): (r_1,...) m {
       return unwrap(f_{guard}(wrap(x_1), \ldots)) }
    fun f_{pre}(t_1^{\uparrow} x_1, \ldots) : () private { require(E[e_1]) }
    fun f_{post}(t_1^{\uparrow} x_1, \dots, r_1^{\uparrow} y_1, \dots) : () private { require(E[[e_1]]) }
    fun f_{guard}(t_1^{\uparrow} x_1, \ldots) : (r_1^{\uparrow}, \ldots) private {
       f_{pre}(x_1,...)
       attachSpec(x_1, ..., \sigma_1, ...)
       (r_1^{\uparrow} y_1, \ldots) = f_{worker}(x_1, \ldots)
        attachSpec(u_1, ..., \sigma_1, ...)
       f_{post}(x_1,\ldots,y_1,\ldots)
       return (y_1, \ldots) }
    fun f_{worker}(t_1^{\uparrow} x_1, \ldots) : (r_1^{\uparrow}, \ldots) private { S[[s]] }
      Fig. 4. The translation semantics of \lambda_{ConSol} (functions).
```

- Change the value representation of addresses so that we can encode additional information about conditions.
- When calling the addresses, we decode and decide what condition of the address call should be checked.

```
// spec for addr omitted
function f(address addr) {
    ...
    addr.g(x)
    ...
}
```

translates to

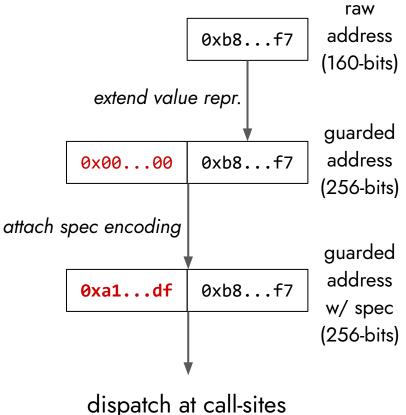
```
function f(guarded_address addr) {
   addr = attach_spec(addr, [encoded_spec])
   ...
   dispatch_g(addr, x)
   ...
}
```

- Change the value representation of addresses so that we can encode additional information about conditions.
- When calling the addresses, we decode and decide what condition of the address call should be checked.

```
// spec for addr omitted
function f(address addr) {
    ...
    addr.g(x)
    ...
}
```

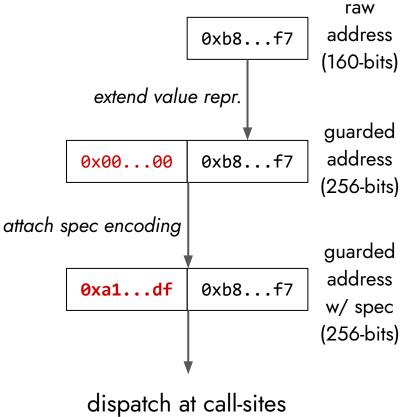
translates to

```
function f(guarded_address addr) {
   addr = attach_spec(addr, [encoded_spec])
   ...
   dispatch_g(addr, x)
   ...
}
   rewrite call-site, decide what
   needs to be checked
```


- Change the value representation of addresses so that we can encode additional information about conditions.
- When calling the addresses, we decode and decide what condition of the address call should be checked.
- ★ Must be careful for efficiency due to EVM's cost model!
 Storing additional information causes more transaction fees.

```
// spec for addr omitted
function f(address addr) {
    ...
    addr.g(x)
    ...
}
```

translates to


```
function f(guarded_address addr) {
   addr = attach_spec(addr, [encoded_spec])
   ...
   dispatch_g(addr, x)
   ...
}
```

 Must be careful for efficiency due to EVM's cost model!
 Storing additional information causes more transaction fees, but the smallest unit of storage is 256 bits!

- Must be careful for efficiency due to EVM's cost model!
 Storing additional information causes more transaction fees, but the smallest unit of storage is 256 bits!
- **Solution:** bit-stealing extend 160-bits address values to 256-bits, use the 96-MSBs to encode spec provenance information.

very little overhead!

Evaluation

- Can we use ConSol to express security defenses and decouple them from the main business logic?
- How much overhead is introduced in ConSol-translated programs?

Evaluation - Effectiveness

- Can we use ConSol to express security defenses and decouple them from the main business logic?
 Table 1. Summary of studied cases. *LR* denotes LoC Reduced.
- Case studies:
 20 real-world attacks
 154.32M loss in total

Project	Date	Loss (\$)	Root Cause of Vulnerability				
Qubit [17]	01-28-22	80M	Zero Address Function Call	15.38			
TecraSpace [80]	02-04-22	63K	Any Token is Destroyed	50.00			
Umbrella [86]	03-20-22	700K	Integer Over/Underflow	33.33			
XCarnival [90]	06-26-22	3.87M	Infinite Number of Loans	26.32			
BadGuys [65]	09-02-22	NFT	Missing Airdrop Eligibility Check	94.12			
EFLeverVault [50]	10-14-22		Business Logic Flaw	25.00			
N00d [8]	10-26-22	29K	Reentrancy	11.11			
Dexible [61]	02-17-23	1.5M	Arbitrary External Call	11.76			
SushiSwap [72] 04-09-23 3.3M Unchecked User Input		Unchecked User Input	54.55				
		468K	K Erroneous Accounting				
Inknown [81] 05-31-23 111K Missing Slippage Check		30.00					
Sturdy [9]			57.14				
LEVUSDC [28]			33.33				
AzukiDAO [70]	ukiDAO [70] 07-03-23 69K Invalid Signature Verification		48.15				
Bao 6	07-04-23	46K	Inflation Manipulate	83.33			
Miner [54]			83.33				
YearnFinance [5]	04-13-23	11.6M	Misconfiguration	-			
ZunamiProtocol [44]	08-14-23	2M	Price Manipulation	-			
KyberSwap [10]	11-22-23	48M	Precision Loss	-			
Time [67]	12-06-23	188.9K	Arbitrary Address Spoofing Attack	-			

Evaluation - Effectiveness

- Can we use ConSol to express security defenses and decouple them from the main business logic?
- Case studies:
 20 real-world attacks
 154.32M loss in total
- Effective as low-level assertions, simplify the code with better readability

Project	Date	Loss (\$)	Root Cause of Vulnerability	LR (%)
Qubit [17]	01-28-22	80M	Zero Address Function Call	15.38
TecraSpace [80]	02-04-22	63K	Any Token is Destroyed	50.00
Umbrella [86]	03-20-22	700K	Integer Over/Underflow	33.33
XCarnival [90]	06-26-22	3.87M	Infinite Number of Loans	26.32
BadGuys [65]	09-02-22	NFT	Missing Airdrop Eligibility Check	94.12
EFLeverVault [50]	10-14-22	1M	Business Logic Flaw	25.00
N00d [8]	10-26-22	29K	Reentrancy	11.11
Dexible [61]	02-17-23	1.5M	Arbitrary External Call	11.76
SushiSwap [72]	04-09-23	3.3M	Unchecked User Input	54.55
SwaposV2 [18]	04-16-23	468K	Erroneous Accounting	25.00
Unknown [81]	05-31-23	111K	Missing Slippage Check	30.00
Sturdy [9]	06-12-23	800K	Readonly Reentrancy	57.14
LEVUSDC [28]	06-15-23	105K	Access Control	33.33
AzukiDAO [70]	07-03-23	69K	Invalid Signature Verification	48.15
Bao [6]	07-04-23	46K	Inflation Manipulate	83.33
Miner [54]	02-15-24	466K	Lack of Validation	83.33
YearnFinance [5]	04-13-23	11.6M	Misconfiguration	-
ZunamiProtocol [44]	08-14-23	2M	Price Manipulation	-
KyberSwap [10]	11-22-23	48M	Precision Loss	-
Time [67]	12-06-23	188.9K	Arbitrary Address Spoofing Attack	-

Evaluation - Efficiency

- How much overhead is introduced in ConSol-translated programs?
- Benchmark programs:
 - 16 real-world attacks
 - 23 contracts from ERC20, ERC721, and ERC1202 (collected by Li et al, PLDI 20)
- Baseline: low-level assertion-patched contracts

Evaluation - Efficiency

- How much overhead is introduced in ConSol-translated programs?
- Results on 16 attacks:

0.207% more gas consumption

Project	#Tx	by Ass	ertions	by ConSol		
Tioject	#1X	GFI (\$)	GIR (%)	GFI (\$)	GIR (%)	
Qubit [17]	0	-	-	-	-	
TecraSpace [80]	4245	0.000	0.000	0.000	0.000	
Umbrella [86]	58	0.001	0.111	0.001	0.015	
XCarnival [90]	365	0.016	0.029	0.040	0.072	
BadGuys [65]	950	0.003	0.096	0.005	0.166	
EFLeverVault [50]	21	0.027	0.089	0.031	0.102	
N00d [8]	111	0.009	0.547	0.009	0.571	
Dexible [61]	54	0.126	0.230	0.178	0.324	
SushiSwap [72]	202	0.007	0.099	0.007	0.106	
SwaposV2 [18]	7	0.003	0.048	0.004	0.068	
Unknown [81]	10	0.381	0.002	0.438	0.003	
Sturdy [9]	23	0.940	1.126	0.941	1.128	
LEVUSDC [28]	45	0.008	0.042	0.008	0.044	
AzukiDAO [70]	2937	0.019	0.227	0.022	0.257	
Bao [6]	15	0.001	0.005	0.002	0.018	
Miner [54]	3922	0.002	0.007	0.011	0.030	
Avg.	-	0.110	0.190	0.121	0.207	

34

Evaluation - Efficiency

- How much overhead is introduced in ConSol-translated programs?
- Results on 16 attacks:

0.207% more gas consumption

• Results on ERC20/721/1202: **0.290%** more gas consumption

Contract	BEC	USDT	ZRX	THETA	INB	HEDG	DAI	EKT	XIN	нот	SWP	VOTE
Original ConSol GIR (%) LR (%)	960,999 965,478 0.47 39.10	62,426 62,910 0.78 30.83	51,468 51,468 0.00 0.00	51,540 51,777 0.46 38.89	53,738 53,986 0.46 38.89	53,941 54,110 0.31 50.00	53,696 53,865 0.31 50.00	51,911 52,307 0.76 40.83		51,525 51,773 0.48 44.44	55,728 55,886 0.28 50.00	210,395 210,543 0.07 20.83
Contract	DOZ	MCHH	СС	CLV	LAND	CAR	DS	KB	TRINK	PACKS	BKC	EGG
Original ConSol GIR (%) LR (%)	2,163,066 2,166,247 0.15 43.19	221,235 221,526 0.13 33.33	214,598 215,082 0.23 35.71		215,732 216,201 0.22 33.33	,	23 21 5 (-,	214,484 214,965 0.22 35.71	260,566 260,920 0.14 33.33	301,808 302,199 0.13 37.05	215,428 215,791 0.17 37.50

Summary

- **ConSol**: Behavioral Contracts for Smart Contracts
- **Expressive**: specifying and monitoring behaviors of latent address calls
- **Efficient**: marginal gas consumption on Ethereum

• Prototype implementation and evaluation data: https://github.com/Kraks/contract-for-contract