
Contracts for Contracts
Consolidating Smart Contracts

with Behavioral Contracts

Guannan Wei, Danning Xie, Wuqi Zhang, Yongwei Yuan, Zhuo Zhang

PLDI 2024 @ Copenhagen, Denmark

Smart Contracts

● Smart contracts
○ specifying assumptions/guarantees of transactions between business parties
○ autonomous programs signed and stored on a blockchain, enforcing the

agreement between parties

2

Smart Contracts

● Smart contracts
○ specifying assumptions/guarantees of transactions between business parties
○ autonomous programs signed and stored on a blockchain, enforcing the

agreement between parties
● Solidity - the most popular smart contract languages to build decentralized

financial applications on the Ethereum blockchain

$59B total value locked on Ethereum

3

Smart Contracts - Solidity

● Solidity - the most popular smart contract languages to build decentralized
financial applications on the Ethereum blockchain

● Bugs/attacks in Solidity programs can lead to real money loss!
○ Lack of clearly specified

safety conditions.

Zhang et al. ICSE 20234

Smart Contracts - Solidity

● Solidity - the most popular smart contract languages to build decentralized
financial applications on the Ethereum blockchain

● Bugs/attacks in Solidity programs can lead to real money loss!
○ Lack of clearly specified

safety conditions.

● Solidity has not provided enough
mechanisms for programmers to
specify & enforce safety conditions.

Zhang et al. ICSE 20235

Behavioral Contracts

● Smart contracts
○ specifying assumptions/guarantees of transactions between business parties
○ autonomous programs signed and stored on a blockchain, enforcing the

agreement between parties

● Behavioral contracts
○ specifying assumptions/guarantees between

software components

6

Behavioral Contracts

● Smart contracts
○ specifying assumptions/guarantees of transactions between business parties
○ autonomous programs signed and stored on a blockchain, enforcing the

agreement between parties

● Behavioral contracts
○ specifying assumptions/guarantees between

software components
○ allowing programmers to write executable

specifications in the same host language
○ monitoring violations at runtime, further help

with maintenance, debugging etc.
7

Behavioral Contracts

● Smart contracts
○ specifying assumptions/guarantees of transactions between business parties
○ autonomous programs signed and stored on a blockchain, enforcing the

agreement between parties

● Behavioral contracts
○ specifying assumptions/guarantees between

software components
○ allowing programmers to write executable

specifications in the same host language
○ monitoring violations at runtime, further help

with maintenance, debugging etc.
8

Smart Contracts + Behavioral Contracts

This Work - ConSol:
A linguistic extension to Solidity and a transpiler that supports expressing and
monitoring rich pre/post-conditions as specifications.

● runtime validation
● improve readability & maintainability
● can be used to guide fuzzing, static verification, etc.

9

Smart Contracts + Behavioral Contracts

This Work - ConSol:
A linguistic extension to Solidity and a transpiler that supports expressing and
monitoring rich pre/post-conditions as specifications.

function getPrice(address chainlink) returns (uint256) {
 (_, uint256 ethPrice, _, _, _) = chainlink.latestRoundData();
 return ORACLE.getRate() * ethPrice;
}

getPrice(a_chainlink_address)

Excerpted from the Sturdy contract10

Smart Contracts + Behavioral Contracts

This Work - ConSol:
A linguistic extension to Solidity and a transpiler that supports expressing and
monitoring rich pre/post-conditions as specifications.

getPrice(chainlink) returns (price)
ensures price * 0.95 < ORACLE.getLatestPrice() && price * 1.05 > ORACLE.getLatestPrice()

function getPrice(address chainlink) returns (uint256) {
 (_, uint256 ethPrice, _, _, _) = chainlink.latestRoundData();
 return ORACLE.getRate() * ethPrice;
}

getPrice(a_chainlink_address)

ensure the post-condition

Excerpted from the Sturdy contract11

Smart Contracts + Behavioral Contracts

This Work - ConSol:
A linguistic extension to Solidity and a transpiler that supports expressing and
monitoring rich pre/post-conditions as specifications.

getPrice(chainlink) returns (price)
ensures price * 0.95 < ORACLE.getLatestPrice() && price * 1.05 > ORACLE.getLatestPrice()

function getPrice(address chainlink) returns (uint256) {
 (_, uint256 ethPrice, _, _, _) = chainlink.latestRoundData();
 return ORACLE.getRate() * ethPrice;
}

getPrice(a_chainlink_address)

ensure the post-condition
check at call-sites
during runtime

Excerpted from the Sturdy contract12

Smart Contracts + Behavioral Contracts

This Work - ConSol:
A linguistic extension to Solidity and a transpiler that supports expressing and
monitoring rich pre/post-conditions as specifications.

getPrice(chainlink) returns (price)
ensures price * 0.95 < ORACLE.getLatestPrice() && price * 1.05 > ORACLE.getLatestPrice()

function getPrice(address chainlink) returns (uint256) {
 (_, uint256 ethPrice, _, _, _) = chainlink.latestRoundData();
 return ORACLE.getRate() * ethPrice;
}

getPrice(a_chainlink_address)

what if we want to say something
about the argument chainlink?

Excerpted from the Sturdy contract

- 160-bits integers
- first-class values

13

Smart Contracts + Behavioral Contracts

This Work - ConSol:
A linguistic extension to Solidity and a transpiler that supports expressing and
monitoring rich pre/post-conditions as specifications.

getPrice(chainlink) returns (price)
ensures price * 0.95 < ORACLE.getLatestPrice() && price * 1.05 > ORACLE.getLatestPrice()

function getPrice(address chainlink) returns (uint256) {
 (_, uint256 ethPrice, _, _, _) = chainlink.latestRoundData();
 return ORACLE.getRate() * ethPrice;
}

getPrice(a_chainlink_address)

what if we want to say something
about the argument chainlink?

- 160-bits integers
- first-class values
- contains callable functions

Excerpted from the Sturdy contract14

Smart Contracts + Behavioral Contracts

This Work - ConSol:
A linguistic extension to Solidity and a transpiler that supports expressing and
monitoring rich pre/post-conditions as specifications.

getPrice(chainlink) returns (price)
ensures price * 0.95 < ORACLE.getLatestPrice() && price * 1.05 > ORACLE.getLatestPrice()

function getPrice(address chainlink) returns (uint256) {
 (_, uint256 ethPrice, _, _, _) = chainlink.latestRoundData();
 return ORACLE.getRate() * ethPrice;
}

getPrice(a_chainlink_address)

what if we want to say something
about the argument chainlink?

cannot be checked when
calling getPrice

- 160-bits integers
- first-class values
- contains callable functions

Excerpted from the Sturdy contract15

Smart Contracts + Behavioral Contracts

This Work - ConSol:
A linguistic extension to Solidity and a transpiler that supports expressing and
monitoring rich pre/post-conditions as specifications.

★ Expressing and monitoring conditions for addresses and their latent calls.

16

Smart Contracts + Behavioral Contracts

This Work - ConSol:
A linguistic extension to Solidity and a transpiler that supports expressing and
monitoring rich pre/post-conditions as specifications.

★ Expressing and monitoring conditions for addresses and their latent calls.

ICFP 2002

borrowing ideas from “Contracts for
Higher-Order Functions”, delaying the
check of behaviors of functions as values

17

Specifying Conditions for Solidity Addresses

★ Expressing and monitoring conditions for addresses and their latent calls.

function getPrice(address chainlink) returns (uint256) {
 (_, uint256 ethPrice, _, uint256 updatedAt, _) = chainlink.latestRoundData();
 require(updatedAt > block.timestamp - 1 days);
 require(ethPrice > 0);
 return ORACLE.getRate() * ethPrice;
}

post-conditions of calling
chainlink

Excerpted from the Sturdy contract18

Specifying Conditions for Solidity Addresses

getPrice(chainlink) returns (price)
ensures price * 0.95 < ORACLE.getLatestPrice() && price * 1.05 > ORACLE.getLatestPrice()
where {
+ chainlink.latestRoundData() returns (_, answer, _, updatedAt, _)
+ ensures updatedAt > block.timestamp − 1 days && answer > 0
}

function getPrice(address chainlink) returns (uint256) {
 (_, uint256 ethPrice, _, uint256 updatedAt, _) = chainlink.latestRoundData();
- require(updatedAt > block.timestamp - 1 days);
- require(ethPrice > 0);
 return ORACLE.getRate() * ethPrice;
}

post-conditions of calling
chainlink

★ Expressing and monitoring conditions for addresses and their latent calls.

Excerpted from the Sturdy contract19

Specifying Conditions for Solidity Addresses

getPrice(chainlink) returns (price)
ensures price * 0.95 < ORACLE.getLatestPrice() && price * 1.05 > ORACLE.getLatestPrice()
where {
+ chainlink.latestRoundData() returns (_, answer, _, updatedAt, _)
+ ensures updatedAt > block.timestamp − 1 days && answer > 0
}

function getPrice(address chainlink) returns (uint256) {
 (_, uint256 ethPrice, _, uint256 updatedAt, _) = chainlink.latestRoundData();
 return ORACLE.getRate() * ethPrice;
}

post-conditions of calling
chainlink

★ Expressing and monitoring conditions for addresses and their latent calls.

Excerpted from the Sturdy contract20

Specifying Conditions for Solidity Addresses

★ Expressing and monitoring conditions for addresses and their latent calls.

★ Good for decoupling repeated, low-level checks from business logic.

21

Specifying Conditions for Solidity Addresses

★ Expressing and monitoring conditions for addresses and their latent calls.

★ Good for decoupling repeated, low-level checks from business logic.

? Need to know when to perform the checks of address calls.

Challenge: addresses are first-class values and can flow around!

22

Implementation

● ConSol implements a whole-program
transformation.

more details in the paper

ConSol

Solidity programs
with spec annotations.

Ordinary Solidity
programs.

23

Implementation - Addresses

● Change the value representation of
addresses so that we can encode
additional information about conditions.

● When calling the addresses, we decode
and decide what condition of the
address call should be checked.

more details in the paper
24

Implementation - Addresses

● Change the value representation of
addresses so that we can encode
additional information about conditions.

● When calling the addresses, we decode
and decide what condition of the
address call should be checked.

// spec for addr omitted
function f(address addr) {
 ...
 addr.g(x)
 ...
}

function f(guarded_address addr) {
 addr = attach_spec(addr, [encoded_spec])
 ...
 dispatch_g(addr, x)
 ...
}

translates to

25

Implementation - Addresses

● Change the value representation of
addresses so that we can encode
additional information about conditions.

● When calling the addresses, we decode
and decide what condition of the
address call should be checked.

// spec for addr omitted
function f(address addr) {
 ...
 addr.g(x)
 ...
}

function f(guarded_address addr) {
 addr = attach_spec(addr, [encoded_spec])
 ...
 dispatch_g(addr, x)
 ...
}

translates to

rewrite call-site, decide what
needs to be checked

26

Implementation - Addresses

● Change the value representation of
addresses so that we can encode
additional information about conditions.

● When calling the addresses, we decode
and decide what condition of the
address call should be checked.

★ Must be careful for efficiency due to
EVM’s cost model!
Storing additional information causes
more transaction fees.

// spec for addr omitted
function f(address addr) {
 ...
 addr.g(x)
 ...
}

function f(guarded_address addr) {
 addr = attach_spec(addr, [encoded_spec])
 ...
 dispatch_g(addr, x)
 ...
}

translates to

27

Implementation - Addresses

● Must be careful for efficiency due to
EVM’s cost model!
Storing additional information causes
more transaction fees, but the smallest
unit of storage is 256 bits!

0xb8...f7

0xb8...f70x00...00

0xb8...f70xa1...df

raw
address

(160-bits)

guarded
address

(256-bits)

guarded
address
w/ spec

(256-bits)

dispatch at call-sites

attach spec encoding

extend value repr.

28

Implementation - Addresses

● Must be careful for efficiency due to
EVM’s cost model!
Storing additional information causes
more transaction fees, but the smallest
unit of storage is 256 bits!

● Solution: bit-stealing
extend 160-bits address values to
256-bits, use the 96-MSBs to encode
spec provenance information.

very little overhead!

0xb8...f7

0xb8...f70x00...00

0xb8...f70xa1...df

raw
address

(160-bits)

guarded
address

(256-bits)

guarded
address
w/ spec

(256-bits)

dispatch at call-sites

attach spec encoding

extend value repr.

29

Evaluation

● Can we use ConSol to express security defenses and decouple them from the
main business logic?

● How much overhead is introduced in ConSol-translated programs?

30

Evaluation - Effectiveness

● Can we use ConSol to express security defenses and decouple them from the
main business logic?

● Case studies:
20 real-world attacks
154.32M loss in total

31

Evaluation - Effectiveness

● Can we use ConSol to express security defenses and decouple them from the
main business logic?

● Case studies:
20 real-world attacks
154.32M loss in total

● Effective as low-level assertions,
simplify the code with better
readability

32

Evaluation - Efficiency

● How much overhead is introduced in ConSol-translated programs?

● Benchmark programs:
○ 16 real-world attacks
○ 23 contracts from ERC20, ERC721, and ERC1202 (collected by Li et al, PLDI

20)
● Baseline: low-level assertion-patched contracts

33

Evaluation - Efficiency

● How much overhead is introduced in ConSol-translated programs?

● Results on 16 attacks:

0.207% more gas consumption

34

Evaluation - Efficiency

● How much overhead is introduced in ConSol-translated programs?

● Results on 16 attacks:

0.207% more gas consumption

● Results on ERC20/721/1202: 0.290% more gas consumption

35

Summary

● ConSol: Behavioral Contracts for Smart Contracts
● Expressive: specifying and monitoring behaviors of latent address calls
● Efficient: marginal gas consumption on Ethereum

● Prototype implementation and evaluation data:
https://github.com/Kraks/contract-for-contract

Thank you!
36

