Contracts for Contracts

Consolidating Smart Contracts
with Behavioral Contracts

Guannan Wei, Danning Xie, Wugi Zhang, Yongwei Yuan, Zhuo Zhang
PLDI 2024 @ Copenhagen, Denmark

g > & EERBASD
s T THE HONG KONG
PURDUE Q‘ Llﬂj) UNIVERSITY OF SCIENCE

UNIVERSITY. AND TECHNOLOGY

Smart Contracts

e Smart contracts
o specifying assumptions/guarantees of transactions between business parties
o autonomous programs signed and stored on a blockchain, enforcing the
agreement between parties

Smart Contracts

Smart contracts
o specifying assumptions/guarantees of transactions between business parties
o autonomous programs signed and stored on a blockchain, enforcing the
agreement between parties
Solidity - the most popular smart contract languages to build decentralized
financial applications on the Ethereum blockchain

Others: (11.76%) —

Avalanche: (0.72%) —\
Polygon: (0.88%) —
Bitcoin: (1.0 —4
Base: (%,

Blast: /o)
Arbitrum: (2.89%)

Solana: (439%) S59B total value locked on Ethereum

BSC: (4.97%)
Ethereum: (61.86%)

Tron: (8.12%)

Smart Contracts - Solidity

Solidity - the most popular smart contract languages to build decentralized

financial applications on the Ethereum blockchain

Bugs/attacks in Solidity programs can lead to real money loss!

O

Lack of clearly specified
safety conditions.

Attacks Bug Bounties
Categories

Bugs Fund loss # Bugs Bounties

Lending 1 $ 5,000K 2 $ 1,630K
Dexes 7 $ 13,950K 3 $ 65K
Yield 6 $ 20,300K 1 $ 10K
Services 3 $ 5,600K 2 $ 610K
Derivatives - - 2 $ 200K
Yield Aggregator 1 $ 2,100K 2 $ 300K
Real World Assets 2 $ 1,127K 1 $ 50K
Stablecoins 5 $211,360K - -
Indexes - - 1 $ 90K
NFT Marketplace 1 $ 20K - -
NFT Lending 2 $ 5,800K - -
Cross Chain - - 1 $10,000K
Others 1 $ 1,050K
Total 28 $265,257K 16 $14,005K

Zhang et al. ICSE 2023

Smart Contracts - Solidity

Solidity - the most popular smart contract languages to build decentralized

financial applications on the Ethereum blockchain

Bugs/attacks in Solidity programs can lead to real money loss!

o Lack of clearly specified
safety conditions.

Solidity has not provided enough
mechanisms for programmers to
specify & enforce safety conditions.

Attacks Bug Bounties
Categories

Bugs Fund loss # Bugs Bounties

Lending 1 $ 5,000K 2 $ 1,630K
Dexes 7 $ 13,950K 3 $ 65K
Yield 6 $ 20,300K 1 $ 10K
Services 3 $ 5,600K 2 $ 610K
Derivatives - - 2 $ 200K
Yield Aggregator 1 $ 2,100K 2 $ 300K
Real World Assets 2 $ 1,127K 1 $ 50K
Stablecoins 5 $211,360K - -
Indexes - - 1 $ 90K
NFT Marketplace 1 $ 20K - -
NFT Lending 2 $ 5,800K - -
Cross Chain - - 1 $10,000K
Others 1 $ 1,050K
Total 28 $265,257K 16 $14,005K

Zhang et al. ICSE 2023

Behavioral Contracts

e Smart contracts
o specifying assumptions/guarantees of transactions between business parties
o autonomous programs signed and stored on a blockchain, enforcing the
agreement between parties

e Behavioral contracts
o specifying assumptions/guarantees between
software components

Behavioral Contracts

e Smart contracts
o specifying assumptions/guarantees of transactions between business parties
o autonomous programs signed and stored on a blockchain, enforcing the

agreement between parties

e Behavioral contracts
o specifying assumptions/guarantees between
software components
o allowing programmers to write executable
specifications in the same host language
o monitoring violations at runtime, further help
with maintenance, debugging etc.

Behavioral Contracts

Smart contracts

©)

©)

specifying assumptions/guarantees of transactions between business parties

autonomous programs signed and stored on a blockchain, enforcing the

agreement between parties

Behavioral contracts

©)

specifying assumptions/guarantees between
software components

allowing programmers to write executable
specifications in the same host language
monitoring violations at runtime, further help
with maintenance, debugging etc.

Applying “Design by
Contract”

Bertrand Meyer

Interactive Software Engineering

Smart Contracts + Behavioral Contracts

This Work - ConSol:
A linguistic extension to Solidity and a transpiler that supports expressing and
monitoring rich pre/post-conditions as specifications.

e runtime validation
e improve readability & maintainability
e can be used to guide fuzzing, static verification, efc.

Smart Contracts + Behavioral Contracts

This Work - ConSol:
A linguistic extension to Solidity and a transpiler that supports expressing and
monitoring rich pre/post-conditions as specifications.

function getPrice(address chainlink) returns (uint256) {
(_, uint256 ethPrice, _, _, _) = chainlink.latestRoundData();
return ORACLE.getRate() * ethPrice;

getPrice(a_chainlink_address)

10
Excerpted from the Sturdy contract

Smart Contracts + Behavioral Contracts

This Work - ConSol:
A linguistic extension to Solidity and a transpiler that supports expressing and
monitoring rich pre/post-conditions as specifications.

| ensures price *0.95 < ORACLE.getLatestPrice() & & price * 1.05 > ORACLE.getLatestPrice()

' getPrzce(chamlmk) returns (price) :
|
|

function getPrice(address chainlink) returns (uint256) {
(_, uint256 ethPrice, _, _, _) = chainlink.latestRoundData();
return ORACLE.getRate() * ethPrice;

ensure the post-condition

getPrice(a_chainlink_address)

11
Excerpted from the Sturdy confract

Smart Contracts + Behavioral Contracts

This Work - ConSol:
A linguistic extension to Solidity and a transpiler that supports expressing and
monitoring rich pre/post-conditions as specifications.

| ensures price *0.95 < ORACLE.getLatestPrice() & & price * 1.05 > ORACLE.getLatestPrice()

' getPrzce(chamlmk) returns (price) :
|
|

function getPrice(address chainlink) returns (uint256) {
(_, uint256 ethPrice, _, _, _) = chainlink.latestRoundData();
return ORACLE.getRate() * ethPrice;

ensure the post-condition
I
| getPrice(a_chainlink_address) ! check at call-sites

during runtime
9 Excerpted from the Sturdy con]rrzac’r

Smart Contracts + Behavioral Contracts

This Work - ConSol:

A linguistic extension to Solidity and a transpiler that supports expressing and
monitoring rich pre/post-conditions as specifications.

what if we want to say something

about the argument chainlink ?
getPrice(chainlink) returns (price)
ensures price *0.95 < ORACLE.getLatestPrice() & & price * 1.05 > ORACLE.getLatestPrice()

function getPrice(address chainlink) returns (uint256) {

(_, uint256 ethPrice, _, _, _) = chainlink.latestRoundData();
return ORACLE.getRate() * ethPrice;

- 160-bits integers

- first-class values
getPrice(a_chainlink_address)

13
Excerpted from the Sturdy contract

Smart Contracts + Behavioral Contracts

This Work - ConSol:

A linguistic extension to Solidity and a transpiler that supports expressing and
monitoring rich pre/post-conditions as specifications.

what if we want to say something

about the argument chainlink ?
getPrice(chainlink) returns (price)
ensures price *0.95 < ORACLE.getLatestPrice() & & price * 1.05 > ORACLE.getLatestPrice()

function getPrice(address chainlink) returns (uint256) {

(_, uint256 ethPrice, _, _, _) = chainlink.latestRoundData();
return ORACLE.getRate() * ethPrice;

- 160-bits integers
- first-class values
getPrice(a_chainlink_address) - contains callable functions

14
Excerpted from the Sturdy contract

Smart Contracts + Behavioral Contracts

This Work - ConSol:

A linguistic extension to Solidity and a transpiler that supports expressing and
monitoring rich pre/post-conditions as specifications.

what if we want to say something

about the argument chainlink ?
getPrice(chainlink) returns (price)
ensures price *0.95 < ORACLE.getLatestPrice() & & price * 1.05 > ORACLE.getLatestPrice()

function getPrice(address chainlink) returns (uint256) {

(_, uint256 ethPrice, _, _, _) = chainlink.latestRoundData();
return ORACLE.getRate() * ethPrice;

- 160-bits integers

|
| getPrice(a_chainlink_address) | cannot be checked when

calling getPrice

- first-class values

- contains callable functions

15
Excerpted from the Sturdy contract

Smart Contracts + Behavioral Contracts

This Work - ConSol:

A linguistic extension to Solidity and a transpiler that supports expressing and
monitoring rich pre/post-conditions as specifications.

% Expressing and monitoring conditions for addresses and their latent calls.

16

Smart Contracts + Behavioral Contracts

This Work - ConSol:

A linguistic extension to Solidity and a transpiler that supports expressing and
monitoring rich pre/post-conditions as specifications.

% Expressing and monitoring conditions for addresses and their latent calls.

Contracts for Higher-Order Functions

Robert Bruce Findler' Matthias Felleisen
Northeastern University
College of Computer Science
Boston, Massachusetts 02115, USA

borrowing ideas from “Contracts for
Higher-Order Functions”, delaying the

Abstract 1 Introduction

Assertions play an important role in the construction of robust soft-
ware. Their use in programming languages dates back to the 1970s.
Eiffel, an object-oriented programming language, wholeheartedly
adopted assertions and developed the “Design by Contract™ philos-
ophy. Indeed, the entire object-oriented community recognizes the
value of assertion-based contracts on methods.

In contrast, I with higher-order fi do not support
assertion-based_contracts. _Because predicates on_functions are.

ICFP 2002

Dynamically enforced pre- and post-condition contracts have been
widely used in procedural and object-oriented languages [11. 14,
17.20.21.22, 25, 31]. As Rosenblum [27] has shown, for example,
these contracts have great practical value in improving the robust-
ness of systems in procedural languages. Eiffel [22] even developed
an entire philosophy of system design based on contracts (“Design
by Contract”). Although Java [12] does not support contracts, it is
one of the most requested extensions.'

check of behaviors of functions as values

17

Specifying Conditions for Solidity Addresses

% Expressing and monitoring conditions for addresses and their latent calls.

post-conditions of calling
chainlink

function getPrice(address chainlink) returns (uint256) {
(_, uint256 ethPrice, _, uint256 updatedAt, _) = chainlink.latestRoundData();
require(updatedAt > block.timestamp - 1 days);
require(ethPrice > 0);
return ORACLE.getRate() * ethPrice;

18
Excerpted from the Sturdy contract

Specifying Conditions for Solidity Addresses

% Expressing and monitoring conditions for addresses and their latent calls.

getPrice(chainlink) returns (price)

ensures price *0.95 < ORACLE.getLatestPrice() & & price * 1.05 > ORACLE.getLatestPrice()
where {

+ chainlink.latestRoundData() returns (_, answer, , updatedAt,)

+ ensures updatedAt > block.timestamp — 1 days & & answer > 0 P ost-conditions of Ca//lng
} chainlink
function getPrice(address chainlink) returns (uint256) {

(_, uint256 ethPrice, _, uint256 updatedAt, _) = chainlink.latestRoundData();

- require(updatedAt > block.timestamp - 1 days);
- require(ethPrice > 0);

return ORACLE.getRate() * ethPrice;
}

19
Excerpted from the Sturdy contract

Specifying Conditions for Solidity Addresses

% Expressing and monitoring conditions for addresses and their latent calls.

getPrice(chainlink) returns (price)

ensures price *0.95 < ORACLE.getLatestPrice() & & price * 1.05 > ORACLE.getLatestPrice()
where {

+ chainlink.latestRoundData() returns (_, answer, , updatedAt,)

+ ensures updatedAt > block.timestamp — 1 days & & answer > 0 P ost-conditions of Ca//lng
} chainlink
function getPrice(address chainlink) returns (uint256) {

(_, uint256 ethPrice, _, uint256 updatedAt, _) = chainlink.latestRoundData();

return ORACLE.getRate() * ethPrice;

20
Excerpted from the Sturdy confract

Specifying Conditions for Solidity Addresses

% Expressing and monitoring conditions for addresses and their latent calls.

% Good for decoupling repeated, low-level checks from business logic.

21

Specifying Conditions for Solidity Addresses

Expressing and monitoring conditions for addresses and their latent calls.

Good for decoupling repeated, low-level checks from business logic.
Need to know when to perform the checks of address calls.

Challenge: addresses are first-class values and can flow around!

22

e ConSol implements a whole-program
transformation.

ConSol

Solidity programs
with spec annotations.

Implementation

Ordinary Solidity

programs.

F[f(x1,...) : (y1,...)requires e; ensures ez where (o1,...)
fun f(t1 x1,..

D,)m{s}] =
fun f(t1 x1,...) : (ry,...) m{
return unwrap(fyyara(wrap(x1),...)) }

fun jff,re(tlT x1,...) : () private { require(E[e1]) }

.,rI Y1, .-

1

o) (rl,...) private {

fun ﬁ,ost(tlT X1, .. .) : () private { require(E[e1]) }

fun Jfguard(tlT X1

f};re(xl:)

attachSpec(xi, ..., 01, . ..)

(rI Y1, -) = fworker(x1, .- .)
attachSpec(y, ..., 01,...)
Soost(X1, .., y1,...)

return (y1,...) }

1

fun fworker(tlT x1,...) : (r{,...) private { S[s] }

Fig. 4. The translation semantics of AconsoL (functions).

more details in the paper o

Implementation -

Change the value representation of
addresses so that we can encode
additional information about conditions.

When calling the addresses, we decode
and decide what condition of the

address call should be checked.

Addresses

F[f(x1,...) : (y1,...)requires e; ensures ez where (o1,...)
fun f(t1 x1,...) : (r,...) m{s}] =
fun f(t1 x1,...) : (ry,...) m{
return unwrap(fyyara(wrap(x1),...)) }

fun jff,re(tlT x1,...) : () private { require(E[e1]) }

fun ﬁoost(tlT S PR rlT y1,...) : () private { require(E[e]) }
fun f:guard(tlT Xt,...) (rlT,...) private {
]?Jre(xl,---)

attachSpec(xi, ..., 01, . ..)

(rI Y1,) = fuworker(X1, - ..)
attachSpec(y, ..., 01,...)
fj‘Jost(xl ----- Y1,...)
return (y1,...) }
fun fworker(tlT X1,...) ¢ (rlT,...) private { S[s] }

Fig. 4. The translation semantics of AconsoL (functions).

more details in the paper y

Implementation - Addresses

Change the value representation of
addresses so that we can encode
additional information about conditions.

When calling the addresses, we decode

and decide what condition of the
address call should be checked.

// spec for addr omitted
function f(address addr) {

éaar.g(x)
translates to

function f(guarded_address addr) {
addr = attach_spec(addr, [encoded spec])

dispatch_g(addr, x)

25

Implementation - Addresses

Change the value representation of
addresses so that we can encode
additional information about conditions.

When calling the addresses, we decode

and decide what condition of the
address call should be checked.

// spec for addr omitted
function f(address addr) {

éaar.g(x)

translates to

function f(guarded_address addr) {
addr = attach_spec(addr, [encoded spec])

dispatch_g(addr, x)

rewrite call-site, decide what

needs to be checked
26

*

Implementation - Addresses

Change the value representation of
addresses so that we can encode
additional information about conditions.

When calling the addresses, we decode

and decide what condition of the
address call should be checked.

Must be careful for efficiency due to
EVM'’s cost model!

Storing additional information causes
more transaction fees.

// spec for addr omitted
function f(address addr) {

éaar.g(x)
translates to

function f(guarded_address addr) {
addr = attach_spec(addr, [encoded spec])

dispatch_g(addr, x)

27

Implementation

Must be careful for efficiency due to
EVM'’s cost model!

Storing additional information causes
more fransaction fees, but the smallest
unit of storage is 256 bits!

- Addresses

oxb8...f7

extend value repr.

Ox00...00 | Oxb8...f7

attach spec encoding

Oxal...df | Oxb8...f7

v

dispatch at call-sites

raw
address
(160-bits)

guarded
address
(256-bits)

guarded
address
w/ spec
(256-bits)

28

Implementation

Must be careful for efficiency due to
EVM'’s cost model!

Storing additional information causes
more fransaction fees, but the smallest
unit of storage is 256 bits!

Solution: bit-stealing
extend 160-bits address values to
256-bits, use the 96-MSBs to encode

spec provenance information.

very little overhead!

- Addresses

oxb8...f7

extend value repr.

Ox00...00 | Oxb8...f7

attach spec encoding

Oxal...df | Oxb8...f7

v

dispatch at call-sites

raw
address

(160-bits)

guarded
address
(256-bits)

guarded
address
w/ spec
(256-bits)

29

Evaluation

Can we use ConSol to express security defenses and decouple them from the
main business logic?

How much overhead is intfroduced in ConSol+translated programs?

30

Evaluation - Effectiveness

Can we use ConSol to express security defenses and decouple them from the

main business logic?

Case studies:
20 real-world attacks
154.32M loss in total

Table 1. Summary of studied cases. LR denotes LoC Reduced.

Project Date Loss($) Root Cause of Vulnerability LR (%)

Qubit [17] 01-28-22 80M Zero Address Function Call 15.38
TecraSpace [80] 02-04-22 63K Any Token is Destroyed 50.00
Umbrella [86] 03-20-22 700K Integer Over/Underflow 33.33
XCarnival [90] 06-26-22 3.87M Infinite Number of Loans 26.32
BadGuys [65] 09-02-22 NFT Missing Airdrop Eligibility Check ~ 94.12
EFLeverVault [50] 10-14-22 1M Business Logic Flaw 25.00
Nood [8] 10-26-22 29K Reentrancy 11.11
Dexible [61] 02-17-23 1.5M Arbitrary External Call 11.76
SushiSwap [72] 04-09-23 3.3M Unchecked User Input 54.55
SwaposV2 [18] 04-16-23 468K Erroneous Accounting 25.00
Unknown [81] 05-31-23 111K Missing Slippage Check 30.00
Sturdy [9] 06-12-23 800K Readonly Reentrancy 57.14
LEVUSDC [28] 06-15-23 105K Access Control 33.33
AzukiDAO [70] 07-03-23 69K Invalid Signature Verification 48.15
Bao [6] 07-04-23 46K Inflation Manipulate 83.33
Miner [54] 02-15-24 466K Lack of Validation 83.33
YearnFinance [5] 04-13-23 11.6M Misconfiguration B

ZunamiProtocol [44] 08-14-23 2M Price Manipulation -

KyberSwap [10] 11-22-23 48M Precision Loss -

Time [67] 12-06-23 188.9K Arbitrary Address Spoofing Attack -

31

Evaluation - Effectiveness

e Can we use ConSol to express security defenses and decouple them from the

main bUS| ness |Og IC: Table 1. Summary of studied cases. LR denotes LoC Reduced.

Project Date Loss($) Root Cause of Vulnerability | LR (%)
C d . . Qubit [17] 01-28-22 80M Zero Address Function Call 15.38
® ase studies: TecraSpace [80] 02-04-22 63K Any Token is Destroyed 50.00
Umbrella [86] 03-20-22 700K Integer Over/Underflow 33.33
20 rea I-Wo rld atac kS XCarnival [90] 06-26-22 3.87M Infinite Number of Loans 26.32
BadGuys [65] 09-02-22 NFT Missing Airdrop Eligibility Check | 94.12
H EFLeverVault [50] 10-14-22 1M Business Logic Flaw 25.00
1 54 . 32M |OSS In fOTal Nood [8] 10-26-22 29K Reentrancy 11.11
Dexible [61] 02-17-23 1.5M Arbitrary External Call 11.76
SushiSwap [72] 04-09-23 3.3M Unchecked User Input 54.55
ff . | | | . SwaposV2 [18] 04-16-23 468K Erroneous Accounting 25.00
® - Unknown [81] 05-31-23 111K Missing Slippage Check 30.00
E ective as low-leve asserhOnS, Sturdy [9] 06-12-23 800K Readonly Reentrancy 57.14
. . . LEVUSDC [28] 06-15-23 105K Access Control 33.33
sSim pl | fy 1-he COde W”h beﬂer AzukiDAO [70] 07-03-23 69K Invalid Signature Verification 48.15
. Bao [6] 07-04-23 46K Inflation Manipulate 83.33
read a b| | |‘|'y Miner [54] 02-15-24 466K Lack of Validation 83.33
YearnFinance [5] 04-13-23 11.6M Misconfiguration =
ZunamiProtocol [44] 08-14-23 2M Price Manipulation -
KyberSwap [10] 11-22-23 48M Precision Loss -

Time [67] 12-06-23 188.9K Arbitrary Address Spoofing Attack - 39

Evaluation - Efficiency
How much overhead is intfroduced in ConSol+translated programs?

Benchmark programs:

o 16 real-world attacks

o 23 contracts from ERC20, ERC721, and ERC1202 (collected by Li et al, PLDI
20)

Baseline: low-level assertion-patched contracts

33

Evaluation - Efficiency

e How much overhead is intfroduced in ConSoltranslated programs?

by Assertions by ConSoL

Project #Tx
e Results on 16 attacks: J GFI($) GIR (%) GFI($) |GIR (%)

Qubit [17] 0 - - - -

0.207% more gas consum p1-| on TecraSpace [80] 4245 0.000 0.000 0.000 0.000
Umbrella [86] 58 0.001 0.111 0.001 0.015
XCarnival [90] 365 0.016 0.029 0.040 0.072
BadGuys [65] 950 0.003 0.096 0.005 0.166
EFLeverVault [50] 21 0.027 0.089 0.031 0.102
Nood [8] 111 0.009 0.547 0.009 0.571
Dexible [61] 54 0.126 0.230 0.178 0.324
SushiSwap [72] 202 0.007 0.099 0.007 0.106
SwaposV2 [18] 7 0.003 0.048 0.004 0.068
Unknown [81] 10 0.381 0.002 0.438 0.003
Sturdy [9] 23 0.940 1.126 0.941 1.128
LEVUSDC [28] 45 0008 0042 0.008 | 0.044
AzukiDAO [70] 2937 0.019 0.227 0.022 0.257
Bao [6] 15 0.001 0.005 0.002 0.018
Miner [54] 3922 0.002 0.007 0.011 0.030
Avg. - 0.110 0.190 0.121 0.207

Evaluation - Efficiency

How much overhead is intfroduced in ConSoltranslated programs?

Results on 16 attacks:

0.207% more gas consumption

Results on ERC20/721/1202: 0.290% more gas consumption

Contract BEC USDT ZRX THETA INB HEDG DAI EKT XIN HOT Swp VOTE
Original 960,999 62,426 51,468 51,540 53,738 53,941 53,696 51,911 51,375 51,525 55,728 210,395
ConSoL 965,478 62,910 51,468 51,777 53,986 54,110 53,865 52,307 51,609 51,773 55,886 210,543
GIR (%) 0.47 0.78 0.00 0.46 0.46 0.31 0.31 0.76 0.46 0.48 0.28 0.07
LR (%) 39.10 30.83 0.00 38.89 38.89 50.00 50.00 40.83 34.44 44.44 50.00 20.83
Contract DOZ MCHH CC CLV LAND CARDS KB TRINK PACKS BKC EGG
Original 2,163,066 221,235 214,598 246,986 215,732 214,770 214,731 214,484 260,566 301,808 215,428
ConSoL 2,166,247 221,526 215,082 247,471 216,201 215,123 215,079 214,965 260,920 302,199 215,791
GIR (%) 0.15 0.13 0.23 0.20 0.22 0.16 0.16 0.22 0.14 0.13 0.17
LR (%) 43.19 33.33 35.71 41.67 33.33 33.81 37.05 35.71 33.33 37.05 37.50

35

Summary

ConSol: Behavioral Contracts for Smart Contracts
Expressive: specifying and monitoring behaviors of latent address calls
Efficient: marginal gas consumption on Ethereum

Prototype implementation and evaluation data:
hitps: //github.com/Kraks/contract-for-contract

Thank you!

36

