
Metaprogramming
Program Analyzers

Guannan Wei

ANTIQUE Seminar - 25/10/2025

About Me

● PhD, Purdue University, 2023
○ Dissertation: Metaprogramming Program Analyzers

● Incoming assistant professor at Tufts University (Boston)

Metaprogramming Program Analyzers

● Goal: improving the construction and performance of program analyzers
○ Inherent complexity: undecidability, NP-complete/hard, abstract domains, etc.
○ Accidental complexity: languages/compiler, implementation choice, data

structures, etc.

Metaprogramming Program Analyzers

● Goal: improving the construction and performance of program analyzers
○ Inherent complexity: undecidability, NP-complete/hard, abstract domains, etc.
○ Accidental complexity: languages/compiler, implementation choice, data

structures, etc.

● Metaprogramming Program Analyzers :
Applying program generation/transformation to the implementation of
analyzers
program analysis

semantics/specifications
correct, efficient, and

flexible implementations

Metaprogramming Program Analyzers

● Goal: improving the construction and performance of program analyzers
○ Inherent complexity: undecidability, NP-complete/hard, abstract domains, etc.
○ Accidental complexity: languages/compiler, implementation choice, data

structures, etc.

● Metaprogramming Program Analyzers :
Applying program generation/transformation to the implementation of
analyzers
○ 1. Derivation of big-step abstract interpreters from small-step ones
○ 2. Compilation of analyses (control-flow analysis, symbolic execution)

Abstract interpretation:
An approach to build sound static analysis from a concrete semantics.

Can we build an abstract interpreter from another abstract
interpreter?

Bridging the gap between small-step and big-step abstract interpreters

Abstract
Abstract
Machines

[ICFP 10]

Abstract
Machines
(CEK/CESK) 7

Bridging the gap between small-step and big-step abstract interpreters

Originally at ICFP 2010; later CACM 2011;
ICFP Most Influential Paper at ICFP 2020

A recipe to derive small-step abstract
interpreters from concrete state machines.

Popular approach in analyzing functional
higher-order programs; rooted in
control-flow analysis (CFA).

Abstract
Abstract
Machines

[ICFP 10]

A recipe to derive small-step abstract
interpreters from concrete state machines.

Popular approach in analyzing functional
higher-order programs; rooted in
control-flow analysis (CFA).

Abstract
Machines
(CEK/CESK) 8

Bridging the gap between small-step and big-step abstract interpreters

finite state space:
 State# := ⟨Expr, Env#, Store#, Kont#⟩
nondeterministic state transition:
 State# → Set[State#]

Abstract
Abstract
Machines

[ICFP 10]

A recipe to derive small-step abstract
interpreters from concrete state machines.

Abstract
Machines
(CEK/CESK) 9

Bridging the gap between small-step and big-step abstract interpreters

Abstract
Definitional
Interpreters

[ICFP 17]

A big-step, compositional,
monadic abstract interpreter.

Definitional
Interpreters

Abstract
Abstract
Machines

[ICFP 10]

A recipe to derive small-step abstract
interpreters from concrete state machines.

Abstract
Machines
(CEK/CESK) 10

Bridging the gap between small-step and big-step abstract interpreters

Abstract
Definitional
Interpreters

[ICFP 17]

A big-step, compositional,
monadic abstract interpreter.

Definitional
Interpreters

Both of them construct abstract interpreters
that analyze higher-order functional programs

a state-transition system vs a recursive function

Abstract
Abstract
Machines

[ICFP 10]

Abstract
Machines
(CEK/CESK) 11

Bridging the gap between small-step and big-step abstract interpreters

Abstract
Definitional
Interpreters

[ICFP 17]

Definitional
Interpreters

Both of them construct abstract interpreters
that analyze higher-order functional programs

a state-transition system vs a recursive function

?

Abstract
Abstract
Machines

[ICFP 10]

Abstract
Machines
(CEK/CESK) 12

Bridging the gap between small-step and big-step abstract interpreters

Abstract
Definitional
Interpreters

[ICFP 17]

Definitional
Interpreters

Both of them construct abstract interpreters
that analyze higher-order functional programs

a state-transition system vs a recursive function

?

Functional correspondence between
concrete abstract machines and evaluators

Abstract
Machines
(CEK/CESK) 13

Bridging the gap between small-step and big-step abstract interpreters

Definitional
InterpretersFunctional correspondence between

concrete abstract machines and evaluators

1972

Abstract
Machines
(CEK/CESK) 14

Bridging the gap between small-step and big-step abstract interpreters

Definitional
InterpretersFunctional correspondence between

concrete abstract machines and evaluators

1972

Order-of-
application

dependence:

Use of higher-order functions:

yes no

yes direct interpreter
for GEDANKEN

McCarthy’s
definition of LISP

no Morris-Wadsworth
method

SECD machine,
Vienna definition

Abstract
Machines
(CEK/CESK) 15

Bridging the gap between small-step and big-step abstract interpreters

Definitional
InterpretersFunctional correspondence between

concrete abstract machines and evaluators

1972defunctionalization: transform higher-order functions to first-order data types
with their dispatching functions (e.g., closure conversion).

Order-of-
application

dependence:

Use of higher-order functions:

yes no

yes direct interpreter
for GEDANKEN

McCarthy’s
definition of LISP

no Morris-Wadsworth
method

SECD machine,
Vienna definition

Abstract
Machines
(CEK/CESK) 16

Bridging the gap between small-step and big-step abstract interpreters

Definitional
InterpretersFunctional correspondence between

concrete abstract machines and evaluators

1972defunctionalization: transform higher-order functions to first-order data types
with their dispatching functions (e.g., closure conversion).
refunctionalization: the inverse of defunctionalization [Danvy et al.].

Order-of-
application

dependence:

Use of higher-order functions:

yes no

yes direct interpreter
for GEDANKEN

McCarthy’s
definition of LISP

no Morris-Wadsworth
method

SECD machine,
Vienna definition

Abstract
Machines
(CEK/CESK) 17

Bridging the gap between small-step and big-step abstract interpreters

Definitional
InterpretersFunctional correspondence between

concrete abstract machines and evaluators

● Example: refunctionalizing a CEK machine yields an interpreter in
continuation-passing style.

CEK Machine
State := ⟨Expr, Env, Kont⟩
Kont := Halt
 | Ar⟨Expr, Env, Kont⟩
 | Fn⟨Lam, Env, Kont⟩

evaluation context
(first-order data types)

Abstract
Machines
(CEK/CESK) 18

Bridging the gap between small-step and big-step abstract interpreters

Definitional
InterpretersFunctional correspondence between

concrete abstract machines and evaluators

● Example: refunctionalizing a CEK machine yields an interpreter in
continuation-passing style.

CEK Machine
State := ⟨Expr, Env, Kont⟩
Kont := Halt
 | Ar⟨Expr, Env, Kont⟩
 | Fn⟨Lam, Env, Kont⟩

refunc.

defunc.

CPS Interpreter
eval : Expr × Env × (Val → Val)
 → Value

continuation
(higher-order functions)

evaluation context
(first-order data types)

Abstract
Machines
(CEK/CESK) 19

Bridging the gap between small-step and big-step abstract interpreters

Definitional
InterpretersFunctional correspondence between

concrete abstract machines and evaluators

● Example: refunctionalizing a CEK machine yields an interpreter in
continuation-passing style.

● refunctionalized evaluation contexts = higher-order continuations
● defunctionalized continuations = first-order evaluation contexts

CEK Machine
State := ⟨Expr, Env, Kont⟩
Kont := Halt
 | Ar⟨Expr, Env, Kont⟩
 | Fn⟨Lam, Env, Kont⟩

refunc.

defunc.

CPS Interpreter
eval : Expr × Env × (Val → Val)
 → Value

Abstract
Abstract
Machines

[ICFP 10]

Abstract
Machines
(CEK/CESK) 20

Bridging the gap between small-step and big-step abstract interpreters

Abstract
Definitional
Interpreters

[ICFP 17]

Definitional
Interpreters

?

Functional correspondence between
concrete abstract machines and evaluators

Abstract
Abstract
Machines

[ICFP 10]

Abstract
Machines
(CEK/CESK) 21

Bridging the gap between small-step and big-step abstract interpreters

Abstract
Definitional
Interpreters

[ICFP 17]

Definitional
InterpretersFunctional correspondence between

concrete abstract machines and evaluators

Linearization
↓

Lightweight
Fusion

↓
Disentanglement

Refunctionalization Back to
Direct-Style

Refunctionalization of Abstract Abstract Machines
[ICFP 18, Wei et al.]

✓ A functional correspondence between small-step and big-step
abstract interpreters.

✓ Construct transformation steps from AAM to ADI using control
operators.

Abstract
Abstract
Machines

[ICFP 10]

22

Bridging the gap between small-step and big-step abstract interpreters

Abstract
Definitional
Interpreters

[ICFP 17]

Linearization
↓

Lightweight
Fusion

↓
Disentanglement

Refunctionalization Back to
Direct-Style

(f v)

State# = ⟨Expr, Env#, Store#, Kont⟩
step: State# → P(State#)

Abstract
Abstract
Machines

[ICFP 10]

23

Bridging the gap between small-step and big-step abstract interpreters

Abstract
Definitional
Interpreters

[ICFP 17]

Linearization
↓

Lightweight
Fusion

↓
Disentanglement

Refunctionalization Back to
Direct-Style

(f v)

State# = ⟨Expr, Env#, Store#, Kont⟩
step: State# → P(State#)

NDState# = ⟨Expr, Env#, Store#, Kont, MKont⟩
step: NDState# → NDState#

(f v)

Abstract
Abstract
Machines

[ICFP 10]

24

Bridging the gap between small-step and big-step abstract interpreters

Abstract
Definitional
Interpreters

[ICFP 17]

Linearization
↓

Lightweight
Fusion

↓
Disentanglement

Refunctionalization Back to
Direct-Style

Further tweak the form of AAM and expose continuations explicitly:
● Fusion: merges the step function and the driver loop function into one, so the

abstract interpreter is a single, recursive function.
● Disentanglement: lifts the code that dispatches those two data types

representing continuations to be top-level functions.

Abstract
Abstract
Machines

[ICFP 10]

25

Bridging the gap between small-step and big-step abstract interpreters

Abstract
Definitional
Interpreters

[ICFP 17]

Linearization
↓

Lightweight
Fusion

↓
Disentanglement

Back to
Direct-StyleRefunctionalization

● Types of the first-order dispatching functions:
State : ⟨Expr, Env#, Store#, Kont, MKont⟩
continue : State × Cache ⇒ Cache
mcontinue : State × Cache ⇒ Cache

● Types of the higher-order continuations:
State : ⟨Expr, Env#, Store#, Kont, MKont⟩

type Cont = (State × Cache × MCont) ⇒ Cache
type MCont = (State × Cache) ⇒ Cache

Refunctionalization to 2CPS
def aeval(state: State, seen: Cache, k: Cont, mk: MCont): Cache = {
 e match {
 case Let(x, App(f, ae), e) if isAtomic(f) && isAtomic(ae) ⇒
 val closures = atomicEval(f, ρ, σ).toList
 val Clos(Lam(v, body), c_ρ) = closures.head
 val α = alloc(v); val new_ρ = c_ρ + (v ↦ α)
 val argvs = atomicEval(ae, ρ, σ); val new_σ = σ.join(α ↦ argvs)
 val new_k: Cont = ...

 // A HO function takes result of App and then evaluates e
 val new_mk: MCont = ...
 // A HO function iterates over the target closures
 aeval(State(body, new_ρ, new_σ), new_seen, new_k, new_mk)

 case ae if isAtomic(ae) ⇒ k(state, new_seen, mk)
 }
}

26

Abstract
Abstract
Machines

[ICFP 10]

27

Bridging the gap between small-step and big-step abstract interpreters

Abstract
Definitional
Interpreters

[ICFP 17]

Linearization
↓

Lightweight
Fusion

↓
Disentanglement

Refunctionalization Back to
Direct-Style

● We have obtained a refunctionalized AAM in CPS.
● From extended CPS to direct-style, three choices:

● Use explicit side-effects and assignments.
● Use monads [Darais et al. ICFP 17].
● Use delimited control operators (shift/reset).

● shift to capture the continuation
● reset to set the boundary

Back to Direct-Style

28

def aeval(state: State, seen: Cache): (State, Cache) @cps[Cache] = {
 ...
 e match {
 case Let(x, App(f, ae), e) if isAtomic(f) && isAtomic(ae) ⇒
 val closures = atomicEval(f, ρ, σ).toList
 val (Clos(Lam(v, body), c_ρ), c_seen) = choices(closures, new_seen)
 val v_α = alloc(v); val new_ρ = c_ρ + (v ↦ v_α)
 val new_σ = σ.join(v_α ↦ atomicEval(ae, ρ, σ))
 val (bd_state, bd_seen) = aeval(State(body, new_ρ, new_σ), c_seen)
 val State(bd_ae, bd_ρ, bd_σ) = bd_state
 val x_α = alloc(x); val new_ρ_* = ρ + (x ↦ x_α)
 val new_σ_* = bd_σ.join(x_α ↦ atomicEval(bd_ae, bd_ρ, bd_σ))
 aeval(State(e, new_ρ_*, new_σ_*), bd_seen)
 case ae if isAtomic(ae) ⇒ (state, new_seen)
 }
}

Back to Direct-Style
def aeval(state: State, seen: Cache): (State, Cache) @cps[Cache] = {
 ...
 e match {
 case Let(x, App(f, ae), e) if isAtomic(f) && isAtomic(ae) ⇒
 val closures = atomicEval(f, ρ, σ).toList
 val (Clos(Lam(v, body), c_ρ), c_seen) = choices(closures, new_seen)
 val v_α = alloc(v); val new_ρ = c_ρ + (v ↦ v_α)
 val new_σ = σ.join(v_α ↦ atomicEval(ae, ρ, σ))
 val (bd_state, bd_seen) = aeval(State(body, new_ρ, new_σ), c_seen)
 val State(bd_ae, bd_ρ, bd_σ) = bd_state
 val x_α = alloc(x); val new_ρ_* = ρ + (x ↦ x_α)
 val new_σ_* = bd_σ.join(x_α ↦ atomicEval(bd_ae, bd_ρ, bd_σ))
 aeval(State(e, new_ρ_*, new_σ_*), bd_seen)
 case ae if isAtomic(ae) ⇒ (state, new_seen)
 }
}

29

choices uses shift to
capture the continuation,
implicitly.

Get a closure of f,
nondeterministically.

Abstract
Abstract
Machines

[ICFP 10]

30

Bridging the gap between small-step and big-step abstract interpreters

Abstract
Definitional
Interpreters

[ICFP 17]

Linearization
↓

Lightweight
Fusion

↓
Disentanglement

Refunctionalization Back to
Direct-Style

Applying transformations to the meta-constructs of the analyzer:
functional correspondence between

abstract semantic artifacts by refunctionalization [ICFP 18, Wei et al.]

The analysis results are equivalent modulo the representation of continuations.

Performant Program Analysis by Compilation

concrete
interpreters

abstract
interpreters

Performant Program Analysis by Compilation

concrete
interpreters

abstract
interpreters

● inspecting program AST/IR
● dispatching the semantics
● recursion/loop at meta-level
● abstractions (monads, etc.)
● ...

Easy to build with high-level
abstractions (e.g. AAM/ADI),

but inherently slow.

Performant Program Analysis by Compilation

concrete
interpreters

abstract
interpreters

Easy to build with high-level
abstractions (e.g. AAM/ADI),

but inherently slow.

KLEE (C++) 3,000x slower
 angr (Python) 321,000x slower

A few data points:
 symbolic interpreter performance
 compared to native execution

Performant Program Analysis by Compilation

concrete
interpreters Futamura projections

staged
concrete

interpreters
compilers=

abstract
interpreters

Performant Program Analysis by Compilation

concrete
interpreters Futamura projections

staged
concrete

interpreters
compilers=

abstract
interpreters

program result

interpreter

dynamic
argument

Performant Program Analysis by Compilation

concrete
interpreters Futamura projections

staged
concrete

interpreters
compilers=

abstract
interpreters

staged
interpreterprogram

generated
program result

dynamic
argument

interpreter

Performant Program Analysis by Compilation

concrete
interpreters Futamura projections

staged
concrete

interpreters
compilers=

abstract
interpreters def power(b: ℕ, x: ℕ): ℕ =

if (x == 0) 1 else b * power(b, x - 1)

def power5(b: ℕ) = power(b, 5)

 A Staging example:

Performant Program Analysis by Compilation

concrete
interpreters Futamura projections

staged
concrete

interpreters
compilers=

abstract
interpreters

 A Staging example:

def power(b: Rep[ℕ], x: ℕ): Rep[ℕ] =

if (x == 0) 1 else b * power(b, x - 1)

def power5(b: Rep[ℕ]) = power(b, 5)

def power5(b: ℕ) = b * b * b * b * b

specialization/code generation

Performant Program Analysis by Compilation

concrete
interpreters Futamura projections

staged
concrete

interpreters
compilers=

abstract
interpreters

staged
interpreterprogram

generated
program result

interpreter

dynamic
argument

1st Futamura projection:
Compilation removes interpretation overhead

Performant Program Analysis by Compilation

concrete
interpreters Futamura projections

staged
concrete

interpreters
compilers=

Futamura projectionsabstract
interpreters

● abstract values
● join-updates
● non-determinism
● fixed-point iterations
● termination guarantee
● ...

???

Performant Program Analysis by Compilation

concrete
interpreters Futamura projections

staged
concrete

interpreters
compilers=

staged
abstract

interpreters

abstract
compilers

Futamura projections
=

abstract
interpreters

Performant Program Analysis by Compilation

concrete
interpreters Futamura projections

staged
concrete

interpreters
compilers=

staged
abstract

interpreters

abstract
compilers

Futamura projections
=

abstract
interpreters

A staged abstract
interpreter is an
abstract compiler

A staged abstract
interpreter is an

abstract compiler

OOPSLA 19

Performant Program Analysis by Compilation

concrete
interpreters Futamura projections

staged
concrete

interpreters
compilers=

staged
abstract

interpreters

abstract
compilers

Futamura projections
=

abstract
interpreters

A staged abstract
interpreter is an
abstract compiler

SAS 1996

A staged abstract
interpreter is an

abstract compiler

Performant Program Analysis by Compilation

program
analyzer

concrete
interpreter

derives

staged
program
analyzer

input
program

derives

specialized
analyzer for

input program

partially

evaluated
runtime

inputs
analysis
result

Performant Program Analysis by Compilation

program
analyzer

concrete
interpreter

staged
program
analyzer

input
program

derives

specialized
analyzer for

input program

partially

evaluated
runtime

inputs
analysis
result

the 1st Futamura projection

derives

✓ Abstract interpreters for higher-order program analysis (CFA) [OOPSLA 19]
✓ Symbolic execution with algebraic effects/handlers [OOPSLA 20, FSE Demo 21]
✓ Parallel symbolic execution by generating CPS code [ICSE 23]

Performant Program Analysis by Compilation

program
analyzer

concrete
interpreter

staged
program
analyzer

input
program

derives

specialized
analyzer for

input program

partially

evaluated
runtime

inputs
analysis
result

the 1st Futamura projection

derives

✓ Abstract interpreters for higher-order program analysis (CFA) [OOPSLA 19]
✓ Symbolic execution with algebraic effects/handlers [OOPSLA 20, FSE Demo 21]
✓ Parallel symbolic execution by generating CPS code [ICSE 23]

47

if (x > 5) {
 if (y < 10) {
 ... /* path 1 */
 } else {
 ... /* path 2 */
 }
} else {
 ... /* path 3 */
}

x > 5 x ≤ 5

y < 10 y ≥ 10

x > 5 ∧ y < 10

x = user_input()
y = user_input()

solver() = { x = 6, y = 9 }

Symbolic Execution

Path Explosion, Worse

48

n = user_input() // i.e. symbolic
while (i < n) {
 <loop-body>
}
<after-loop>

Path Explosion, Worse

49

i < n i ≥ n

<loop-body> <after-loop>

n = user_input() // i.e. symbolic
while (i < n) {
 <loop-body>
}
<after-loop>

Path Explosion, Worse

50

i < n i ≥ n

<loop-body> <after-loop>

n = user_input() // i.e. symbolic
while (i < n) {
 <loop-body>
}
<after-loop>

Path Explosion, Worse

51

i < n i ≥ n

<loop-body>

i < n

<after-loop>

i ≥ n

n = user_input() // i.e. symbolic
while (i < n) {
 <loop-body>
}
<after-loop>

Path Explosion, Worse

52

i < n i ≥ n

<loop-body>

i < n

<after-loop>

i ≥ n

n = user_input() // i.e. symbolic
while (i < n) {
 <loop-body>
}
<after-loop>

Path Explosion, Worse

53

<loop-body> <after-loop>

<loop-body> <after-loop>

n = user_input() // i.e. symbolic
while (i < n) {
 <loop-body>
}
<after-loop>

Path Explosion, Worse

54...

n = user_input() // i.e. symbolic
while (i < n) {
 <loop-body>
}
<after-loop>

55

i < n i ≥ n

<loop-body> <after-loop>

Path Explosion, Worse

Problem: once running into the black hole,
we cannot effectively explore other parts of the program

n = user_input() // i.e. symbolic
while (i < n) {
 <loop-body>
}
<after-loop>

56

i < n i ≥ n

<loop-body> <after-loop>

Escaping the Black Hole

Traditional wisdom: deploys clever path selection heuristics
(e.g. in KLEE)

n = user_input() // i.e. symbolic
while (i < n) {
 <loop-body>
}
<after-loop>

Escaping the Black Hole

● random state/path selection
● coverage-guided heuristics
● …

57

Escaping the Black Hole

● random state/path selection
● coverage-guided heuristics
● …

58

unexplored
function

Escaping the Black Hole

● random state/path selection
● coverage-guided heuristics
● …

Deploying path selection strategies needs
the ability to pause and resume the
execution of paths.

59

60

...

... ...

... ...

Symbolic Execution

exponential number of
independent paths

vs
Concrete Execution

1 path

Goal: deriving compilers from high-level symbolic
interpreters to generate efficient and effective
symbolic-execution code.

Symbolic Execution

61

💡 Insight
Viewing symbolic semantics as cooperative concurrency

○ When forking, two paths execute concurrently
○ Execution of forked path cooperates with a scheduler

...

... ...

... ...

Compiling Parallel SymExec with Continuation
ICSE 2023

62

💡 Insight
Viewing symbolic semantics as cooperative concurrency

○ When forking, two paths execute concurrently
○ Execution of forked path cooperates with a scheduler

✓ Solution
Compiling to continuation-passing style by exposing
control in the first-stage symbolic interpreter

✓ GenSym
An optimizing parallel symbolic-execution compiler

...

... ...

... ...

Compiling Parallel SymExec with Continuation
ICSE 2023

63

def g() =
 if (sym_cnd) {
 x = 42
 } else {
 x = 100
 }
 return x

cnd

ret

y = g()
z = y + 1
...

g
call

z=y+1

static control-flow graph

...

Represent the rest of the execution as a function k in the generated code

Compiling Parallel SymExec with Continuation
ICSE 2023

Represent the rest of the execution as a function k in the generated code

64

def g() =
 if (sym_cnd) {
 x = 42
 } else {
 x = 100
 }
 return x

cnd

ret

y = g()
z = y + 1
...

g
call

z=y+1

static control-flow graph

...continuation k

Compiling Parallel SymExec with Continuation
ICSE 2023

65

def g() =
 if (sym_cnd) {
 x = 42
 } else {
 x = 100
 }
 return x

cnd

ret

y = g()
z = y + 1
...

g
call

z=y+1

... ...

Invoke and fork

k(s1); k(s2)

Represent the rest of the execution as a function k in the generated code

Compiling Parallel SymExec with Continuation
ICSE 2023

66

Save and pause

scheduler.put(() => k(s))

continuation k

Compiling Parallel SymExec with Continuation
ICSE 2023

n = user_input()
while (i < n) {
 <loop-body>
}
<after-loop>

67

Compiling Parallel SymExec with Continuation
ICSE 2023

n = user_input()
while (i < n) {
 <loop-body>
}
<after-loop>

Dispatch and resume

k’ = scheduler.get(); k’() continuation k’

68

worker-thread() {
 k = scheduler.get(); k()
}

thread pool

… …

scheduler.put(k1) scheduler.put(k2)

Compiling Parallel SymExec with Continuation
ICSE 2023

69

represent the rest of execution as a function k in the generated code

● invoke and fork
k(s1); k(s2)

● save and pause
scheduler.put(() => k(s))

● dispatch and resume
k = scheduler.get(); k()

● dispatch in parallel

Compiling Parallel SymExec with Continuation
ICSE 2023

● GenSym
○ Handles a large subset of LLVM IR
○ Simulates path forking and switching using continuations
○ Written in Scala/LMS and generates C++ code

70

Compiling Parallel SymExec with Continuation
ICSE 2023

71

Compiling Parallel SymExec with Continuation
ICSE 2023

An Example

LLVM source (power func)

GenSym generated code

● GenSym
○ Handles a large subset of LLVM IR
○ Simulates path forking and switching using continuations
○ Written in Scala/LMS and generates C++ code

● Benchmarks
○ A subset of GNU Coreutils (using POSIX file system and uClibc library)
○ Average program size 28k LOC of LLVM IR

● Performance evaluation
○ Compared with KLEE, a state-of-the-art symbolic interpreter

73

Compiling Parallel SymExec with Continuation
ICSE 2023

Compiling Parallel SymExec with Continuation

74
Single-thread pure execution time (sec)

excluding solver: 4x faster on avg

ICSE 2023

75

Single-thread path throughput
 (paths per second) of 1-hour running: 4.3x on avg.

Compiling Parallel SymExec with Continuation
ICSE 2023

76
Speedups using more threads

 4th - 3.6x
 8th - 6.7x
12th - 9.3x

Compiling Parallel SymExec with Continuation
ICSE 2023

Conclusion & Future Work

● Metaprogramming can help the construction/performance of program
analyzers
○ Bridge the gap between static analysis spec. and implementations
○ Apply to wide range of program analyses
○ Refunctionalization/defunctionalization, partial evaluation & staging,

CPS transformation, code generation, etc.

Conclusion & Future Work

● Metaprogramming can help the construction/performance of program
analyzers
○ Bridge the gap between static analysis spec. and implementations
○ Apply to wide range of program analyses
○ Refunctionalization/defunctionalization, partial evaluation & staging,

CPS transformation, code generation, etc.
● Future work

○ Staging relational & numerical abstract domains
○ Compositional program analysis
○ Declarative specifications of abstract interpretation to efficient implementations
○ Theoretical foundation

Conclusion & Future Work

● Metaprogramming can help the construction/performance of program
analyzers
○ Bridge the gap between static analysis spec. and implementations
○ Apply to wide range of program analyses
○ Refunctionalization/defunctionalization, partial evaluation & staging,

CPS transformation, code generation, etc.
● Future work

○ Staging relational & numerical abstract domains
○ Compositional program analysis
○ Declarative specifications of abstract interpretation to efficient implementations
○ Theoretical foundation

Thank you!

