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Metaprogramming Program Analyzers

e Goal:improving the construction and performance of program analyzers
o0 Inherent complexity: undecidability, NP-complete/hard, abstract domains, etc.
o Accidental complexity: languages/compiler, implementation choice, data
structures, etc.

e Metaprogramming Program Analyzers :
Applying program generation/transformation to the implementation of

analyzers
o |.Derivation of big-step abstract interpreters from small-step ones
o 2. Compilation of analyses (control-flow analysis, symbolic execution)



Bridging the gap between small-step and big-step abstract interpreters

Abstract interpretation:
An approach to build sound static analysis from a concrete semantics.

Can we build an abstract interpreter from another abstract
interpreter?



Bridging the gap between small-step and big-step abstract interpreters
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A recipe to derive small-step abstract
interpreters from concrete state machines.

Popular approach in analyzing functional
higher-order programs; rooted in
control-flow analysis (CFA).

Abstracting Abstract Machines

David Van Horn *

Northeastern University
dvanhorn@ccs.neu.edu

Abstract

‘We describe a derivational approach to abstract interpretation that
yields novel and transparently sound static analyses when applied
to well blished abstract hi To demonstrate the tech-
nique and support our claim, we transform the CEK machine
of Felleisen and Friedman, a lazy variant of Krivine’s machine,
and the stack-inspecting CM machine of Clements and Felleisen
into abstract interpretations of themselves. The resulting analyses
bound temporal ordering of program events; predict return-flow
and stack-inspection behavior; and approximate the flow and eval-
uation of by-need parameters. For all of these machines, we find
that a series of well-known concrete machine refactorings, plus a
technique we call store-allocated continuations, leads to machines
that abstract into static analyses simply by bounding their stores.
We demonstrate that the technique scales up uniformly to allow
static analysis of realistic language features, including tail calls,
conditionals, side effects, exceptions, first-class continuations, and
even garbage collection.

Matthew Might

University of Utah
might@cs.utah.edu

‘We demonstrate that the technique of refactoring a machine
with store-allocated continuations allows a direct structural ab-
straction' by bounding the machine’s store. Thus, we are able to
convert semantic techniques used to model language features into
static analysis techniques for reasoning about the behavior of those
very same features. By abstracting well-known machines, our tech-
nique delivers static analyzers that can reason about by-need evalu-
ation, higher-order functions, tail calls, side effects, stack structure,
exceptions and first-class continuations.

The basic idea behind store-allocated continuations is not new.
SML/NJ has allocated continuations in the heap for well over a
decade [28]. At first glance, modeling the program stack in an ab-
stract machine with store-allocated continuations would not seem
to provide any real benefit. Indeed, for the purpose of defining the
meaning of a program, there is no benefit, because the meaning
of the program does not depend on the stack-implementation strat-
egy. Yet, a closer inspection finds that store-allocating continua-
tions eliminate recursion from the definition of the state-space of
the machine. With no recursive structure in the state-space. an ab-

Originally at ICFP 2010; later CACM 2011,
ICFP Most Influential Paper at ICFP 2020



Bridging the gap between small-step and big-step abstract interpreters

Abstract A recipe to derive small-step abstract
Abstract interpreters from concrete state machines.

Machines Popular approach in analyzing functional
[ICFP 10] higher-order programs; rooted in
control-flow analysis (CFA).
i
: finite state space:
: State* := (Expr, Env¥, Store”, Kont*)
I nondeterministic state transition:
: State® - Set[State”]
I
1
Abstract
Machines

(CEK/CESK)
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A recipe to derive small-step abstract
interpreters from concrete state machines.

Abstracting Definitional Interpreters
(Functional Pearl)

DAVID DARAIS, Univeristy of Maryland, USA
NICHOLAS LABICH, Univeristy of Maryland, USA
PHUC C. NGUYEN, Univeristy of Maryland, USA
DAVID VAN HORN, Univeristy of Maryland, USA

In this functional pearl, we examine the use of definitional interpreters as a basis for abstract interpretation
of higher-order programming languages. As it turns out, definitional interpreters, especially those written
in monadic style, can provide a nice basis for a wide variety of collecting semantics, abstract interpretations,
symbolic executions, and their intermixings.

But the real insight of this story is a replaying of an insight from Reynold’s landmark paper, Definitional
Interpreters for Higher-Order Programming Languages, in which he observes definitional interpreters enable
the defined-language to inherit properties of the defining-language. We show the same holds true for defi-
nitional abstract interpreters. Remarkably, we observe that abstract definitional interpreters can inherit the
so-called “pushdown control flow” property, wherein function calls and returns are precisely matched in the
abstract semantics, simply by virtue of the function call mechanism of the defining-language.

The first approaches to achieve this property for higher-order languages appeared within the last ten years,
and have since been the subject of many papers. These approaches start from a state-machine semantics and
uniformly involve significant technical engineering to recover the precision of pushdown control flow. In
contrast, starting from a definitional interpreter, the pushdown control flow property is inherent in the meta-
language and requires no further technical mechanism to achieve.

A big-step, compositional,
monadic abstract interpreter.

Abstract
Definitional

Interpreters

[ICFP 17]

—_—m e e = === =D

Definitional
Interpreters .
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Abstract A rect deri | : Abstract
recipe to derive sma -Step abstract A big.step, compositional’ . . .
AbStraCt interpreters from concrete state machines. monadic abstract interpreter. Deflnltlonal
Machines Interpreters
[ICFP 10] [ICFP 17]

Both of them construct abstract interpreters

A a state-transition system vs a recursive function
|

|

|

|

: that analyze higher-order functional programs

|
|
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Bridging the gap between small-step and big-step abstract interpreters
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a state-transition system vs a recursive function

Both of them construct abstract interpreters
that analyze higher-order functional programs

Functional correspondence between
concrete abstract machines and evaluators

Abstract
Definitional

Interpreters
[ICFP 17]
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Bridging the gap between small-step and big-step abstraet interpreters

Abstract

Machines
(CEK/CESK)

S

Definitional Interpreters 9‘1‘2‘
for Higher-Order Programming Languages”

JOHN C. REYNOLDS™*
Systems and Information Science, Syracuse University

Abstract. Higher-order programming languages (i.e., languages in which procedures or labels can occur as
values) are usually defined by interpreters that are themselves written in a programming language based on the
lambda calculus (i.e., an applicative language such as pure LISP). Examples include McCarthy’s definition of
LISP, Landin’s SECD machine, the Vienna definition of PL/I, Reynolds’ definitions of GEDANKEN, and recent
unpublished work by L. Morris and C. Wadsworth. Such definitions can be classified according to whether the
interpreter contains higher-order functions, and whether the order of application (i.e., call by value versus call by
name) in the defined language depends upon the order of application in the defining language. As an example,
we consider the definition of a simple applicative programming language by means of an interpreter written in a
similar language. Definitions in each of the above classifications are derived from one another by informal but
constructive methods. The treatment of imperative features such as jumps and assignment is also discussed.

Functional correspondence between
concrete abstract machines and evaluators

Definitional
Inter'preter's13



Bridging the gap between small-step and big-step abstraet interpreters
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O rd er- of_ U se of h | g h er-o rd er f un ct| ons: we consider the definition of a simple applicative programming language by means of an interpreter written in a

similar language. Definitions in each of the above classifications are derived from one another by informal but

constructive methods. The treatment of imperative features such as jumps and assignment is also discussed.
dependence: yes no

direct interpreter McCarthy’s
yes for GEDANKEN definition of LISP
Morris-Wadsworth SECD machine,

no . ..
method Vienna definition

Abstract o
Machines < > Definitional

(CEK/CESK) Functional correspor-\dence between Interpreters
concrete abstract machines and evaluators 14




Bridging the gap between small-step and big-step abstraet interpreters

defunctionalization: transform higher-order functions to first-order data types

with their dispatching functions (e.g., closure conversion).

Order-of-
application
dependence:

yes

no

Abstract

Use of higher-order functions:

>

yes no
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for GEDANKEN definition of LISP

Morris-Wadsworth SECD machine,
method Vienna definition
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Bridging the gap between small-step and big-step abstraet interpreters

defunctionalization: transform higher-order functions to first-order data types

with their dispatching functions (e.g., closure conversion).

refunctionalization: the inverse of defunctionalization [Danvy et al.].

Order-of-
application
dependence:

yes

no

Abstract

Use of higher-order functions:
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Bridging the gap between small-step and big-step abstraet interpreters

e Example: refunctionalizing a CEK machine yields an interpreter in

continuation-passing style.

: CEK Machine
- State := (Expr, Env, Kont)

. Kont Halt

: | Ar{(Expr, Env, Kont)
| Fn{Lam, Env, Kont)

evaluation context
(first-order data types)

Abstract L
> Definitional

Machines < o] y :
(CEK/CESK) unctiona correspor) ence between Interpreters
concrete abstract machines and evaluators 17




Bridging the gap between small-step and big-step abstraet interpreters

e Example: refunctionalizing a CEK machine yields an interpreter in

continuation-passing style.

; CEK Machine : refunc ;
. State := (Expr, Env, Kont) : : > CPS Interpreter
‘Kont = Halt : - eval : Expr x Env x (Val - Val)
. - .

| Ar(Expr, Env, Kont) defunc. - Value

| Fn{Lam, Env, Kont)

continuation

evaluation context
(higher-order functions)

(first-order data types)

Abstract L
> Definitional

Machines < o] y :
(CEK/CESK) unctiona correspor) ence between Interpreters
concrete abstract machines and evaluators 18




Bridging the gap between small-step and big-step abstraet interpreters

e Example: refunctionalizing a CEK machine yields an interpreter in
continuation-passing style.

CEK Machlne . :. ............................................ :

 State := (Expr, Env, Kont) : refunc. - CPS énterp(r\cjtir val)
. ._ . . eval : EXpr x Env x al - Va
:Kont := Halt < : 5 1

: | Ar(Expr, Env, Kont) . defunc. X - vaiue

| Fn(Lam, Env, Kont) .............................................

® refunctionalized evaluation contexts = higher-order continuations

® defunctionalized continuations = first-order evaluation contexts

Abstract

Machines <

(CEK/CESK) Functional correspor)dence between Interpreters
concrete abstract machines and evaluators 19

> Definitional



Bridging the gap between small-step and big-step abstract interpreters

Abstract ? Abstract
Abstract ... TR »~  Definitional
Machines Interpreters
[ICFP 10] [ICFP 17]
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A .
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I I

I I

I I

I I

I I

I I

I I

|
Abstract .
Machines < > Definitional
(CEK/CESK) Functional correspor-\dence between Interpreters
concrete abstract machines and evaluators 2



Bridging the gap between small-step and big-step abstract interpreters

Linearization

Abstract / l Abstract
Abstract nghthelght Refunctionalization —» 'Back to Definitional
Machines Fusion Direct-Style Interpreters
[ICFP 10] ) [ICFP 17]
Disentanglement A
4 1
|
| Refunctionalization of Abstract Abstract Machines !
: [ICFP 18, Wei et al.] |
: v/ Afunctional correspondence between small-step and big-step I
I abstract interpreters. :
| v/ Construct transformation steps from AAM to ADI using control :
Abstract Operators. , I :
Machines < > Definitional
(CEK/CESK) Functional correspor-mdence between Interpreters
concrete abstract machines and evaluators 2



Bridging the gap between small-step and big-step abstract interpreters

Linearization

Abstract / l Abstract

Abstract nghthelght Refunctionalization —» 'Back to Definitional

Machines Fusion Direct-Style Interpreters
[ICFP 10] ) [ICFP 17]

Disentanglement
o) N
O—0O
o ) o) N
(f v) O p\%
State* = (Expr, Env*, Store*, Kont)
step: State* - P(State?)

22



Bridging the gap between small-step and big-step abstract interpreters

Linearization
Abstract / l Abstract
Abstract nghthelght Refunctionalization —» 'Back to Definitional
Machines Fusion Direct-Style Interpreters
[ICFP 10] ) [ICFP 17]

Disentanglement

O—O

o ) .

(f V) ‘O b\%

State* = (Expr, Env*, Store*, Kont)
step: State* - P(State?)

(f v) O

[/ >

NDState* = (Expr, Env*, Store*, Kont, MKont)
step: NDState* . NDState”

O

23



Bridging the gap between small-step and big-step abstract interpreters

Linearization

Abstract / l Abstract

Abstract nghtV\.relght Refunctionalization —» 'Back to Definitional

MaChineS Fusion Dlrect-Ster Interpreters
[ICFP 10] ) [ICFP 17]

Disentanglement

Further tweak the form of AAM and expose continuations explicitly:
® Fusion: merges the step function and the driver loop function into one, so the
abstract interpreter is a single, recursive function.
e Disentanglement lifts the code that dispatches those two data types
representing continuations to be top-level functions.

24



Bridging the gap between small-step and big-step abstract interpreters

Linearization

Abstract / l Abstract

Abstract nghthelght Refunctionalization—» 'Back to Definitional

Machines Fusion Direct-Style Interpreters
[ICFP 10] ) [ICFP 17]

Disentanglement

e Types of the first-order dispatching functions:

State : (Expr, Env*, Store”, Kont, MKont)
continue : State x Cache = Cache
mcontinue : State x Cache = Cache

® Types of the higher-order continuations:

State : (Expr, Env¥#, Store”, keat—Mkent)
type Cont = (State x Cache x MCont) = Cache

type MCont = (State x Cache) = Cache -



Refunctionalization to 2CPS

def aeval(state: State, seen: Cache, k: Cont, mk: MCont): Cache = {
e match {
case Let(x, App(f, ae), e) if isAtomic(f) && isAtomic(ae) =

val closures = atomicEval(f, p, o).tolList
val Clos(Lam(v, body), c_p) = closures.head
val a = alloc(v); val new_p
val argvs = atomicEval(ae, p, o0); val new_o
val new_k: Cont = ...
// A HO function takes result of App and then evaluates e
val new_mk: MCont = ...
// A HO function iterates over the target closures
aeval(State(body, new_p, new_c), new_seen, new_k, new_mk)

c_p + (vra)
o0.join(a » argvs)

case ae if isAtomic(ae) = k(state, new_seen, mk)

}
}

26



Bridging the gap between small-step and big-step abstract interpreters

Linearization

Abstract / l Abstract

Abstract nghthelght Refunctionalization —» .Back to Definitional

MaChineS Fusion Dlrect-Style Interpreters
[ICFP 10] ) [ICFP 17]

Disentanglement

® We have obtained a refunctionalized AAM in CPS.
® From extended CPS to direct-style, three choices:

e Use explicit side-effects and assignments.
e Use monads [Darais et al. ICFP 17].
e Use delimited control operators (shift/reset).
e shift to capture the continuation
e reset to set the boundary
27



Back to Direct-Style

def aeval(state: State, seen: Cache): (State, Cache) @cps[Cache] = {

}

e match {
case Let(x, App(f, ae), e) if isAtomic(f) && isAtomic(ae) =

}

val
val
val
val
val
val
val
val

closures = atomicEval(f, p, o).tolList

(Clos(Lam(v, body), c_p), c_seen) = choices(closures, new_seen)
v_a = alloc(v); val new_p = c_p + (v » v_a)

new_o = o.join(v_a » atomicEval(ae, p, 0))

(bd_state, bd_seen) = aeval(State(body, new_p, new_c), c_seen)
State(bd_ae, bd_p, bd_o) = bd_state

x_a = alloc(x); val new_p_* = p + (x » x_a)

new_o_* = bd_o.join(x_a » atomicEval(bd_ae, bd_p, bd_o))

aeval(State(e, new_p_*, new_o_*), bd_seen)
case ae if isAtomic(ae) = (state, new_seen)

28



Back to Direct-Style

def aeval(state: State, seen: Cache): (State, Cache) @cps[Cache] = {

Get a closure of f,

e match { L
nondeterministically.

case Let(x, App(f, ae), e) if isAtomic(f) && isAtomic(ae) =
val closures = atomicEval(f, p, o).tolist
val (Clos(Lam(v, body), c_p), c_seen) =Ichoices(closures, new_seen)

1val v_a = alloc(v); val new_p = c_p + (v » v_a) I
i val new_o = o.join(v_a » atomicEval(ae, p, 0)) :
:val (bd_state, bd_seen) = aeval(State(body, new_p, new_o), c_seenﬂ
:val State(bd_ae, bd_p, bd_o) = bd_state :
1val x_a = alloc(x); val new_p_* = p + (x » x_a) I
:val new_o_* = bd_o.join(x_a » atomicEval(bd_ae, bd_p, bd_o)) :
| aeval(State(e, new_p_*, new_o_*), bd_seen) :

case ae if isAtomic(ae) = (state, new_seen) - -
choices uses shift to

} capture the continuation,

} implicitly. 29



Bridging the gap between small-step and big-step abstract interpreters

Linearization

Abstract / l Abstract

Abstract nghthelght Refunctionalization —» .Back to Definitional

Machines Fusion Direct-Style Interpreters
[ICFP 10] ) [ICFP 17]

Disentanglement

Applying transformations to the meta-constructs of the analyzer:
functional correspondence between
abstract semantic artifacts by refunctionalization [ICFP 18,Wei et al ]

The analysis results are equivalent modulo the representation of continuations.

30



Performant Program Analysis by Compilation

abstract
interpreters

A

concrete
interpreters



Performant Program Analysis by Compilation

abstract
interpreters

A

concrete
interpreters

Easy to build with high-level
abstractions (e.g. AAM/ADI),
but inherently slow.

inspecting program AST/IR
dispatching the semantics
recursion/loop at meta-level
abstractions (monads, etc.)



Performant Program Analysis by Compilation

Easy to build with high-level
abstract abstractions (e.g. AAM/ADI),

Interpreters but inherently slow.
A
A few data points:

symbolic interpreter performance
compared to native execution

KLEE (C++) 3,000x slower
angr (Python) 321,000x slower

concrete

interpreters



Performant Program Analysis by Compilation

abstract
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, > concrete = compilers
Interpreters Futamura projections

interpreters
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Performant Program Analysis by Compilation
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Performant Program Analysis by Compilation

abstract
interpreters

A

concrete
interpreters

A Staging example:

def power(b: N, x: N): I =
if (x == 08) 1 else b * power(b, x - 1)

def power5(b: N) = power(b, 5)

staged

> concrete = compilers

Futamura projections inte rpreters



Performant Program Analysis by Compilation

abstract
interpreters

A

concrete
interpreters

A Staging example:

def power(b: Rep[N], x: N): Rep[N] =
if (x == 0) 1 else b * power(b, x - 1)

def power5(b: Rep[lN]) = power(b, 5)

l specialization/code generation

def power5(b: ) =b * b * b * b * b

staged

> concrete = compilers

Futamura projections inte rpreters



Performant Program Analysis by Compilation

Ist Futamura projection:

r gy . .
. abstract Compilation removes interpretation overhead
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I staged generated
A program 1 interpreter program 1
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Performant Program Analysis by Compilation

e abstract values

abstract Futamura projections e join-updates
> 777 e non-determinism
interpreters e fixed-pointiterations
e termination guarantee
e ...
A A
staged
concrete .
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Performant Program Analysis by Compilation

Staged Abstract Interpreters OOYS\)

Fast and Modular Whole-Program Analysis via Meta-programming

GUANNAN WEI, YUXUAN CHEN, and TIARK ROMPF, Purdue University, USA

It is well known that a staged interpreter is a compiler: specializing an interpreter to a given program produces

an equivalent executable that runs faster. This connection is known as the first Futamura projection. It is

even more widely known that an abstract interpreter is a program analyzer: tweaking an interpreter to run

on abstract domains produces a sound static analysis. What happens when we combine these two ideas, and A S ta g e d a bs tr a c t
apply specialization to an abstract interpreter?

In this paper, we present a unifying framework that naturally extends the first Futamura projection from i nter p 14 eter is an

concrete interpreters to abstract interpreters. Our approach derives a sound staged abstract interpreter based
on a generic interpreter with type-level binding-time abstractions and monadic abstractions. By using different a b Stract com p i l er
instantiations of these abstractions, the generic interpreter can flexibly behave in one of four modes: as an
unstaged concrete interpreter, a staged concrete interpreter, an unstaged abstract interpreter, or a staged
abstract interpreter. As an example of abstraction without regret, the overhead of these abstraction layers is
eliminated in the generated code after staging. We show that staging abstract interpreters is practical and useful
to optimize static analysis, all while requiring less engineering effort and without compromising soundness.
We conduct three case studies, including a comparison with Boucher and Feeley’s abstract compilation,
applications to various control-flow analyses, and a demonstration for modular analysis. We also empirically
evaluate the effect of staging on the execution time. The experiment shows an order of magnitude speedup
with staging for control-flow analyses.




Performant Program Analysis by Compilation

Abstract Compilation: A New Implementation
Paradigm for Static Analysis

Dominique Boucher and Marc Feeley

Département d’informatique et de recherche opérationnelle (IRO)
Université de Montréal

C.P. 6128, succ. centre-ville, Montréal, Québec, Canada H3C 3J7 A Staged abstract
E-mail: {boucherd,feeley}@iro.umontreal.ca . .
Interpreter Is an
Abstract. For large programs, static analysis can be one of the most abStraCt com p "ler

time-consuming phases of the whole compilation process. We propose a
new paradigm for the implementation of static analyses that is inspired
by partial evaluation techniques. Our paradigm does not reduce the com-
plexity of these analyses, but it allows an efficient implementation. We
illustrate this paradigm by its application to the problem of control flow
analysis of functional programs. We show that the analysis can be sped
up by a factor of 2 over the usual abstract interpretation method.
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compilation, control flow analysis.
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Symbolic Execution

X = user_input()
y = user_input()

if (x > 5) {
if (y < 10) {
. /* path 1 */
} else {
. /* path 2 */
}
} else {
. /* path 3 */
}

y < 10

y = 10

solver( x > 5 ANy <10) = { x

IA
a
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Path Explosion, Worse

n = user_input() // i.e. symbolic
while (i < n) {

<loop-body>
b

<after-Loop>
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Path Explosion, Worse

v
>

n = user_input() // i.e. symbolic i<n 1
while (i < n) {

<loop-body>
b

<after-Loop>
<loop-body> <after-Lloop>

Problem: once running into the black hole,
we cannot effectively explore other parts of the program
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Escaping the Black Hole

n = user_input() // i.e. symbolic 1
while (i < n) {

<loop-body>
b

<after-Loop>

<loop-body> <after-Lloop>

Traditional wisdom: deploys clever path selection heuristics
(e.g. in KLEE)
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Escaping the Black Hole

e random state/path selection
® coverage-guided heuristics
°
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Escaping the Black Hole

unexplored
function

e random state/path selection /
® coverage-guided heuristics
°
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Escaping the Black Hole

e random state/path selection

® coverage-guided heuristics
°

Deploying path selection strategies needs
the ability to pause and resume the
execution of paths.
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Symbolic Execution

Concrete Execution Symbolic Execution

1 path v exponential number of

independent paths

Goal: deriving compilers from high-level symbolic
interpreters to generate efficient and effective
symbolic-execution code.
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ICSE 2023

Compiling Parallel SymExec with Continuation

. Insight
Viewing symbolic semantics as cooperative concurrency
o  When forking, two paths execute concurrently

o Execution of forked path cooperates with a scheduler
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Compiling Parallel SymExec with Continuation

. Insight
Viewing symbolic semantics as cooperative concurrency

o  When forking, two paths execute concurrently
o Execution of forked path cooperates with a scheduler

v Solution
Compiling to continuation-passing style by exposing
control in the first-stage symbolic interpreter

v GenSym
An optimizing parallel symbolic-execution compiler
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Compiling Parallel SymExec with Continuation

Represent the rest of the execution as a function k in the generated code

- =

y = g() —*def 9() = e
z =y + 1 if (sym_cnd) {
X = 42
. } else { Z=y+
X = 100
}
return x

static control-flow graph
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Compiling Parallel SymExec with Continuation

Represent the rest of the execution as a function k in the generated code

- =

y = g()_,//Vdef g() = call
Iy AT if (sym_cnd) { _l_-
1 : X = 42 _ :
o ! } else { z=y+1|
"""" x = 100 :

: e
return X I

continuation k L

—— o e e o o o o o)

,.
|
|
1

static control-flow graph
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Compiling Parallel SymExec with Continuation

Represent the rest of the execution as a function k in the generated code

g() __—»def g() =
y + 1 if (sym_cnd) {
X = 42
} else {
X = 100
}

return x

- N X

Invoke and fork
k(s1); k(s2)
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Compiling Parallel SymExec with Continuation

n = user_input()

while (i < n) {
<loop-body>

}

<after-Loop>

Save and pause

scheduler.put(() => k(s))

continuation
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Compiling Parallel SymExec with Continuation

n = user_input()

while (i < n) {
<loop-body> =g --=-a

}

<after-Loop>

_________

Dispatch and resume

k> = scheduler.get(); k’()

continuation k’
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Compiling Parallel SymExec with Continuation

scheduler.put (k1) scheduler.put(k2)

thread pool

worker-thread() {
k = scheduler.get(); k()

}
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Compiling Parallel SymExec with Continuation

represent the rest of execution as a function k in the generated code

® invoke and fork
k(s1); k(s2)

® save and pause
scheduler.put(() => k(s))

e dispatch and resume
k = scheduler.get(); k()

e dispatch in parallel
69
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Compiling Parallel SymExec with Continuation

e GenSym
o Handles a large subset of LLVM IR

o Simulates path forking and switching using continuations
o  Written in Scala/LMS and generates C++ code
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Compiling Parallel SymExec with Continuation
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15 using Cont = function<void(S, V)>; // the continuation type

16 void power_b0(S s, List[V] args, Cont k) { // compiled block ‘b0’
An Example 17 s.assign_seq(List("x", "n"), args);

18 V cmp = args[1l] == IntV(OL, 32);

19 s.set_cur_block("b0"); // record the current block (for phi node)

20 if (cmp.is_conc()) { // concrete branch condition

21 if (cmp.value() == 1) power_bl(s, k); // jump to block ‘bl‘’
22 else power_b2(s, k); // jump to block ‘b2‘
23 } else { // symbolic branch condition
24 // yield the control to scheduler and add two new tasks to schedule
4 define i32 @power(i32 x, i32 n) { 25 schedule(task(s, cmp, power_b2, k), task(s.fork(), !cmp, power_bl, k));
5 bO: cmp = icmp eq i32 n, 0 26}
6 br il cmp, label b2, label bl 27 }
7 bl: subv = sub i32 n, 1 28 void power_b1l(S s@, Cont k) { // compiled block ‘b1’
8 retv = call.i32 @power(i32 x, i32 subv) 29 V subv = s0.lookup("n") - IntV(1, 32);
9 mulv = mul 132 x, retv 30 List[V] args = List(s0.lookup("x"), subv);
18 br 1ab?1.b2 31 // recursively call ‘power’ with a new continuation
L= ?hl 132 [mulv, bll, [1, b0l 32 power_b0(s0, args, [=](S sl1l, V retv) {
12 ret i32 r .
13 } 33 sl.assign("mulv", retv *x sl.lookup("x"));
34 sl.set_cur_block("bl");
LLVM source (power func) 22 })p"‘“’er—bz(ﬂ' k)i
37 }
38 void power_b2(S s, Cont k) { // compiled block ‘b2’
39 V r = s.last_block() == "bl" ? s.lookup("mulv") : IntV(1L, 32);
40 k(s, r);
41 }

GenSym generated code
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Compiling Parallel SymExec with Continuation

e GenSym
o Handles a large subset of LLVM IR
o Simulates path forking and switching using continuations
o  Written in Scala/LMS and generates C++ code

e Benchmarks
o A subset of GNU Coreutils (using POSIX file system and uClibc library)
o Average program size 28k LOC of LLVM IR

e Performance evaluation

o Compared with KLEE, a state-of-the-art symbolic interpreter
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Compiling Parallel SymExec with Continuation

B KLEE [M GenSym

400
300
200

100

base32 base64 cat comm cut dirname echo expand fold join link paste pathchk

Single-thread pure execution time (sec)
excluding solver: 4x faster on avg 74
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Compiling Parallel SymExec with Continuation

B KLEE [ GenSym

4000
3000
2000

1000

base32 base64 cat comm cut dirname echo expand fold join link paste pathchk

Single-thread path throughput

(paths per second) of 1-hour running: 4.3x on avg. s
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Compiling Parallel SymExec with Continuation

m 4th m 8th 12th

i

base32 base64 cat comm cut dirname echo epand fold join link paste  pathchk

4th - 3.6x

Speedups using more threads 8th - 6.7x
12th - 9.3x 76



Conclusion & Future Work

e Metaprogramming can help the construction/performance of program

analyzers
o Bridge the gap between static analysis spec. and implementations
o Apply to wide range of program analyses
o Refunctionalization/defunctionalization, partial evaluation & staging,
CPS transformation, code generation, etc.
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