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Defunctionalization transforms higher-order functions to first-order data type representations and their dispatching 
functions (Reynolds, 1972). Closure conversion is one example of defunctionalization. Refunctionalization is its 
left-inverse, transforming first-order data types back to higher-order functions. Refunctionalization and 
defunctionalization can be used to construct a functional correspondence between abstract machines and evaluators (Ager 
et al., 2003). This correspondence shows that abstract machines and evaluators can be inter-derived in a systematic way 
after identifying their first-order/higher-order representations of contexts/continuations.

Is there a functional correspondence between the abstract semantic artifacts (i.e., abstract interpreters)?

?

Known as functional correspondence between concrete abstract machines and evaluators.
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0. Pushdown AAM
Abstracting Abstract Machine (AAM) is a methodology to derive sound abstract 
interpreters from concrete interpreters. For example, we can construct an abstract 
interpreter for a call-by-value lambda calculus by systematically applying a 
combination of abstractions (e.g., finite address space, store-allocated 
continuations, etc.) to a concrete CESK machine.

In this pearl, we start from a variant of AAM, the pushdown AAM, which uses an 
unbounded stack, and show the transformation to ADI.

Pushdown AAM
- Environment maps variables to addresses:

type Env = Map[String, Addr]
- Store maps (finite) addresses to sets of abstract values:

type Store = Map[Addr, Set[Clos]]
- Continuation keeps unbounded (same as a concrete CESK machine):

case class Frame(x: String, e: Expr, ρ: Env)
- State has four components:

case class State(e: Expr, ρ: Env, σ: Store, κ: List[Frame])
- State transition function and collecting function:

step  : State ⇒ Set[State]
drive : List[State] × Set[State] ⇒ Set[State]

Why Pushdown AAM?
- Naturally corresponds to abstract definitional interpreters (Darais et al., 2017), 

which inherents the stack structure from the defining language.

2. Lightweight Fusion
Lightweight fusion combines the step and drive functions.

                       Before: step  : State ⇒ Option[State]
                               drive : State × Set[State] ⇒ Set[State]
                    After:  drive_step : State × Set[State] ⇒ Set[State]

The fused function drive_step does both state-transition and state-collection, which 
looks like a “big-step” abstract interpreter, but still uses a first-order 
representation of machine states.

4. Refunctionalization
- Transforms first-order data types and their dispatching functions to higher-order 

functions, i.e., to CPS form.
-

- Types of the higher-order continuations and refunctionalized aeval function:
type Cont  = (State, Set[State], MCont) ⇒ Set[State]      
type MCont = (State, Set[State]) ⇒ Set[State]
aeval : State × Set[State] × Cont × MCont ⇒ Set[State]

- After refunctionalization, an abstract interpreter written with two HO continuations:
def aeval(state: State, seen: Set[State], k: Cont, mk: MCont): Set[State] = {

    e match {
    case Let(x, App(f, ae), e) if isAtomic(f) && isAtomic(ae) ⇒
        val closures = atomicEval(f, ρ, σ).toList
        val Clos(Lam(v, body), c_ρ) = closures.head
        val α = alloc(v);                  val new_ρ = c_ρ + (v ↦ α)
        val argvs = atomicEval(ae, ρ, σ);  val new_σ = σ.join(α ↦ argvs)
        val new_k: Cont = ...   // A HO function takes result of body and then evaluates e     
        val new_mk: MCont = ... // A HO function iterates over the target closures
        aeval(State(body, new_ρ, new_σ), new_seen, new_k, new_mk)
    case ae if isAtomic(ae) ⇒ k(state, new_seen, mk) } }
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3. Disentanglement
- Identify first-order data types that represent contexts.

case class State(e: Expr, ρ: Env, σ: Store, κ: List[Frame], mκ: List[NDCont])

- Identify code blocks that handle different cases of these data types.
   def drive_step(nds: State, seen: Set[State]): Set[State] = { ...
      nds match {
        case State(Let(x, App(f, ae), e), ρ, σ, κ, mκ) if isAtomic(f) && isAtomic(ae) ⇒ ...
        case State(ae, ρ, σ, κ, mκ) if isAtomic(ae) ⇒
          κ match {
            case Nil ⇒ 
              mκ match {
                case Nil ⇒ new_seen
                case NDCont(Nil,_,_,_)::mκ ⇒ ...
                case NDCont(cls, argv, σ, κ)::mκ ⇒ ...
              }
            case Frame(x, e, f_ρ)::κ ⇒ ... } } }

- Lift these code blocks to top-level individual functions.
continue   : State × Set[State] ⇒ Set[State]
mcontinue  : State × Set[State] ⇒ Set[State]
drive_step calls continue when an atomic expression needs to be returned; continue 
calls mcontinue when the object program’s stack is empty; mcontinue halts when the 
nondeterministic stack is empty.

dispatching mκ

dispatching κ

Take-Home Message
- A constructive functional correspondence fills the gap between AAM and ADI.
- Linearization twists the worklist to a meta-continuation, then apply existing techniques (e.g., l.w. fusion, 

disentanglement, refunc., and delimited cont.) to the two-continuation-passing style abstract interpreter.

From extended CPS to direct-style, three choices:
- Use explicit side-effects and assignments.
- Use monads (Darais et al., 2017)
- Use delimited control operators (shift/reset).

def aeval(state: State, seen: Set[State]): (State, Set[State]) @cps[Set[State]] = { ...
  e match {
    case Let(x, App(f, ae), e) if isAtomic(f) && isAtomic(ae) ⇒
      val closures = atomicEval(f, ρ, σ).toList
      val (Clos(Lam(v, body), c_ρ), c_seen) = choices(closures, new_seen)
      val v_α = alloc(v);  val new_ρ = c_ρ + (v ↦ v_α)
      val new_σ = σ.join(v_α ↦ atomicEval(ae, ρ, σ))
      val (bd_state, bd_seen) = aeval(State(body, new_ρ, new_σ), c_seen)
      val State(bd_ae, bd_ρ, bd_σ) = bd_state
      val x_α = alloc(x);  val new_ρ_* = ρ + (x ↦ x_α)
      val new_σ_* = bd_σ.join(x_α ↦ atomicEval(bd_ae, bd_ρ, bd_σ))
      aeval(State(e, new_ρ_*, new_σ_*), bd_seen)
    case ae if isAtomic(ae) ⇒ (state, new_seen)
  }
}
- choices returns a closure nondeterministically, and captures the reset computation 

by internally using the shift operator.

What else?
- Co-inductive caching (Darias et al., 2017) to ensure termination.
- Polyvariant analysis by adding timestamp to addresses.
- Return a set of values instead of states, lift the fields of State to aeval.

5. Back to Direct-Style
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1. Linearization
The linearization transforms the nondeterminism into another meta-continuation 
component of the state, and makes the state transition deterministic.

The classical AAM has a 
nondeterministic state 
transition -- one state may 
have multiple successors; 
these will be added to an 
additional worklist. A 
drive function controls the 
exploration of states by 
repeatedly popping up a 
state and getting its 
successors.

After linearization, the 
state transition becomes 
deterministic. At a fork 
point, we pick up one 
state as the successor, 
and save enough 
information at this fork 
point so that we can come 
back later and construct 
the remaining states.

When we reach an end of 
one computation path, 
there may still be 
remaining states at some 
fork point. By resuming 
to the most recent fork 
point and constructing a 
new successor, the 
reachable states will be 
explored like traversing 
a tree in depth-first 
order.

Before: case class State(e: Expr, ρ: Env, σ: Store, κ: List[Frame])
After:  case class State(e: Expr, ρ: Env, σ: Store, κ: List[Frame], mκ: List[NDCont])
        case class NDCont(cls: List[Clos], argvs: Set[Clos], σ: Store, κ: List[Frame])


