Yuyan Bao'

1 University of Waterloo

Guannan Wej?

2 Purdue University / PurPL

Motivation

Reachability types: Expressive ownership-style
reasoning for higher-order functional languages.

Popular ownership models: This work flips it on its head:

Local Invariants
(e.g. uniqueness,
linearity, ...)

Local Relaxation/
Unsafe Features
(e.g. Borrowing)

?Separation & Reachability
(No global invariant)

8 Global Invariants
(e.g. uniqueness, linearity, ...)

State-of-the-art ownership systems restrict the use of
higher-order functions. Consider the “counter’ program
that can be elegantly implemented in functional languages:

def counter(n: Int) = {
val ¢ = new Ref(n)

(O = et e =)

val (incr, decr) = counter(9)
incr(); incr(); decr()

However, one has to use dynamic reference counting in
Rust, by the “shared XOR mutable” restriction. How can
we remove such restrictions and enable safe & expressive

ownership-style type systems for higher-order languages!?
i64) -> (impl Fn()->(),
impl Fn()->()) A

let ¢ = Rc::new(Cell::new(n));
let c1 c.clone();

let ¢c2 = c.clone();

(move { cl.set(cl.get() + 1)
move { c1.set(c2.get() - 1)

fn counter(n:

;)
;)

)

}
Separation logics have been established as the formal
foundation for Rust-style ownership type systems (e.g.
RustBelt), what if we build a separation substrate into

user-level syntactic types!?

REACHABILITY TYPES

26

Oliver Bracevac Luke Jiang?

-

Reachability Types, Informally \

e Tracking reachable variables at the type level:

new Ref(42) // . Ref[Int]®

val x = new Ref(42) // : Ref[Int]™

val y = x // : Ref[Int]™ ¥’

val i = 42 // : Intt, no tracking

® Function types track the free variables:

val c1: Ref[Int]i®": val c2: Ref[Int]ic?
def addRef(c: Ref[Int]?) = c1 := !cl+!lc; c1
// addRef: (Ref[Int]® => Ref[Int]ic})tcl

f \

observable aliases of argument free variables
by the function body of the function

e Applications check if argument is aliased with function’s

qualifier, guaranteeing observable separation:

addRef(c1) // type error because {c1}[1{c1}!=2
addRef(c2) // ok because {c2}1{c1}=2

® Function domain controls permissible overlap:
def addRef2(c: Ref[Int]t¢V) = ..
// addRef2: (Ref[Int]i¢"r => Ref[Int]ic'})icl;
addRef2(c1) // ok now

® How should we type escaping functions!?

{ () => new Ref(0) }
// (() => Ref[Int]®?)? ~> (() => Ref[Int]?)”?

{ val y = new Ref(0); () => ly }
// (() => IntH)WY ~> (() => Intt)®
{ val y = new Ref(0); () =>vy }

// (() => Ref[Int]V¥)W¥) ~> removing y is wrong

Use DOT-style self-reference for functions:
f(() => Ref[Int]W¥})w

<: f(() => Ref[Int]iT)y

~> f(() => Ref[Int] ")

// self abstraction
// now well-formed

In-person poster presenter

Tracking Aliasing and Separation in Higher-Order Functional Programs pyURDUE

UNIVERSITY,

Qiyang He? Tiark Rompf?

® Virtual poster presenter

Formalization: *

I'H¢:T"
q € {J_} U Pﬁn(Var)

Typing judgment
Qualifiers

e Reachability type system A" based on STLC.

® Jype and qualifiers preservation: Qualifiers may
increase only due to fresh allocations.

® Separation preservation: Two separate terms remain
separate after reduction steps.

Reachability-and-Etfect System

® Tracking precise aliasing-aware effects by combining
reachability types with effect quantales [Gordon
20211 TF¢:77¢

e A flow-insensitive instantiation that enables
finer-grained non-interference with read/write effects.

e A flow-sensitive instantiation that models ownership
transfer, move semantics, unique references, nested
references, etc.

e All we need is to use flow-sensitive “kill” effects that
disable further accesses of a value and its aliases:
def f(x: Ref[Int]?) = { val y = move(x); ... }
val z = new Ref(9)

f(z) // now z is killed by move
1z // type error

e Case studies (more details in the paper!)
o Algebraic Effect and Handlers
o Control Operators
o Safe Concurrency Combinators

