
● Tracking precise aliasing-aware effects by combining
reachability types with effect quantales [Gordon
2021]:

● A flow-insensitive instantiation that enables
finer-grained non-interference with read/write effects.

● A flow-sensitive instantiation that models ownership
transfer, move semantics, unique references, nested
references, etc.

● All we need is to use flow-sensitive “kill” effects that
disable further accesses of a value and its aliases:

REACHABILITY TYPES
Tracking Aliasing and Separation in Higher-Order Functional Programs

Yuyan Bao1 Guannan Wei2◆ Oliver Bračevac2◆ Luke Jiang2 Qiyang He2 Tiark Rompf2

1 University of Waterloo 2 Purdue University / PurPL ◆ In-person poster presenter ◆ Virtual poster presenter

def counter(n: Int) = {
 val c = new Ref(n)
 (() => c += 1, () => c -= 1)
}
val (incr, decr) = counter(0)
incr(); incr(); decr()

fn counter(n: i64) -> (impl Fn()->(),
 impl Fn()->()) {
 let c = Rc::new(Cell::new(n));
 let c1 = c.clone();
 let c2 = c.clone();
 (move || { c1.set(c1.get() + 1); },
 move || { c1.set(c2.get() - 1); })
} ● Case studies (more details in the paper!)

○ Algebraic Effect and Handlers
○ Control Operators
○ Safe Concurrency Combinators

Motivation
● Tracking reachable variables at the type level:

new Ref(42) // : Ref[Int]∅

val x = new Ref(42) // : Ref[Int]{x}

val y = x // : Ref[Int]{x, y}

val i = 42 // : Int⊥, no tracking

● Function types track the free variables:
val c1: Ref[Int]{c1}; val c2: Ref[Int]{c2}

def addRef(c: Ref[Int]∅) = c1 := !c1+!c; c1
// addRef: (Ref[Int]∅ => Ref[Int]{c1}){c1}

● Applications check if argument is aliased with function’s
qualifier, guaranteeing observable separation:
addRef(c1) // type error because {c1}⨅{c1}!=∅
addRef(c2) // ok because {c2}⨅{c1}=∅

● Function domain controls permissible overlap:
def addRef2(c: Ref[Int]{c1}) = …
// addRef2: (Ref[Int]{c1} => Ref[Int]{c1}){c1}

addRef2(c1) // ok now

● How should we type escaping functions?
{ () => new Ref(0) }
// (() => Ref[Int]∅)∅ ~> (() => Ref[Int]∅)∅

{ val y = new Ref(0); () => !y }
// (() => Int⊥){y} ~> (() => Int⊥)∅

{ val y = new Ref(0); () => y }
// (() => Ref[Int]{y}){y} ~> removing y is wrong

Use DOT-style self-reference for functions:
 f(() => Ref[Int]{y}){y}

<: f(() => Ref[Int]{f}){y} // self abstraction
~> f(() => Ref[Int]{f})∅ // now well-formed

Reachability types: Expressive ownership-style
reasoning for higher-order functional languages.

State-of-the-art ownership systems restrict the use of
higher-order functions. Consider the “counter” program
that can be elegantly implemented in functional languages:

However, one has to use dynamic reference counting in
Rust, by the “shared XOR mutable” restriction. How can
we remove such restrictions and enable safe & expressive
ownership-style type systems for higher-order languages?

Popular ownership models: This work flips it on its head:

Typing judgment

Qualifiers

● Reachability type system λ∗ based on STLC.
● Type and qualifiers preservation: Qualifiers may

increase only due to fresh allocations.
● Separation preservation: Two separate terms remain

separate after reduction steps.

def f(x: Ref[Int]∅) = { val y = move(x); ... }
val z = new Ref(0)
f(z) // now z is killed by move
!z // type error

Local Invariants
(e.g. uniqueness,

linearity, …)

Separation & Reachability
(No global invariant)

Global Invariants
(e.g. uniqueness, linearity, …)

Local Relaxation/
Unsafe Features
(e.g. Borrowing)

free variables
of the function

observable aliases of argument
by the function body

Separation logics have been established as the formal
foundation for Rust-style ownership type systems (e.g.
RustBelt), what if we build a separation substrate into
user-level syntactic types?

Reachability Types, Informally Formalization: λ∗

Reachability-and-Effect System

