
Polymorphic Reachability Types: Tracking Freshness,
Aliasing, and Separation in Higher-Order Generic Programs
(Appendix)
GUANNAN WEI, Purdue University, USA
OLIVER BRAČEVAC∗, Purdue University, USA and Galois, Inc., USA

SONGLIN JIA, Purdue University, USA
YUYAN BAO, Augusta University, USA
TIARK ROMPF, Purdue University, USA

A REVISITING 𝜆∗ AND ITS LIMITATIONS
This section gives an overview of the 𝜆∗-calculus [Bao et al. 2021] and analyzes its limitaions in

reachability polymorphism. Table 1 summarizes the key differences between the 𝜆∗ system and our

new system, as well as highlights the main improvements made in the main paper [Wei et al. 2024].

A.1 Fresh and UntrackQualifier
Just like the 𝜆q/Fq<:-calculus in the main paper, the 𝜆∗ type system qualifies types with reachability

sets, tracking the variables in the current environment that may be reached by following memory

references from the result of an expression.

However, 𝜆∗ treats fresh/untrack resources different from the main paper. For example, consider

an alloc() function that yields a new resource of fixed type T (e.g., a file handle). The 𝜆∗ system
assigns the empty set alloc(): T∅ as the qualifier, indicating that it returns a fresh value and cannot

reach any variables in the current environment. When bound to a variable x, an invocation of

alloc() is not considered fresh anymore as x reaches x itself:

val x = alloc() // : T{x}

The 𝜆∗ system assigns the bottom qualifier ⊥ (often omitted) to untracked values. These usually

include base types, e.g., 42: Int⊥. Untracked values can be treated as tracked by subtyping, but not

vice versa, i.e., ⊥ <: ∅ and ∅ ≮: ⊥.

A.2 Reachability Polymorphism
𝜆∗ provides a lightweight form of reachability polymorphism via dependent applications, e.g., the
id function whose return type qualifier depends on the argument:

def id(x: T∅): T{x} = x // : ((x: T∅) => T{x})∅

val x: T{x,a,b} = ...; id(x) // : T{x} [x↦→{x,a,b}] = T{x,a,b}

val y: T{y,z} = ...; id(y) // : T{x} [x↦→{y,z}] = T{y,z}

The type of id mentions no explicit quantifiers, and yet can be regarded as polymorphic over a

fixed base type T with any reachability qualifier 𝑞, as long as 𝑞 is disjoint from id’s reachability set.

∗
Work completed while at Purdue University

Authors’ addresses: Guannan Wei, Purdue University, West Lafayette, IN, USA, guannanwei@purdue.edu; Oliver Bračevac,

Purdue University, West Lafayette, IN, USA and Galois, Inc., Portland, OR, USA, oliver@galois.com; Songlin Jia, Purdue

University, West Lafayette, IN, USA, jia137@purdue.edu; Yuyan Bao, Augusta University, USA, yubao@augusta.edu; Tiark

Rompf, Purdue University, USA, tiark@purdue.edu.

2024. ACM 2475-1421/2024/1-ART1

https://doi.org/

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2024.

HTTPS://ORCID.ORG/0000-0002-3150-2033
HTTPS://ORCID.ORG/0000-0003-3569-4869
HTTPS://ORCID.ORG/0009-0008-2526-0438
HTTPS://ORCID.ORG/0000-0002-3832-3134
HTTPS://ORCID.ORG/0000-0002-2068-3238
https://orcid.org/0000-0002-3150-2033
https://orcid.org/0000-0003-3569-4869
https://orcid.org/0009-0008-2526-0438
https://orcid.org/0000-0002-3832-3134
https://orcid.org/0000-0002-2068-3238
https://orcid.org/0000-0002-2068-3238
https://doi.org/

1:2 Guannan Wei, Oliver Bračevac, Songlin Jia, Yuyan Bao, and Tiark Rompf

Table 1. Overview and comparison of 𝜆∗ and this work. “–” indicates there is no equivalent notion in the
system. The id function is the polymorphic identity function as defined in the respective system. We use
“MP” to stand for the main paper.

𝜆∗ [Bao et al. 2021] 𝜆q/Fq<: (this work)

Untracked
Primitive/atomic values

𝑇 ⊥

val x = 42 // : Int⊥
𝑇 ∅

val x = 42 // : Int∅

Reachability Assignment
Transitive closure vs.

immediate reachability

Reflexive & transitive

val z = x // z : T{z,x,...}
One-step by default, transitive

on demand (Sec. 3.1.1 in MP)

val z = x // z : T{z}

Fresh and Tracked
Tracked but unbound in the context

𝑇 ∅

alloc() : T∅
𝑇 {q,...} (Sec. 3.1.2 in MP)

alloc() : Tq

Reachability Polymorphism
Functions preserving reachability

that depends on arguments

Non-parametric & imprecise

(Sec. A.3)

id(42) : Int∅

id(alloc()) : Int∅

Parametric & precise

(Sec. 3.1.3 in MP)

id(42) : Int∅

id(alloc()) : Intq

Qualifier Subtyping
How qualifiers can be upcast

Set inclusion

𝑇𝑞1 <: 𝑇𝑞2 if 𝑞1 ⊆ 𝑞2

Context dependent (Sec. 3.1.4 in MP)

Γ = x: T∅, y: Tq

Γ ⊢ T{x} <: T∅

Γ ⊢ T{y} ̸<: Tq

“Maybe” Tracked
Variable-dependent tracking status

– 𝑇 𝑞
if q ∉ 𝑞 (Sec. 3.1.4 in MP)

Γ ⊢ T{x} ≡ T∅

Transitive Reachability
When transitive closure is used

Always saturated On-demand when

checking overlap (Sec 3.1.5 in MP)

Qualifier-Dependent Application
Permitted argument dependency

in the return type

Shallow

(𝑥 : 𝑇 𝑞) → 𝑆 𝑝

𝑥 ∉ fv (𝑆)

Deep (Sec. 3.1.6 in MP)

(𝑥 : 𝑇 𝑞) → 𝑆 𝑝

𝑥 ∈ fv (𝑆) if q ∉ 𝑞

Type Abstraction
Quantification over types

– Bounded abstraction à la F<:
∀𝑋 <: 𝑇 .𝑆 𝑝

(Sec. 3.2 in MP)

Reachability Abstraction
Quantification over reachability

– Bounded abstraction à la F<:
∀𝑋 𝑥 <: 𝑇 𝑞 .𝑆 𝑝

(Sec. 3.2 in MP)

Mutable References
Values stored in references

Only flat & untracked

Ref[𝑇 ⊥]
Possibly nested & tracked

Ref[𝑇 𝑞] (Sec. 7.1 in MP)

Since id itself has an empty qualifier, any 𝑞 is acceptable. We can apply id with an argument with

non-fresh tracked qualifiers, and the result precisely preserves the reachability by substituting x in

the return qualifier with the actual argument qualifier.

A.3 The Root of the Problem: Confusing Untracked with Fresh Values
The problem with reachability polymorphism in 𝜆∗ is its non-parametric treatment of untracked

versus tracked arguments, e.g., the id function conflates these two different instantiations:

val z = ... // : T⊥ ← z is untracked

id(z) // : T{x} [x↦→⊥] = T∅ ← untracked value now considered tracked

id(alloc()) // : T{x} [x↦→∅] = T∅

Qualifier substitution with the untracked status yields {x}[x ↦→ ⊥] = ∅ a tracked qualifier without

known aliases (i.e., fresh). Bao et al. (Section 3.4) made this design choice to ensure soundness, but

it introduces imprecision in tracking status and constitutes a severe limitation in expressiveness.

No code path can be generic with respect to the tracking status of arguments! To see why admitting

a more precise qualifier T⊥ for id(z) is unsound, we can postulate this “more precise” behavior (i.e.,
assuming {x}[x ↦→ ⊥] = ⊥) and subvert the type system. Consider the function fakeid returning a

fresh tracked value each time:

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2024.

Polymorphic Reachability Types 1:3

def fakeid(x: T∅): T{x} = alloc()

This function typechecks since the body expression has type T∅, which is a subtype of the declared

return type T{x}. Under the postulate, applying fakeidwith a non-tracking arguments results in

val y = ... // : T⊥

fakeid(y) // : T{x} [x↦→⊥] = T⊥ ← unsound!

But fakeid(y) actually returns a fresh value of qualifier ∅ that should never be down-cast to

untracked! This violates the separation guarantee of the type system: a tracked value cannot escape

as an untracked value. Otherwise, it can no longer be kept separate from other tracked values.

To summarize, reachability polymorphism via dependent application in 𝜆∗ must sacrifice para-

metricity and precision for soundness, leading to a confusion of untracked with fresh values.

There is no easy fix with the binary track/untrack distinction, and we must rethink reachability

polymorphism and the notion of freshness.

B TYPING POLYMORPHIC DATA STRUCTURES
In this section, we discuss typing common polymorphic data types in Fq<:. Here we present them
as built-in language constructs for clarity. However, they can be encoded in the Fq<:-calculus as
well, in similar ways as exemplified in Section 8.1 of the main paper. All data types come with

self-references (i.e., 𝑧 in 𝜇𝑧.Box[𝑄]), so that qualifiers in𝑄 can refer to the instance itself by name 𝑧.

Similar to function self-references, they admit q-tself for subtyping (generalizing q-self in Fig. 5

of the main paper, which only works for function’s self-references), thus allowing the introduction

and elimination of self-references.

𝑧 : 𝜇𝑧.𝑇𝑞 ∈ Γ q ∉ 𝑞

Γ ⊢ 𝑞, 𝑧 <: 𝑧
(Q-TSelf)

These data structures have standard dynamic semantics (e.g. tagging runtime values), thus are

omitted.

B.1 Boxes
We start from box types, which is the simplest polymorphic data type. It comes with two qualifiers,

one for its content and one for the box itself. Creating a box with a non-fresh value results in the

same inner and outer qualifier. When creating a box with a fresh value, the inner qualifier is the

box itself 𝑧 (t-box). This is necessary to maintain sharing when eliminating multiple times.

Getting the content of a box value yields the qualifier that replaces the self-reference 𝑧 with its

its own outer qualifier (t-box-get). Furthermore, the content types of boxes are covariant (sq-box),

so when a variable name goes out of its binding scope, the inner qualifier can be upcast to 𝑧 by

q-tself as if it was created over a fresh value.

B.2 Pairs
Pairs follow the same pattern with boxes, with an additional field, and thus type argument and

elimination function. Note that pairs over non-fresh values correspond to the “transparent” pairs

presented in Section 8 of the main paper, while those over fresh values correspond to the “opaque”

pairs. The two variants also connect via subtyping, as component types in pairs are covariant.

B.3 Options
Option types are similar to boxes, which can optionally hold no value. Since there are two variant

values of option types, applying get to values of type Option can result in an exception if the

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2024.

1:4 Guannan Wei, Oliver Bračevac, Songlin Jia, Yuyan Bao, and Tiark Rompf

Syntax Fq<:

𝑇 ::= · · · | 𝜇𝑧.Box[𝑄] Types

𝑡 ::= · · · | Box(𝑡) | get(𝑡) Terms

Term Typing Γ 𝜑 ⊢ 𝑡 : 𝑄

Γ 𝜑 ⊢ 𝑡 : 𝑇 𝑞 𝑞′ = if q ∈ 𝑞 then 𝑧 else 𝑞

Γ 𝜑 ⊢ Box(𝑡) : 𝜇𝑧.Box[𝑇 𝑞′] 𝑞
(t-box)

Γ 𝜑 ⊢ 𝑡 : 𝜇𝑧.Box[𝑇 𝑞1] 𝑞

Γ 𝜑 ⊢ get(𝑡) : 𝑇 𝑞1 [𝑞/𝑧]
(t-box-get)

Subtyping Γ ⊢ 𝑄 <: 𝑄

Γ, 𝑧 : 𝜇𝑧.Box[𝑄1] 𝑞 ⊢ 𝑄1 <: 𝑄2

Γ ⊢ 𝜇𝑧.Box[𝑄1] 𝑞 <: 𝜇𝑧.Box[𝑄2] 𝑞
(sq-box)

Fig. 1. Extension: Box types.

Syntax Fq<:

𝑇 ::= · · · | 𝜇𝑧.Pair[𝑄1, 𝑄2] Types

𝑡 ::= · · · | Pair(𝑡1, 𝑡2) | fst(𝑡) | snd(𝑡) Terms

Term Typing Γ 𝜑 ⊢ 𝑡 : 𝑄

Γ 𝜑 ⊢ 𝑡1 : 𝑇 𝑞1
1

𝑞′
1
= if q ∈ 𝑞1 then 𝑧 else 𝑞1

Γ 𝜑 ⊢ 𝑡2 : 𝑇 𝑞2
2

𝑞′
2
= if q ∈ 𝑞2 then 𝑧 else 𝑞2

Γ 𝜑 ⊢ Pair(𝑡1, 𝑡2) : 𝜇𝑧.Pair[𝑇
𝑞′
1

1
,𝑇

𝑞′
2

2
] 𝑞1,𝑞2

(t-pair)

Γ 𝜑 ⊢ 𝑡 : 𝜇𝑧.Pair[𝑇 𝑞1
1

,𝑇
𝑞2
2
] 𝑞

Γ 𝜑 ⊢ fst(𝑡) : 𝑇 𝑞1 [𝑞/𝑧]
1

(t-fst)

Γ 𝜑 ⊢ 𝑡 : 𝜇𝑧.Pair[𝑇 𝑞1
1

,𝑇
𝑞2
2
] 𝑞

Γ 𝜑 ⊢ snd(𝑡) : 𝑇 𝑞2 [𝑞/𝑧]
2

(t-snd)

Subtyping Γ ⊢ 𝑄 <: 𝑄

Γ, 𝑧 : 𝜇𝑧.Pair[𝑄1, 𝑅1] 𝑞 ⊢ 𝑄1 <: 𝑄2

Γ, 𝑧 : 𝜇𝑧.Pair[𝑄1, 𝑅1] 𝑞 ⊢ 𝑅1 <: 𝑅2

Γ ⊢ 𝜇𝑧.Pair[𝑄1, 𝑅1] 𝑞 <: 𝜇𝑧.Pair[𝑄2, 𝑅2] 𝑞
(sq-pair)

Fig. 2. Extension: Pair types.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2024.

Polymorphic Reachability Types 1:5

Syntax Fq<:

𝑇 ::= · · · | ⊥ | 𝜇𝑧.Option[𝑄] Types

𝑡 ::= · · · | Some(𝑡) | None | isEmpty(𝑡) | get(𝑡) Terms

Term Typing Γ 𝜑 ⊢ 𝑡 : 𝑄

Γ 𝜑 ⊢ 𝑡 : 𝑇 𝑞 𝑞′ = if q ∈ 𝑞 then 𝑧 else 𝑞

Γ 𝜑 ⊢ Some(𝑡) : 𝜇𝑧.Option[𝑇 𝑞′] 𝑞
(t-some)

Γ 𝜑 ⊢ None : 𝜇𝑧.Option[⊥∅] ∅
(t-none)

Γ 𝜑 ⊢ 𝑡 : 𝜇𝑧.Option[𝑇 𝑞1] 𝑞

Γ 𝜑 ⊢ isEmpty(𝑡) : Bool∅
(t-option-test)

Γ 𝜑 ⊢ 𝑡 : 𝜇𝑧.Option[𝑇 𝑞1] 𝑞

Γ 𝜑 ⊢ get(𝑡) : 𝑇 𝑞1 [𝑞/𝑧]
(t-option-get)

Subtyping Γ ⊢ 𝑇 <: 𝑇 Γ ⊢ 𝑄 <: 𝑄

Γ ⊢ ⊥ <: 𝑇
(s-bot)

Γ, 𝑧 : 𝜇𝑧.Option[𝑄1] 𝑞 ⊢ 𝑄1 <: 𝑄2

Γ ⊢ 𝜇𝑧.Option[𝑄1] 𝑞 <: 𝜇𝑧.Option[𝑄2] 𝑞
(sq-option)

Fig. 3. Extension: Option type.

underlying is None. The predicate isEmpty is added to safely use get with runtime guards. Moreover,

to construct the None case, we introduce the bottom type ⊥, which is a subtype of all types. The

content type of options are also covariant.

B.4 Lists
Lists further extend options in a recursive manner. The Cons constructor takes a value and a List

of the same type. The qualifier of the result is then the union of both the head and tail qualifier,

modulo the adaption for self-references. The hd eliminator follows the same pattern for retrieving

content, while the tl eliminator returns the same List type unchanged. Note that given a well-typed

list of type List[Tq], its inner qualifier q subsumes all element qualifiers.

B.5 Example: Non-Overlapping Lists
Here we showcase how to interact with our polymorphic recursive data type, i.e., List. The function
makeList below recursively creates a fresh list of Ref[Int]. By t-cons, we keep the inner qualifier of

its return type to self-reference 𝑧, and the outer qualifier to freshness. By creating two lists c1 and

c2, we also unpack the self-references of lists to their concrete bindings.

def makeList(n: Int): 𝜇z.List[Ref[Int]z]q =

if (n == 0) Nil else Cons(new Ref(n), makeList(n - 1))

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2024.

1:6 Guannan Wei, Oliver Bračevac, Songlin Jia, Yuyan Bao, and Tiark Rompf

Syntax Fq<:

𝑇 ::= · · · | 𝜇𝑧.List[𝑄] Types

𝑡 ::= · · · | Cons(𝑡1, 𝑡2) | Nil | isEmpty(𝑡) | hd(𝑡) | tl(𝑡) Terms

Term Typing Γ 𝜑 ⊢ 𝑡 : 𝑄

Γ 𝜑 ⊢ 𝑡1 : 𝑇 𝑞1 Γ 𝜑 ⊢ 𝑡2 : 𝜇𝑧.List[𝑇 𝑞2] 𝑞3
𝑞′
1
= if q ∈ 𝑞1 then 𝑧 else 𝑞1

Γ 𝜑 ⊢ Cons(𝑡1, 𝑡2) : 𝜇𝑧.List[𝑇 𝑞′
1
,𝑞2] 𝑞1,𝑞3

(t-cons)

Γ 𝜑 ⊢ Nil : 𝜇𝑧.List[⊥∅] ∅
(t-nil)

Γ 𝜑 ⊢ 𝑡 : 𝜇𝑧.List[𝑇 𝑞1] 𝑞

Γ 𝜑 ⊢ isEmpty(𝑡) : Bool∅
(t-list-test)

Γ 𝜑 ⊢ 𝑡 : 𝜇𝑧.List[𝑇 𝑞1] 𝑞

Γ 𝜑 ⊢ hd(𝑡) : 𝑇 𝑞1 [𝑞/𝑧]
(t-head)

Γ 𝜑 ⊢ 𝑡 : 𝜇𝑧.List[𝑇 𝑞1] 𝑞

Γ 𝜑 ⊢ tl(𝑡) : 𝜇𝑧.List[𝑇 𝑞1] 𝑞
(t-tail)

Subtyping Γ ⊢ 𝑄 <: 𝑄

Γ, 𝑧 : 𝜇𝑧.List[𝑄1] 𝑞 ⊢ 𝑄1 <: 𝑄2

Γ ⊢ 𝜇𝑧.List[𝑄1] 𝑞 <: 𝜇𝑧.List[𝑄2] 𝑞
(sq-list)

Fig. 4. Extension: Lists.

val c1 = makeList(10); // : List[Ref[Int]c1]c1 ⊣ c1: 𝜇z.List[Ref[Int]z]q

val c2 = makeList(20); // : List[Ref[Int]c2]c2 ⊣ c2: 𝜇z.List[Ref[Int]z]q

We then process the two lists in parallel using the parallel combinator par (Section 2.1 in the

main paper), which takes two separate thunks. The parProc function takes two lists argument xs

and ys, which are required to be separate. Since the curried function parProc takes xs as the first

argument, the remainder function (taking ys) already captures xs, and thus the freshness marker

on ys signifies its separation from precisely xs.

// def par(a: (() => Unit)q)(b: (() => Unit)q): Unit

def parProc(xs: 𝜇z.List[Ref[Int]z]q)(ys: 𝜇z.List[Ref[Int]z]q): Unit =

par { foreach(xs) { x := !x + 1 } }

{ foreach(ys) { y := !y + 1 } }

parProc(c1)(c2) // ok

parProc(c1)(c1) // type error

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2024.

Polymorphic Reachability Types 1:7

REFERENCES
Yuyan Bao, Guannan Wei, Oliver Bračevac, Yuxuan Jiang, Qiyang He, and Tiark Rompf. 2021. Reachability types: tracking

aliasing and separation in higher-order functional programs. Proc. ACM Program. Lang. 5, OOPSLA (2021), 1–32.

Guannan Wei, Oliver Bračevac, Songlin Jia, Yuyan Bao, and Tiark Rompf. 2024. Polymorphic reachability types: Tracking

freshness, aliasing, and separation in higher-order generic programs. Proc. ACM Program. Lang. 8, POPL (2024), 393–424.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2024.

	Abstract
	A Revisiting * and Its Limitations
	A.1 Fresh and Untrack Qualifier
	A.2 Reachability Polymorphism
	A.3 The Root of the Problem: Confusing Untracked with Fresh Values

	B Typing Polymorphic Data Structures
	B.1 Boxes
	B.2 Pairs
	B.3 Options
	B.4 Lists
	B.5 Example: Non-Overlapping Lists

	References

