Towards Partially Evaluating Symbolic Interpreters for
All (Short Paper)

Shangyin Tan
tan279@purdue.edu
Purdue University
West Lafayette, IN, USA

Abstract

Symbolic execution is a program analysis technique to auto-
matically explore the execution space of programs by treat-
ing some inputs symbolically. To efficiently perform sym-
bolic execution, one emerging way is to construct a compiler
that translates input programs to symbolic programs with-
out the interpretation overhead. Previous work has explored
compiling nondeterministic symbolic execution by partially
evaluating a symbolic interpreter.

In this paper, we follow a “semantics-first“ approach and
investigate compiling concolic execution and backward sym-
bolic execution by multi-stage programming. In particular,
we construct variants of staged symbolic interpreters that
can be partially evaluated using the Lightweight Modular
Staging (LMS) framework. We demonstrate our approach
using a simple low-level intermediate representation (IR)
and evaluate the prototype implementations for the LLVM
IR. Our concolic compiler shows comparable performance to
SymCC, a state-of-the-art concolic compiler, and our back-
ward symbolic compiler solves tasks that are difficult for for-
ward execution engines. The demonstrated approach shows
a unifying methodology that can be applied to compiling
diverse flavors of symbolic execution.

CCS Concepts: « Software and its engineering — In-
terpreters; Source code generation; Automated static
analysis; Software testing and debugging.

Keywords: symbolic execution, code generation, compilers,
interpreters

1 Introduction

Symbolic execution is a program analysis technique widely
that has been used in testing, analysis, and verification [2, 21].
The key idea of symbolic execution is to execute a program
with symbolic inputs and to collect path conditions over
these symbolic inputs. Then, automated theorem provers
(e.g. SMT solvers) can be used to solve the path conditions
and generate inputs satisfying these conditions.

However, applying pure symbolic execution that nonde-
terministically explores all branches is intractable on large
real-world programs. This problem is known as the path

PEPM 2022, Jan 17-18, 2022, Philadelphia, PA, USA
2022. ACM ISBN 978-x-xxxx-xxxx-X/YY/MM.... $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Guannan Wei
guannanwei@purdue.edu
Purdue University
West Lafayette, IN, USA

Tiark Rompf
tiark@purdue.edu
Purdue University

West Lafayette, IN, USA

explosion problem. To effectively scale up symbolic execu-
tion, researchers have proposed different flavors or strategies
of symbolic execution. To name a few examples, concolic
execution [3, 17, 32], a popular variant widely used in com-
puter security research, mixes concrete and symbolic exe-
cution and only collects conditions of paths guided by the
concrete input. Fork-based nondeterministic symbolic exe-
cution [8, 10] maintains multiple execution states and often
combines with search heuristics. In addition, backward sym-
bolic execution [9, 24, 27], a more exotic flavor, starts from a
given program point and finds inputs leading to this specific
point, avoiding exploring unrelated execution space.

Orthogonal to the effort to conquer the intrinsic com-
plexity of symbolic execution due to path explosion, this
paper concerns the accidental complexity of implement-
ing efficient engines for symbolic execution, which can be
non-trivial in practice as well. Building symbolic execu-
tion engines by interpreters (e.g. KLEE [8]) is a popular
but inefficient approach due to the well-known interpre-
tation overhead. Instrumentation-based execution engines
deliver higher performance, but it is not straightforward to
instrument symbolic execution other than the single-path
forward execution semantics. As a promising new direc-
tion, using compiler techniques to implement symbolic ex-
ecution has gained increasing attention recently: different
compilation-based methods have been successfully applied
to different flavors of symbolic execution. For example, our
prior work [39, 41] uses staging to compile fork-based sym-
bolic execution; SymCC [29] uses LLVM’s transformation
infrastructure to compile concolic execution. Nevertheless,
it is unclear if those compilation techniques can be applied
to symbolic execution variants other than their original con-
sideration.

In this paper, we argue that principled metaprogramming
is feasible and effective to construct diverse, if not all, fla-
vors of symbolic execution compilers. To demonstrate our
approach, we extend our previous staging-based “semantics-
first” approach [39] to compiling concolic execution and back-
ward symbolic execution. By embedding staged concolic and
backward symbolic interpreters in Scala and LMS [31], the
compilation and code generation are performed by partially
evaluating the symbolic interpreters, following the 1st Futa-
mura projection [13, 14]. We demonstrate a concolic inter-
preter by modularly composing the more primitive concrete

https://doi.org/10.1145/nnnnnnn.nnnnnnn

PEPM 2022, Jan 17-18, 2022, Philadelphia, PA, USA

and symbolic interpreters. We also sketch the implementa-
tion of the backward execution compiler.

The performance of the derived symbolic compilers on
LLVM IR is examined using a set of small programs. We com-
pare the derived concolic compiler with SymCC [29], a con-
colic execution compiler using LLVM’s compilation frame-
work to perform instrumentation, showing similar speedups.
The effectiveness of the backward symbolic execution com-
piler is evaluated with programs that are difficult for forward
symbolic engines. Our prototype backward compiler com-
piles the benchmarks to backward executing programs that
yield the expected inputs to reach the target locations.

Contributions.

e We discuss a unified methodology for constructing compil-
ers for symbolic execution (§ 2) based on the 1st Futamura
projection, which generalizes previous works and derives
novel symbolic execution compilers.

o After briefly introducing the language for presentation
(§ 3), we show how to incrementally build the concolic
interpreter and add staging annotations to obtain the con-
colic compiler (§ 4). We discuss how to apply the same
approach to backward symbolic execution (§ 5).

e We empirically evaluate the performance and correctness
of our prototype compilers implemented on LLVM (§ 6).

Finally, we discuss related work (§ 7), conclude the paper,
and discuss future directions (§ 8).

2 The Essence of Compiling Symbolic
Execution vis Staging

The essence of our approach to compiling symbolic execu-
tion is first to build a symbolic interpreter and then specialize
it with repsect to the given input program using multi-stage
programming. This section reviews the key concepts of stag-
ing using LMS, draws the connection between program spe-
cialization and symbolic execution compilers, and gives an
overview of our implementation architecture.

2.1 Interpreter Specialization via Staging with LMS

Metaprogramming is the programming technique of writing
programs to manipulate and generate other programs. One
of the powerful metaprogramming techniques is multi-stage
programming (MSP) [36, 37], which has been available as
a language feature [4, 22, 33, 34] or a framework [7, 28, 31].
The key idea behind MSP (staging for short) is that pro-
gram execution can be split into stages by the frequency
of execution or availability of inputs. Earlier stages gener-
ate code specialized to the known arguments, which can
be executed later when unknown arguments become avail-
able [20, 23]. This process provides a reliable way to realize
partial evaluation [19] controlled by the programmer. The
partially-evaluated (i.e. specialized) program usually runs

Shangyin Tan, Guannan Wei, and Tiark Rompf

faster since the computations over known inputs have been
performed statically.

Our implementation uses the Lightweight Modular Stag-
ing framework (LMS) [31] for staging. LMS utilizes type-level
annotations to specify binding times for next-stage expres-
sions, i.e. Rep[T] is the type of next stage values of T. To
see an example of staging with LMS, let us consider the
following unstaged interpreter for arithmetic expressions.
The interpreter eval takes the abstract syntax tree (AST) of
expressions (Expr) and an environment o and evaluates the
expression program to integers:
def eval(e: Expr, o: Map[String,Int]): Int =

e match {

case Const(i) = i
case Var(x) = o(x)
case Add(el, e2) = eval(el, o) + eval(e2, o)

}
The staged version of this interpreter adds the annotation
Rep to the environment type and the result type, indicating
that they are values known at a later stage:
def eval(e: Expr, o: Rep[Map[String,Int]]): Rep[Int]
= e match {
case Const(i) = i
case Var(x) = o(x)
case Add(el, e2) = eval(el, o) + eval(e2, o)

}

In LMS, operations over expressions of Rep[_] types (e.g.
store lookup o (x)) are overloaded implicitly, redirecting to
methods that construct staged code. Therefore, the staged
eval can reuse the same piece of code from its unstaged
counterpart.

The staged eval function can be specialized to a statically
known program AST. For example, specializing eval to pro-
gram p = Add(Const(3), Var("x")) unfolds the recursive
function calls of eval, eliminates the static computations
over AST, and generates code that is equivalent to:

Int = 3 + o("x")
The specialized code does not depend on any static program
AST. Therefore, we can view it as the result of compilation.
This process of specializing interpreters is known as the first
projection of Futamura [13, 14].

By writing interpreters with multi-stage programming fa-
cilities, we can observe that a staged interpreter is essentially a
compiler. Naturally, if we build staged symbolic interpreters,
they can be used as symbolic execution compilers [39]. Fol-
lowing this approach, the construction of symbolic execution
compilers boils down to two simple steps: (1) express the
symbolic execution semantics in the form of an interpreter,
(2) analyze the interpreter program and add suitable staging
annotations. The rest of this paper will discuss how to apply
this idea to concolic and backward symbolic executions.

def eval,(o: Map[String,Int]):

Towards Partially Evaluating Symbolic Interpreters for All (Short Paper)

v € Atom

i € Inst

PEPM 2022, Jan 17-18, 2022, Philadelphia, PA, USA

n=x]i32 xeVar Opye{+—X=%...}
= Assign(x, v;) | Store(vy,v2) | CondBr(v, 1y, I5)

Concaolic Nondet. Backward
Scala Sym. Exec. Sym. Exec. Sym. Exec.
General staging combinators
R Runtime code generation framework
(general compiler optimizations)
cics | Generated Symbolic SMT
code runtime Solver
Binary Compiled
binary for SE

Figure 1. The architecture of our approach.

2.2 Architecture of Our Approach

With the 1st Futamura projection and interpreter special-
ization in mind, our task to architect symbolic compilers is
divided into two rather independent ones: (1) the develop-
ment of symbolic interpreters and (2) the infrastructure to
support this development, including the auxiliary functions
for code generation, runtime symbolic state representations,
SMT solver libraries, etc. The infrastructure should provide
enough abstractions and facilities to implement the diverse
variants of symbolic execution.

Figure 1 shows the architecture of our approach. The mid-
dle part of the architecture is the runtime code generation
framework that provides an extensible intermediate repre-
sentation (IR), general optimizations, and code generation.
We use the LMS [31] framework written in Scala for this pur-
pose. Built on top of this layer, we develop a staging combi-
nator library that abstracts over the operations manipulating
staged program states (e.g. stack, heap, and path conditions)
and the construction of staged symbolic expressions. This
staging combinator library is shared among the staged sym-
bolic interpreters, which can vary according to the desired
symbolic semantics, as shown at the top of Figure 1. Given
an input program, the staged symbolic interpreter is spe-
cialized when invoking the staging combinators, where the
residual program is first represented by the IR of LMS. After
optimizing over the IR inside LMS, the residual program for
symbolic execution will be generated as C++ code. Combined
with the symbolic runtime and the SMT solver library, the
generated C++ code is further compiled to an executable
(e.g. by clang). Running this executable faithfully performs
the symbolic semantics defined by the top-level symbolic
interpreter. With the interpretation overhead eliminated and
the translation from Scala to C++, the executables usually
could run an order-of-magnitude faster.

3 Preliminaries

We use a simplified static single assignment form (SSA) lan-
guage SIR modeled after the LLVM IR to demonstrate our

| Jmp(l) | Return(v)
v; € Vallnst =:= Op;(v1,0;) | Load(v) | Alloca(v)
b € Block ::=block(l,{i,...}) pe€Prog:u=b,...

Figure 2. The abstract syntax of SIR.

approach. Similar to the LLVM IR, SIR is a language-agnostic
representation, and the approach can be readily applied to a
large portion of LLVM IR (§ 6).

The syntax of SIR is shown in Figure 2. A program p is a
sequence of basic blocks. A basic Block has a label as its iden-
tifier and a list of instructions, whose last instruction is either
a return statement or jumps to another block. The language
defines a few instructions manipulating the memory, which
all have standard forms and semantics: Alloca allocates a
sized area; Load retrieves the value in a memory cell; Store
puts a value into a memory cell; Assign binds the result of
a value instruction to a local name. The language only has
32-bit unsigned integers, which model both values and mem-
ory locations. We also define a set of standard arithmetic
operations Op,. Function definitions and calls are extended
in § 5 to demonstrate backward symbolic execution.

Concrete Semantics. Programs in SIR have standard con-
crete semantics, resembling the similar behavior as in LLVM’s
IR. We illustrate a monadic semantics where the underly-
ing state monad carries the program State, consisting of the
heap and stack memory. In the following snippet, we provide
the type signatures of the monadic interpreters and omit the
actual implementation.

type State = (Heap, Stack)

type M[T] = StateM[State, T]

type Value = Int32

def evalAtom.(v: Atom): M[Value]

def evalVallInst.(vi: VallInst): M[Valuel

def evallnst.(i: Inst): M[Value]

The defined interpreters such as evalAtom and evalInst han-
dle different syntactic categories defined in Figure 2. Their
implementations (omitted) in Scala use for-comprehension
syntax for moandic sequential bindings, and ret: T = M[T]
for the monadic “unit” function.

4 Compiling Concolic Execution

The idea of concolic execution is to perform symbolic execu-
tion on the paths guided by concrete values. In addition to
the concrete state, concolic execution engine also mantains
a symbolic state during the execution that tracks all sym-
bolic values and expressions. The execution engine tracks
the symbolic condition of the concrete path, which can be
used to generate new inputs.

PEPM 2022, Jan 17-18, 2022, Philadelphia, PA, USA

def findBlock: Label = List[Inst] = ...
def evalAtomg(a: Atom): M[Option[Sym]] = ...
def evalVallnstg(v: Vallnst): M[Option[Sym]] = ...
def evallnstg(i: Inst): M[Option[Sym]] = i match {
case Assign(x, v) = for {
sv « evalVallnsts(v)
«— updateSymEnv(x, sv)
} yield sv
case Return(v) = evalAtoms(v)
case Store(vy, vy) = for {
addr < evalAtom.(vy)
sv < evalAtomg(vy)
_ « updateSymMem(addr, sv)
} yield sv
case _ = ret(None) // control inst. not handled

Figure 3. Symbolic interpreters (excerpted) for SIR

Once we obtain the condition of a single path, there are
multiple ways to generate new inputs. For example, Gode-
froid et al. [18] propose to negate each condition in the
constraint set after a complete run of the program. Their
approach assigns a bound number to each input to ensure
that the newly generated inputs can reach distinct paths
in the program. Another realistic and powerful way to use
concolic execution is to combine it with fuzz testing [25].
With mutation strategies, the fuzzer can provide numerous
concrete inputs to guide the concolic execution and produce
more inputs leading to the unexplored space. Nevertheless,
the strategy of using the path condition to generate inputs
is mostly orthogonal to the concolic execution itself and is
not our focus in this paper.

In this section, we focus on the semantics and interpreter
for concolic execution and explain the infrastructure to ob-
tain a compiler for concolic execution.

4.1 Concolic Semantics and Interpreter

The concolic execution semantics can be derived from the
concrete semantics. First, in addition to concrete states, the
concolic semantics needs to maintain symbolic states (i.e.
heap/stack that maps to symbolic expressions) and simultane-
ously performs concrete and symbolic computation. Second,
the concolic semantics collects the symbolic path conditions
following the concrete path, which happens when branching.
Based on these observations, we use combinators to com-
pose the concrete interpreter and the symbolic interpreter,
meanwhile adapting the execution of control instructions.
We reuse the concrete interpreters from § 3 and describe the
new symbolic interpreter next.

Symbolic Interpreter. The excerpted symbolic interpre-
ters are shown in Figure 3. We first introduce symbolic values
Sym in addition to the concrete values, which can be either

Shangyin Tan, Guannan Wei, and Tiark Rompf

val evallnstceone = Afix(evallnstc, evallnstg, {
base = rec =
case CondBr(c, 11, 12) = for {
(cc, sc) « evalAtomggpnc(C)
_ < updatePC(cc, sc)
res «— if (cc) forM(findBlock(11)) (rec)
else forM(findBlock(12)) (rec)
} yield res
case Jmp(l) = forM(findBlock(l)) (rec)
case inst = base(inst)
1)

Figure 4. The combined symbolic interpreter (excerpted) for SIR

a symbol or a symbolic expression. A symbolic expression
consists of an operator and operands. The state carried by the
state monad M now additionally includes the symbolic heap
and stack. During concolic execution, since not all values
have a symbolic meaning the symbolic interpreters return an
Option[Sym] value (wrapped in the state monad), expressing
this partiality. The lookup operations over symbolic memory
are undefined (None) if there is no symbolic value for the
corresponding location.

The symbolic interpreter is similar to its concrete coun-
terpart in many aspects. For example, when evaluating the
Store instruction symbolically in evallnstg, we first evalu-
ate the address concretely, as we disallow symbolic locations
due to adopting a simpler memory model. Then, we evaluate
the value to be stored symbolically, which will be used to
update the symbolic memory. Since the symbolic evaluation
does not guarantee success, updateSymMem only updates the
symbolic memory if sv is not None. The difference compared
with the concrete evaluation of Store instructions is that we
modify the symbolic state with a possibly symbolic value.

The symbolic interpreter yields None for a few other in-
structions. For example, we do not handle the CondBr case in
evallnst,. Later, these cases will be overridden in the com-
posed concolic interpreter, where the concrete evaluation
provides the selected branch.

Combining Symbolic and Concrete Interpreter. The
symbolic interpreters are modularly defined, which then
can be composed with the concrete interpreter. To obtain
the composed concolic interpreter, we first define several
auxiliary combinators. Given the similarity of the symbolic
and concrete interpreter that they both operate on the pro-
gram IR, it suggests using the A combinator that lifts two
(monadic) functions with a common source type to a single
function that returns a pair of results:
def A(f: A = M[B], g: A = M[C]): A = M[(B, ()]
However, this is not enough to obtain the concolic inter-
preter: (1) it does not provide a chance to override the execu-
tion for CondBr; (2) the concolic interpreter needs to recurs
over the subsequent instructions, but this A combinator does
not provide a way to refer the combined interpreter itself.

Towards Partially Evaluating Symbolic Interpreters for All (Short Paper)

Therefore, we combine A and the idea of (call-by-value) fixed-
point combinator to derive the Af;, combinator:
def Ari (f: A = M[B], g: A = M[C],

ev: (A = M[(B, C)]) = (A= M[(B, C)]) =

A = M[(B, C)]): A= M[(B,)] =

a = ev(f A g)(Ari(f, g, ev))(a)
The additional third argument ev is a higher-order function
that takes two functions of type A = M[(B, C)] and the
ordinary argument of type A. The first function provides the
non-recursive base case, i.e. f A g. And the second function
is the function referring ev itself, i.e., the composed function
that can handle potentially new cases. With A;, in hand,
we can now define the concolic interpreter (Figure 4). If the
instruction has no control effect, simply combining the con-
crete and symbolic interpreter is sufficient (by calling base).
However, if the instruction potentially changes the control
flow, we ignore the previous defined two interpreters and
provide a new interpretation. For example, in the case of
CondBr, we obtain a concrete condition cc and an optional
symbolic condition sc by calling evalAtomen, which is ob-
tained using A as well. The eventual result of a CondBr case
depends on the concrete condition cc. In addition, we collect
the symbolic path condition by calling updatePC. To execute
the instructions in another block in the case of CondBr and
Jmp, we apply the auxiliary function findBlock to the given
label, and forM invokes the self-recursive monadic function
rec with the last result returned.

Now, the interpreter evalInst,y,. correctly expresses the
semantics of concolic execution. Next, we add staging anno-
tations to it to obtain the concolic execution compiler.

4.2 Staged Concolic Interpreter

In our framework, we convert the interpreter to a staged
interpreter by adding binding-time annotations at the type
level. With suitable implicit overloading functions, the main
code of the interpreter can remain the same. We first change
the state type underlying the monad to be the staged state
using the Rep annotation. Therefore, the type of the concolic
state monad becomes:
type M[T] = StateM[Rep[(CState, SState)l, T]

where CState and SState is the concrete and symbolic state,
respectively. The auxiliary functions (e.g. updateSymEnv and
updatePC) that manipulate the underlying state representa-
tion are also adapted to operate over staged states. When
invoked, these operations construct the next-stage code rep-
resentation using the LMS framework.

4.3 Symbolic Backend

The generated code dynamically constructs symbolic expres-
sions; thus the backend needs to support a wide range of
symbolic operations, which eventually constructs SMT ex-
pressions. Symbolic expressions in the backend have two

PEPM 2022, Jan 17-18, 2022, Philadelphia, PA, USA

forms: they are either symbolic variables like Sym(x) or sym-
bolic expressions like Sym(op, x, ...). The backend represen-
tation of the symbolic memory maps identifiers or memory
locations to symbolic expressions. This part of the backend
is shared among other variants of symbolic execution.

5 Compiling Backward Symbolic Execution

Backward symbolic execution is a specialized flavor of sym-
bolic execution that aims to find inputs that reach target pro-
gram locations. By executing the program backward from
the desired location to the entry point, the backward sym-
bolic executor is less likely to take spurious paths that lead
to irrelevant parts of the program.

In this section, we focus on compiling a specific back-
ward symbolic execution variant called call-chain backward
symbolic execution (CCBSE) [24]. CCBSE builds upon the
forward nondeterministic symbolic execution and uses it as
a subroutine. Nondeterministic symbolic execution, unlike
concolic execution, mixes symbolic and concrete values in
a single store. When evaluating a symbolic condition, the
symbolic executor attempts to explore both paths nondeter-
ministically if they are satisfiable. Our previous work [39]
elaborates a semantic-first approach to compile nondeter-
ministic symbolic execution, which expresses the choice of
branches using algebraic effects and handlers. In the rest
of this section, we also make use of our previous compiler
construction of fork-based symbolic execution.

5.1 CCBSE Semantics

To demonstrate how CCBSE works, we make some small
changes to the syntax of SIR. We extend Vallnst with an
additional call instruction. We also add function definitions
FunDef to the language, which contains arguments and a
list of blocks. A program consists of a list of FunDef.

CCBSE starts the execution from the function f that con-
tains the target program location, treating all the arguments
as symbolic ones. Then, CCBSE executes all the functions
that call f using the fork-based symbolic execution. When
reaching a call instruction to the function f, the executor
tries to concatenate the paths from the current function that
calls f. By performing this backward process recursively
over the call-graph, CCBSE terminates when a path is found
from the main function (i.e. from the entry point to the target
location).

The challenge to compile CCBSE here is twofold: (1) CCBSE
requires an additional runtime to schedule the execution of
each function backward following the call-chain, (2) we need
to properly define the concatenation of paths between func-
tions for the symbolic interpreter.

5.2 Compiling CCBSE

To schedule the symbolic execution of each individual func-
tion, we need a representation of the call graph at runtime.

PEPM 2022, Jan 17-18, 2022, Philadelphia, PA, USA

This can be readily achieved if we only consider direct func-
tion calls, which are statically represented in the AST. The
call graph is calculated at staging time and stored into a next-
stage structure. Then, we can develop backend facilities that
rely on the next-stage call graph to schedule the symbolic
executor according to the CCBSE semantics.

Composing paths from prior results is also crucial to build
CCBSE correctly. After executing the target function f, a
“summary” is associated with f, containing all feasible paths
that start from f and reach the target location. In our frame-
work, we encode the summary as a list of states and path
conditions List[(State, PC)], representing all possible ex-
ecution results. This encoding directly comes from the result
type of our previous nondeterministic symbolic executor
[39]. Then, when the symbolic executor encounters function
f later from other functions, instead of blindly executing
function f again, the symbolic executor reuses the previous
summary. In this way, we concatenate the current execu-
tion paths with the previous explored paths and obtain the
desired CCBSE benefit.

Implementing the concatenation requires a small modifi-
cation to the call case of the interpreter where the callee
has a valid summary. Suppose the caller is g and the callee is
f, we invoke the backend function call-concat in the gen-
erated code. In this function, we obtain the path constraint
sets from f’s summary, and for each path condition set in
the summary, we add the constraint set to the current state
of g and then call f. This call to f only explores one path as-
sociated with the specific constraint set added to g’s current
state. Finally, call-concat returns the list of valid paths that
concatenate g and f, and this list later becomes part of ¢’s
summary.

Discussion. The implementation of CCBSE demonstrates
the modular and flexible aspects of our approach. Instead of
implementing the runtime support for concatenating paths
and a stand-along scheduler, our approach enables smooth in-
tegration for more complex semantics. Depending on whether
the change influences the operation semantics of symbolic
execution, the modification can be made directly on the in-
terpreter or on the backend code that uses the symbolic
executor as a subroutine.

6 Evaluation

To evaluate our approach, we have implemented the concolic
compiler and the backward compiler on a subset of LLVM,
supporting more than 40 instructions. Both compilers have
less than 700 LoC for the staged interpreters in Scala. The
staged interpreters are adapted from our previous work [41]
with less than 200 LoC changes, respectively. Our symbolic
backend uses the STP theorem prover [15].

We demonstrate the performance of our approach by eval-
uating the derived compilers on synthetic programs and
small realistic programs. All experiments are conducted

Shangyin Tan, Guannan Wei, and Tiark Rompf

Table 1. Evaluation result of concolic compilers. #inputs: number
of generated inputs; Tstaging: staging time of our tool; Tsymee-comp:
SymCC compilation time; Teonc: running time of our generated
code; Tsymcc: running time of SymCC’s generated code.

Benchmark #inputs Tstaging
BinSearch 8
BubbleSort 7
Knapsack 22
QuickSort 28

Tsymcc—comp Teonc Tsymcc
380.7 ms 304.5 ms 41.6 ms 49.3 ms
113.1 ms 315.4 ms 47.95 ms 144.4 ms
832.3 ms 332.5ms 168.9 ms 207.1 ms
500.8 ms 348.5 ms 123.8 ms 109.8 ms

on an Intel i7-8750H machine running Ubuntu 20.04 with
16 GB main memory. The running time numbers reported
are the medians of 10 runs. The benchmarks and repro-
duction of the experiments are available online at https:
//shangyit.me/pepm-experiment.

Benchmarking Concolic Compiler. We compare our
concolic LLVM compiler with SymCC, a concolic execution
engine that utilizes LLVM to symbolically instrument code.
The benchmarks we choose are small but realistic programs:
BinSearch, BubbleSort, Knapsack, and QuickSort. We record
the running times of a single execution in Table 1.

We run SymCC with its simple Z3 [12] backend, which has
a similar implementation compared to ours. We also record
the result of one complete run of the target program with the
same input seed to ensure that the two engines generate the
same set of inputs. Overall, we find our prototype produces
symbolic programs that have comparable performance with
respect to SymCC.

Benchmarking Backward Symbolic Compiler. To eval-
uate the performance of our CCBSE compiler, we deliberately
use a few small (less than 40 LoC) synthetic benchmarks
adapted from [24] that impose some difficulties for forward
symbolic execution engines - these programs have intensive
computations that do not eventually reach the target loca-
tion, and forward symbolic execution engines are often stuck
in those computations.

One of the benchmark programs (p4) is shown in the ap-
pendix (Figure 5). The target function f has 2* paths induced
by the for loop, and only one path leads to the error we want
to trigger. Normal forward symbolic execution needs to exe-
cute 2* paths everytime function f is invoked. However, as
CCBSE first explores 2* paths from the target function f and
obtains a summary containing the erroneous path, each later
invocation of function f only executes the path from the
summary, which makes the overall execution more efficient.

We present the staging time and running time of each
benchmark program in Table 2. We also compares the run-
ning time with our previous forward symbolic execution
compiler LLSC [41], and the running time of the CCBSE
compiler (Tecpse) is generally faster than the LLSC compiler
(Tirsc). The observed behavior concludes that our backward
symbolic execution compiler produces efficient code.

https://shangyit.me/pepm-experiment
https://shangyit.me/pepm-experiment

Towards Partially Evaluating Symbolic Interpreters for All (Short Paper)

Table 2. Experiment result of the CCBSE compiler.

P1 p2 P3 P4
Tstaging 195 ms 228 ms 205ms 210 ms
Tecpsg 116 ms 7ms 11ms 468 ms
Tiizsc 220ms 26 ms 46ms 13.9s

7 Related Work

Symbolic execution [2, 6, 21] is a program analysis technique
widely used in testing, bug/crash finding, and verification.
Many practical tools [8, 26, 29, 38] are developed based on
symbolic execution. Concolic execution [25, 30, 42], as one
of the popular variants, has been successfully used by the
security community due to its scalability. Readers may find
the idea behind symbolic execution similar to partial evalua-
tion [19], as they both transform programs to forms that only
depend on unknown inputs. This paper uses multi-stage pro-
gramming [35, 36] and the LMS framework [31] to perform
partial evaluation guided by annotations. The idea of multi-
stage programs is closely related to multi-level binding-time
analysis [16], although in this work we only exploit two
stages of interpreters.

This paper is built upon our prior work [39, 41], which uses
staging to compile fork-based symbolic execution. SymCC
[29] is another closely related work using an LLVM pass
to perform the instrumentation of concolic execution. The
idea of using program specialization to accelerate program
analysis can be found in other analyses [1, 5, 11, 40] too.

8 Conclusion and Future Work

This short paper demonstrates our work towards a general
methodology of constructing symbolic execution compilers
of diverse flavors based on staging. We present two new
variants of symbolic compilers following this approach, i.e.,
the concolic and backward symbolic execution compiler. The
preliminary evaluation result shows that our symbolic com-
pilers can generate performant and effective compiled sym-
bolic programs, meanwhile allowing the developers to use a
high-level productive language to realize this goal.

Our exploration and demonstration are by no means ex-
haustive. It would be interesting to see how this approach can
be applied to more variants with different language features,
e.g., backward execution for higher-order languages [27]. An-
other interesting direction is to combine the compiler with
a fuzzer [25, 42]. We expect a synergy to combine concolic
execution compilers with fuzzers that are also specialized to
the input grammar structure.

References

[1] Gianluca Amato and Fausto Spoto. 2001. Abstract Compilation for Shar-
ing Analysis. In Functional and Logic Programming, 5th International
Symposium, FLOPS 2001, Tokyo, Japan, March 7-9, 2001, Proceedings
(Lecture Notes in Computer Science, Vol. 2024), Herbert Kuchen and
Kazunori Ueda (Eds.). Springer, 311-325. https://doi.org/10.1007/3-
540-44716-4_20

PEPM 2022, Jan 17-18, 2022, Philadelphia, PA, USA

[2] Roberto Baldoni, Emilio Coppa, Daniele Cono D’Elia, Camil Deme-
trescu, and Irene Finocchi. 2018. A Survey of Symbolic Execution
Techniques. ACM Comput. Surv. 51, 3 (2018), 50:1-50:39. https:
//doi.org/10.1145/3182657

Thomas Ball and Jakub Daniel. 2015. Deconstructing Dynamic Sym-

bolic Execution. In Dependable Software Systems Engineering. NATO

Science for Peace and Security Series, D: Information and Communi-

cation Security, Vol. 40. IOS Press, 26-41.

Alan Bawden. 1999. Quasiquotation in Lisp. In Proceedings of the

1999 ACM SIGPLAN Workshop on Partial Evaluation and Semantics-

Based Program Manipulation, San Antonio, Texas, USA, January 22-23,

1999. Technical report BRICS-NS-99-1, Olivier Danvy (Ed.). University

of Aarhus, 4-12.

Dominique Boucher and Marc Feeley. 1996. Abstract Compilation:

A New Implementation Paradigm for Static Analysis. In Proceedings

of the 6th International Conference on Compiler Construction (CC ’96).

Springer-Verlag, London, UK, UK, 192-207. http://dl.acm.org/citation.

cfm?id=647473.727587

Robert S. Boyer, Bernard Elspas, and Karl N. Levitt. 1975. SELECT -

a Formal System for Testing and Debugging Programs by Symbolic

Execution. In Proceedings of the International Conference on Reliable

Software (Los Angeles, California). ACM, New York, NY, USA, 234-245.

https://doi.org/10.1145/800027.808445

Ajay Brahmakshatriya and Saman P. Amarasinghe. 2021. BuildIt: A

Type-Based Multi-stage Programming Framework for Code Genera-

tion in C++. In IEEE/ACM International Symposium on Code Generation

and Optimization, CGO 2021, Seoul, South Korea, February 27 - March 3,

2021, Jae W. Lee, Mary Lou Soffa, and Ayal Zaks (Eds.). IEEE, 39-51.

https://doi.org/10.1109/CG0O51591.2021.9370333

Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unas-

sisted and Automatic Generation of High-Coverage Tests for Complex

Systems Programs. In Proceedings of the 8th USENLX Conference on

Operating Systems Design and Implementation (San Diego, California)

(OSDI'08). USENIX Association, USA, 209-224.

Satish Chandra, Stephen J. Fink, and Manu Sridharan. 2009. Snuggle-

bug: a powerful approach to weakest preconditions. In PLDI. ACM,

363-374.

[10] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. 2011.
S2E: a platform for in-vivo multi-path analysis of software systems. In
ASPLOS. ACM, 265-278.

[11] Daniel Damian. 1999. Partial evaluation for program analysis. Progress
report, BRICS PhD School, University of Aarhus (1999).

[12] Leonardo Mendonga de Moura and Nikolaj Bjerner. 2008. Z3: An
Efficient SMT Solver. In Tools and Algorithms for the Construction
and Analysis of Systems, 14th International Conference, TACAS 2008,
Budapest, Hungary, March 29-April 6, 2008. Proceedings (Lecture Notes in
Computer Science, Vol. 4963), C. R. Ramakrishnan and Jakob Rehof (Eds.).
Springer, 337-340. https://doi.org/10.1007/978-3-540-78800-3_24

[13] Yoshihiko Futamura. 1971. Partial evaluation of computation process-
an approach to a compiler-compiler. Systems, Computers, Controls 25
(1971), 45-50.

[14] Yoshihiko Futamura. 1999. Partial Evaluation of Computation Process—
An Approach to a Compiler-Compiler. Higher-Order and Symbolic
Computation 12, 4 (01 Dec 1999), 381-391. https://doi.org/10.1023/A:
1010095604496

[15] Vijay Ganesh and David L. Dill. 2007. A Decision Procedure for Bit-
Vectors and Arrays. In Computer Aided Verification, 19th International
Conference, CAV 2007, Berlin, Germany, July 3-7, 2007, Proceedings
(Lecture Notes in Computer Science, Vol. 4590), Werner Damm and
Holger Hermanns (Eds.). Springer, 519-531. https://doi.org/10.1007/
978-3-540-73368-3_52

[16] Robert Gliick and Jesper Jorgensen. 1995. Efficient multi-level gen-
erating extensions for program specialization. In Programming Lan-
guages: Implementations, Logics and Programs, Manuel Hermenegildo

E

—

[4

[l

(5

—

(6

—

[7

—

8

—

[9

—

https://doi.org/10.1007/3-540-44716-4_20
https://doi.org/10.1007/3-540-44716-4_20
https://doi.org/10.1145/3182657
https://doi.org/10.1145/3182657
http://dl.acm.org/citation.cfm?id=647473.727587
http://dl.acm.org/citation.cfm?id=647473.727587
https://doi.org/10.1145/800027.808445
https://doi.org/10.1109/CGO51591.2021.9370333
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1023/A:1010095604496
https://doi.org/10.1023/A:1010095604496
https://doi.org/10.1007/978-3-540-73368-3_52
https://doi.org/10.1007/978-3-540-73368-3_52

PEPM 2022, Jan 17-18, 2022, Philadelphia, PA, USA

(17

—

[18

—

(19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27

—

(28]

[29

[t

(30

[t

and S. Doaitse Swierstra (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 259-278.

Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Di-
rected Automated Random Testing. In Proceedings of the 2005 ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (Chicago, IL, USA) (PLDI °05). Association for Computing
Machinery, New York, NY, USA, 213-223. https://doi.org/10.1145/
1065010.1065036

Patrice Godefroid, Michael Y. Levin, and David A. Molnar. 2008. Auto-
mated Whitebox Fuzz Testing. In NDSS. The Internet Society.

Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. 1993. Partial
evaluation and automatic program generation. Prentice Hall.

Ulrik Jorring and William L. Scherlis. 1986. Compilers and Staging
Transformations. In Proceedings of the 13th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages (St. Petersburg
Beach, Florida) (POPL ’86). Association for Computing Machinery,
New York, NY, USA, 86-96. https://doi.org/10.1145/512644.512652
James C. King. 1976. Symbolic Execution and Program Testing. Com-
mun. ACM 19, 7 (July 1976), 385-394. https://doi.org/10.1145/360248.
360252

Oleg Kiselyov. 2014. The Design and Implementation of BER MetaO-
Caml - System Description. In Functional and Logic Programming -
12th International Symposium, FLOPS 2014, Kanazawa, Japan, June
4-6, 2014. Proceedings (Lecture Notes in Computer Science, Vol. 8475),
Michael Codish and Eijiro Sumii (Eds.). Springer, 86-102. https:
//doi.org/10.1007/978-3-319-07151-0_6

S. C. Kleene. 1938. On Notation for Ordinal Numbers. J Symbolic
Logic 3, 4 (12 1938), 150-155. https://projecteuclid.org:443/euclid.jsl/
1183385485

Kin-Keung Ma, Yit Phang Khoo, Jeffrey S. Foster, and Michael Hicks.
2011. Directed Symbolic Execution. In SAS (Lecture Notes in Computer
Science, Vol. 6887). Springer, 95-111.

Rupak Majumdar and Koushik Sen. 2007. Hybrid Concolic Testing. In
ICSE. IEEE Computer Society, 416-426.

Luke Nelson, James Bornholt, Ronghui Gu, Andrew Baumann, Emina
Torlak, and Xi Wang. 2019. Scaling Symbolic Evaluation for Automated
Verification of Systems Code with Serval. In Proceedings of the 27th
ACM Symposium on Operating Systems Principles (Huntsville, Ontario,
Canada) (SOSP ’19). Association for Computing Machinery, New York,
NY, USA, 225-242. https://doi.org/10.1145/3341301.3359641

Zachary Palmer, Theodore Park, Scott Smith, and Shiwei Weng. 2020.
Higher-Order Demand-Driven Symbolic Evaluation. Proc. ACM
Program. Lang. 4, ICFP, Article 102 (Aug. 2020), 28 pages. https:
//doi.org/10.1145/3408984

Lionel Parreaux, Antoine Voizard, Amir Shaikhha, and Christoph E.
Koch. 2018. Unifying analytic and statically-typed quasiquotes. Proc.
ACM Program. Lang. 2, POPL (2018), 13:1-13:33. https://doi.org/10.
1145/3158101

Sebastian Poeplau and Aurélien Francillon. 2020. Symbolic execution
with SymCC: Don'’t interpret, compile!. In 29th USENIX Security Sym-
posium (USENIX Security 20). USENIX Association, 181-198. https://
www.usenix.org/conference/usenixsecurity20/presentation/poeplau
Sebastian Poeplau and Aurélien Francillon. 2021. SymQEMU:
Compilation-based symbolic execution for binaries. In NDSS 2021,
Network and Distributed System Security Symposium, 21-24 February
2021, Virtual Conference, ISOC (Ed.).

Tiark Rompf and Martin Odersky. 2010. Lightweight modular staging:
a pragmatic approach to runtime code generation and compiled DSLs.
In Generative Programming And Component Engineering, Proceedings
of the Ninth International Conference on Generative Programming and
Component Engineering, GPCE 2010, Eindhoven, The Netherlands, Oc-
tober 10-13, 2010, Eelco Visser and Jaakko Jarvi (Eds.). ACM, 127-136.
https://doi.org/10.1145/1868294.1868314

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Shangyin Tan, Guannan Wei, and Tiark Rompf

Koushik Sen, Darko Marinov, and Gul Agha. 2005. CUTE: A Concolic
Unit Testing Engine for C. In Proceedings of the 10th European Software
Engineering Conference Held Jointly with 13th ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering (Lisbon,
Portugal) (ESEC/FSE-13). Association for Computing Machinery, New
York, NY, USA, 263-272. https://doi.org/10.1145/1081706.1081750
Tim Sheard and Simon Peyton Jones. 2002. Template Meta-
programming for Haskell. SIGPLAN Not. 37, 12 (Dec. 2002), 60-75.
https://doi.org/10.1145/636517.636528

Nicolas Stucki, Aggelos Biboudis, and Martin Odersky. 2018. A practi-
cal unification of multi-stage programming and macros. In Proceedings
of the 17th ACM SIGPLAN International Conference on Generative Pro-
gramming: Concepts and Experiences, GPCE 2018, Boston, MA, USA,
November 5-6, 2018, Eric Van Wyk and Tiark Rompf (Eds.). ACM, 14—
27. https://doi.org/10.1145/3278122.3278139

Walid Taha. 1999. Multi-stage programming: Its theory and applica-
tions. Ph.D. Dissertation. Oregon Graduate Institute of Science and
Technology.

Walid Taha and Tim Sheard. 1997. Multi-Stage Programming with
Explicit Annotations. In Proceedings of the ACM SIGPLAN Sympo-
sium on Partial Evaluation and Semantics-Based Program Manipulation
(PEPM °97), Amsterdam, The Netherlands, June 12-13, 1997, John P. Gal-
lagher, Charles Consel, and A. Michael Berman (Eds.). ACM, 203-217.
https://doi.org/10.1145/258993.259019

Walid Taha and Tim Sheard. 2000. MetaML and multi-stage program-
ming with explicit annotations. Theor. Comput. Sci. 248, 1-2 (2000),
211-242. https://doi.org/10.1016/S0304-3975(00)00053-0

Emina Torlak and Rastislav Bodik. 2014. A Lightweight Symbolic
Virtual Machine for Solver-aided Host Languages. In Proceedings of the
35th ACM SIGPLAN Conference on Programming Language Design and
Implementation (Edinburgh, United Kingdom) (PLDI ’14). ACM, New
York, NY, USA, 530-541. https://doi.org/10.1145/2594291.2594340
Guannan Wei, Oliver Bracevac, Shangyin Tan, and Tiark Rompf. 2020.
Compiling Symbolic Execution with Staging and Algebraic Effects.
Proc. ACM Program. Lang. 4, OOPSLA, Article 164 (Nov. 2020), 33 pages.
https://doi.org/10.1145/3428232

Guannan Wei, Yuxuan Chen, and Tiark Rompf. 2019. Staged Abstract
Interpreters: Fast and Modular Whole-program Analysis via Meta-
programming. Proc. ACM Program. Lang. 3, OOPSLA, Article 126 (Oct.
2019), 32 pages. https://doi.org/10.1145/3360552

Guannan Wei, Shangyin Tan, Oliver Bracevac, and Tiark Rompf.
2021. LLSC: A Parallel Symbolic Execution Compiler for LLVM
IR. In Proceedings of the 29th ACM Joint Meeting on European Soft-
ware Engineering Conference and Symposium on the Foundations of
Software Engineering (Athens, Greece) (ESEC/FSE 2021). Association
for Computing Machinery, New York, NY, USA, 1495-1499. https:
//doi.org/10.1145/3468264.3473108

Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim.
2018. QSYM : A Practical Concolic Execution Engine Tailored for
Hybrid Fuzzing. In 27th USENIX Security Symposium, USENIX Secu-
rity 2018, Baltimore, MD, USA, August 15-17, 2018, William Enck and
Adrienne Porter Felt (Eds.). USENIX Association, 745-761. https:
//www.usenix.org/conference/usenixsecurity 18/presentation/yun

https://doi.org/10.1145/1065010.1065036
https://doi.org/10.1145/1065010.1065036
https://doi.org/10.1145/512644.512652
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/360248.360252
https://doi.org/10.1007/978-3-319-07151-0_6
https://doi.org/10.1007/978-3-319-07151-0_6
https://projecteuclid.org:443/euclid.jsl/1183385485
https://projecteuclid.org:443/euclid.jsl/1183385485
https://doi.org/10.1145/3341301.3359641
https://doi.org/10.1145/3408984
https://doi.org/10.1145/3408984
https://doi.org/10.1145/3158101
https://doi.org/10.1145/3158101
https://www.usenix.org/conference/usenixsecurity20/presentation/poeplau
https://www.usenix.org/conference/usenixsecurity20/presentation/poeplau
https://doi.org/10.1145/1868294.1868314
https://doi.org/10.1145/1081706.1081750
https://doi.org/10.1145/636517.636528
https://doi.org/10.1145/3278122.3278139
https://doi.org/10.1145/258993.259019
https://doi.org/10.1016/S0304-3975(00)00053-0
https://doi.org/10.1145/2594291.2594340
https://doi.org/10.1145/3428232
https://doi.org/10.1145/3360552
https://doi.org/10.1145/3468264.3473108
https://doi.org/10.1145/3468264.3473108
https://www.usenix.org/conference/usenixsecurity18/presentation/yun
https://www.usenix.org/conference/usenixsecurity18/presentation/yun

Towards Partially Evaluating Symbolic Interpreters for All (Short Paper)
A Appendix

void f(int a, int b) {
int sum = 0;
for (int 1 = 0; i < 4; i++) {
int n=Db % 2;
if (n) sum += 1;
b /= 2;
}
if (a == 500 && sum == 4) target();

int main () {
int b; make_symbolic(&b);
for (int 1 = 0; i < 1000; i++) f(i, b);

Figure 5. p4-ComplexLoop, a difficult program for forward SE.

PEPM 2022, Jan 17-18, 2022, Philadelphia, PA, USA

	Abstract
	1 Introduction
	2 The Essence of Compiling Symbolic Execution vis Staging
	2.1 Interpreter Specialization via Staging with LMS
	2.2 Architecture of Our Approach

	3 Preliminaries
	4 Compiling Concolic Execution
	4.1 Concolic Semantics and Interpreter
	4.2 Staged Concolic Interpreter
	4.3 Symbolic Backend

	5 Compiling Backward Symbolic Execution
	5.1 CCBSE Semantics
	5.2 Compiling CCBSE

	6 Evaluation
	7 Related Work
	8 Conclusion and Future Work
	References
	A Appendix

