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Compiling Symbolic Execution with
Staging and Algebraic Effects

GUANNAN WEI, OLIVER BRAČEVAC, SHANGYIN TAN, and TIARK ROMPF, Purdue
University, USA

Building effective symbolic execution engines poses challenges in multiple dimensions: an engine must

correctly model the program semantics, provide flexibility in symbolic execution strategies, and execute them

efficiently.
This paper proposes a principled approach to building correct, flexible, and efficient symbolic execution

engines, directly rooted in the semantics of the underlying language in terms of a high-level definitional

interpreter. The definitional interpreter induces algebraic effects to abstract over semantic variants of symbolic

execution, e.g., collecting path conditions as a state effect and path exploration as a nondeterminism effect.

Different handlers of these effects give rise to different symbolic execution strategies, making execution strate-

gies orthogonal to the symbolic execution semantics, thus improving flexibility. Furthermore, by annotating

the symbolic definitional interpreter with binding-times and specializing it to the input program via the first

Futamura projection, we obtain a “symbolic compiler”, generating efficient instrumented code having the

symbolic execution semantics. Our work reconciles the interpretation- and instrumentation-based approaches

to building symbolic execution engines in a uniform framework.

We illustrate our approach on a simple imperative language step-by-step and then scale up to a significant

subset of LLVM IR. We also show effect handlers for common path selection strategies. Evaluating our

prototype’s performance shows speedups of 10~30x over the unstaged counterpart, and 2x over KLEE, a

state-of-the-art symbolic interpreter for LLVM IR.
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1 INTRODUCTION
Symbolic execution is a popular and useful technique for software testing, bug finding, security,

and verification [Baldoni et al. 2018]. The underlying idea is to simultaneously explore multiple

execution paths in a given program, with some inputs being left symbolic rather than concrete.

The essential job of a symbolic execution engine is translating an input program to logical formulae

and constraints. Those logical formulae and constraints enable automatic test case generation
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and verification of the program’s liveness or safety properties. This process relies on automated

theorem provers such as SMT/FOL solvers in modern symbolic execution engines.

However, building a correct and efficient symbolic execution engine is hard — this task is often

considered “the most difficult aspect of creating solver-aided tools” [Torlak and Bodik 2014]. We

recognize three major challenges in building symbolic execution engines: 1) correctly modeling the

semantics of symbolic execution for the target language, 2) converting the model to an efficient
implementation that collects and solves constraints, and 3) flexibility in supporting different

symbolic execution strategies and heuristics. More recently, other communities have recognized

the efficiency problem. For instance, in a security context, Poeplau and Francillon [2020] proposed

to use the LLVM infrastructure to generate instrumented code that performs symbolic execution.

Our goal is to provide a principled, semantics-driven foundation for building symbolic execution

engines, including and especially those that incorporate a degree of compilation.

This paper’s main contribution is a novel approach to constructing symbolic execution engines

from a programming language’s definitional interpreter [Reynolds 1972] while retaining a high

level of abstraction, and achieving flexibility and efficiency through staging and algebraic effects.

To the best of our knowledge, no previous work on symbolic definitional interpreters meets all of

these requirements simultaneously.

Semantics First: Starting from Definitional Interpreters. A symbolic execution engine must

simulate concrete execution of programs while collecting path constraints of symbolic variables.

In other words, the target language’s concrete semantics informs its symbolic semantics. This

observation leads to a semantics-first approach to building symbolic execution engines: Starting

from the definitional interpreter, systematically refine it to operate on symbolic values and collect

symbolic path constraints, resulting in a symbolic definitional interpreter.
The semantics-first approach has been demonstrated in detail for small functional languages or

imperative languages (e.g. [Darais et al. 2017;Mensing et al. 2019; Schwartz et al. 2010]). Furthermore,

Rosette [Torlak and Bodik 2014] provides a domain-specific language based on Racket that enables

lifting regular interpreters into symbolic ones. Widely-used practical symbolic execution engines

such as KLEE [Cadar et al. 2008] and Symbolic Java PathFinder [Anand et al. 2007; Păsăreanu and

Rungta 2010] also build upon a symbolic interpreter at their core. However, these are arguably less

“definitional.”

Considering that the definitional interpreter is an executable, “ground truth” specification of a

language’s semantics, the semantics-first approach gives developers a higher degree of confidence

in correctness of the symbolic counterpart, compared to approaches that treat symbolic execution

engines as pure engineering artifacts. We follow this approach but further extend the symbolic

interpreter with staging and algebraic effects to address the efficiency and flexibility challenges.

Efficiency: From Symbolic Interpreter to Compiler. A common perception is that interpreters

are slow due to the overhead of indirection and dispatch. Some symbolic execution engines use static

code instrumentation to avoid the overhead, transforming the input program by inserting special

statements for monitoring symbolic values and symbolic constraints. For instance, CREST [Burnim

2014] and EXE [Cadar et al. 2006] use the CIL framework [Necula et al. 2002] for transforming C

programs in this way. SymCC [Poeplau and Francillon 2020] implements the instrumentation as a

transformation pass in the LLVM framework. Instrumentation-based symbolic execution engines

can significantly outperform interpretation-based counterparts [Kapus and Cadar 2017]. However,

while instrumentation-based approaches have performance advantages, they usually cannot serve

as semantic specifications and are not as easy to understand and implement as interpreters.

Our work reconciles the interpretation- with instrumentation-based approaches using the well-

known first Futamura projection [Futamura 1971, 1999] as the missing conceptual link. We specialize
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Fig. 1. The workflow of the proposed approach to symbolic execution engine construction

a symbolic interpreter to the input program using the first Futamura projection. The result is a

program that executes the same symbolic computation without the interpretation overhead. We use

multi-stage programming (MSP) [Taha and Sheard 1997], a form of partial evaluation [Jones et al.

1993] guided by the programmer, and the Lightweight Modular Staging framework (LMS) [Rompf

and Odersky 2010] to realize the first Fumatura projection. Therefore, we obtain performant

instrumented symbolic programs by staging the definitional symbolic interpreter.

Flexibility: Effects and Handlers for Custom Execution Strategies. While an exhaustive

symbolic execution in King’s style [King 1976] is sound and complete (with regard to the underlying

theories), it is impractical for larger programs due to the path- and state-explosion problem. Many

execution strategies make symbolic execution non-exhaustive, using heuristics that trade soundness

for a higher likelihood of triggering certain paths in a reasonable amount of time [Baldoni et al.

2018; Burnim and Sen 2008; Chipounov et al. 2011; Godefroid et al. 2005a; Kuznetsov et al. 2012].

Nevertheless, there is no single best symbolic execution strategy that works equally well for all

programs. The construction of symbolic execution engines should strive for the extensibility and

customizability of execution strategies.

How can we modularly specify these execution strategies while keeping the symbolic interpreter

concise and high-level? We need to write the definitional interpreter using a level of control-flow

abstraction at the meta-level. A variety of such techniques exist, including explicit monads and

computational effects [Moggi 1989, 1991], explicit continuation passing style (CPS), or direct-style

control operators such as control/prompt [Felleisen 1988] or shift/reset [Danvy and Filinski 1990]

in languages that support them [Flatt et al. 2007; Koppel et al. 2018; Rompf et al. 2009]. While any

such control abstraction technique should work in principle, we found it helpful and elegant to rely

on the notion of algebraic effects and handlers [Plotkin and Power 2003; Plotkin and Pretnar 2013].

We view execution strategies as particular computational effects of the execution engine, and

those effects should allow for user-defined interpretations. For example, path selection strategies

implement different notions of nondeterminism and control flow. The symbolic definitional in-

terpreter declares abstract effect operations in its signature, representing customizable aspects of

the symbolic execution semantics. This way, our approach exhibits flexibility and modularity by

decoupling the execution strategies from the semantics of symbolic execution. Different execution

strategies take the form of first-class effect handlers as composable components for specifying and

implementing these strategies orthogonally to the symbolic execution. Programmers may extend

and adapt the symbolic execution engine with custom effects and handlers as needed.
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Overview of the Approach. Figure 1 shows the individual steps of our approach to building

symbolic execution engines for imperative languages.

First, one implements a high-level definitional interpreter for a given programming language.

This activity also includes modeling and interpreting the semantics’ computational effects in

terms of algebraic effects and handlers. Then, one refines the definitional interpreter to a symbolic

definitional interpreter, including symbolic values, path constraints, and additional effects, e.g.,

for integrating nondeterminism and SMT solving. Finally, by annotating the binding-times in this

symbolic interpreter, it becomes a symbolic compiler via the first Futamura projection [Futamura

1971, 1999]. Notably, we use a heterogeneous staging framework, which permits compilation into

different target languages, thus allowing the symbolic program’s execution on different platforms.

We split the symbolic execution into two stages. In the first stage, given an input program and

a particular execution strategy expressed with effect handlers, the symbolic compiler generates

output code in a target language (e.g., C++) for the symbolic program. This stage eliminates the

interpretation overhead of both AST traversal and effect handling. Then, using an external target-

language compiler, compiling and executing the symbolic program yields an analysis result. In this

way, one can utilize off-the-shelf compilers to optimize symbolic programs further, even though

the symbolic execution engine is initially written in a high-level managed language (e.g., Scala).

Previous work (e.g., [Torlak and Bodik 2014]) has used the terminology “symbolic compilers”

for tools that translate a program to logical constraints and “symbolic virtual machines” for tools

that compile selective bits to constraints and invoke solvers on the fly. From that perspective, one

may consider our approach as both a symbolic compiler-compiler and a symbolic VM compiler in
the sense that it translates a program to another program that produces logical constraints (and

orchestrates solver invocations) when run.

Furthermore, our approach is economical. The staged symbolic interpreter is developed in a

high-level language (in our case, Scala) and derived from the unstaged symbolic interpreter. Using

stage polymorphism [Ofenbeck et al. 2017; Stojanov et al. 2019], the staged symbolic interpreter

can serve both as an “interpreter” and as a “compiler”, enabling a high degree of code reuse.

Contributions. In summary, we make the following contributions:

• Using an imperative language (Imp) as example, we illustrate our approach step-by-step using a

meta-language with algebraic effects and a binding-time notion:

(1) Specify the concrete execution semantics of Imp in terms of a definitional interpreter, mapping

Imp programs to computations inducing algebraic effects (Section 2).

(2) Extend the definitional interpreter to a symbolic definitional interpreter, adding additional

effects specific to symbolic execution (Section 3).

(3) Finally, conduct a binding-time analysis of the symbolic execution interpreter from the

previous step, and annotate its parts as either dynamic or static (Section 4).

• We describe the implementation of our approach using the Lightweight Modular Staging (LMS)

framework in Scala. The algebraic effects are embedded in Scala using free monads (Section 5).

• We investigate the use of effect handlers to express different path selection strategies in symbolic

execution, all in a modular and flexible fashion (Section 6).

• We extend our approach to a subset of the LLVM intermediate representation (IR), discuss

challenges and solutions, and build a prototype symbolic compiler for LLVM IR (Section 7).

• We evaluate the performance of the prototype LLVM IR symbolic execution engine and compare

the path traversal performance with the unstaged version and KLEE, showing that the generated

code significantly outperforms its unstaged counterparts and is ~2x faster than KLEE (Section 8).
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𝑣 ∈ Value ::= Z | B 𝑜𝑝2 ∈ {+,−,×,=,≠, . . . } 𝑜𝑝1 ∈ {−, . . . }
𝑒 ∈ Expr ::= 𝑣 | 𝑥 | op

1
(𝑒) | op

2
(𝑒, 𝑒) | read 𝑥 ∈ Var

𝑠 ∈ Stmt ::= assign(𝑥, 𝑒) | cond(𝑒, 𝑠, 𝑠) | while(𝑒, 𝑠) | seq(𝑠, 𝑠) | skip | write(𝑒)
Fig. 2. The abstract syntax of Imp.

2 DEFINITIONAL INTERPRETERS WITH ALGEBRAIC EFFECTS
Our approach to building symbolic execution engines begins with implementing the definitional

interpreter [Reynolds 1972] of a given object language in a metalanguage, i.e., a host programming

language. A definitional interpreter defines a “ground-truth” executable artifact of the object

language’s semantics, as a practical semantics-first approach.

Since our focus lies on imperative object languages, a definitional interpreter must account

for side-effecting features. We employ algebraic effects [Plotkin and Power 2003] and effect han-

dlers [Plotkin and Pretnar 2013] as a general abstraction for modeling object language effects in

the metalanguage in a functional manner.

2.1 Metalanguage
In the interest of keeping the presentation at a high level, we assume a standard call-by-value

polymorphic 𝜆-calculus as the metalanguage, with data types, pattern matching, general recursion,

higher-kinded types, and ad-hoc polymorphism. We will use the latter two features only indirectly

for embedding algebraic effects, handlers, and effect typing. We leave universal quantification in

types implicit, and use square brackets to apply constructors and polymorphic functions to type

parameters, e.g.,

map : (𝐴→ 𝐵) → List[𝐴] → List[𝐵]
is the standard map function on lists, where 𝐴 and 𝐵 are universally quantified. For multi-stage

programming used in the later steps of our approach, we adopt a library-based staging approach in

Scala [Rompf and Odersky 2010]. We defer the discussion of staging extensions to Section 4.

2.2 Object Language: Imp
We consider the imperative language Imp (Figure 2), which is small yet sufficient to exemplify all

essential aspects of symbolic execution.

Imp has expressions 𝑒 and statements 𝑠 . Expressions consist of integer and boolean values,

variables, binary and unary operators, and an I/O primitive read, which reads an integer from

standard input. Statements contain standard syntactic constructs for assignments, conditionals,

loops, sequential statements, a no-op statement skip, and an I/O statement write for writing

integers to standard output. The read and write forms exemplify interactions with the program’s

environment.

We stipulate that the different syntax categories in Figure 2 represent data type definitions in

the metalanguage. Var, Value, Expr, and Stmt denote data types, and their syntax forms represent

data type constructors.

2.3 Algebraic Effects and Handlers
Algebraic effects [Plotkin and Power 2003] and effect handlers [Plotkin and Pretnar 2013] enable

modular and extensible programming with user-defined effects (e.g., state, exceptions, nondeter-

minism, I/O). To keep the presentation at a high level, we stipulate a syntax of algebraic effects

and handlers in style similar to native language implementations, e.g., Koka [Leijen 2017b] and
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effect State[𝑆] :=
get : 𝑆

put : 𝑆 → Unit

effect IO :=

readInt : Int

writeInt : Int→ Unit
Fig. 3. Example: Effect signatures for State and IO.

StateHandler : 𝑆 → ⟨State[𝑆], E⟩𝐴→ ⟨E⟩(𝑆 ×𝐴)
StateHandler = handler(𝑠)

return(𝑥) ↦→ return (𝑠, 𝑥)
get(𝑘) ↦→ return 𝑘 (𝑠) (𝑠)

put(𝑠 ′, 𝑘) ↦→ return 𝑘 (()) (𝑠 ′)

IOHandler : ⟨IO, E⟩𝐴→ ⟨E⟩𝐴
IOHandler = handler

return(𝑥) ↦→ return 𝑥

readInt(𝑘) ↦→ return 𝑘 (StdIn.readInt())
writeInt(𝑛, 𝑘) ↦→ { _← StdOut.print(𝑛);

return 𝑘 (()) }

Fig. 4. Example: Effect handlers for State and IO.

Eff [Pretnar 2015]. In principle, these can be macro-translated into our metalanguage on top of a

free(r) monad data type, higher-kinded types and ad-hoc polymorphism.

Effect signatures and effect types define an interface of abstract effect operations. For specifying

the concrete definitional interpreter for Imp, we define corresponding effect signatures of the State
and IO effects in Figure 3. Named interfaces group effect operations together (as is custom, we call

all of these entities “effects”). The State effect is parametric in the type of underlying state values 𝑆

and has two abstract effect operations get and put for retrieving and updating (respectively) the

current state. Similarly, the IO effect defines operations for reading and writing integer values. At

this point, the meaning of these operations is underspecified.

We annotate effect rows, i.e., type-level lists of effect interfaces, to the type of effect operations. For
instance, effect operations, such as put : 𝑆 → ⟨State[𝑆], E⟩Unit (Figure 3), represent metalanguage

functions where its effect row ⟨State[𝑆], E⟩ states that invocations induce the State[𝑆] effect.
Furthermore, it is effect polymorphic, indicated by the type parameter E. Effect polymorphism

ensures the composability of computations in usage contexts requiring potentially more than the

State[𝑆] effect. We stipulate that E always ranges over effect rows. Intuitively, ⟨E⟩𝑇 is a monad

of computations returning type 𝑇 indexed by effect rows E. Pure computations have empty effect

rows ⟨⟩. Furthermore, we do not distinguish between ⟨⟩𝐵 and 𝐵.

We adopt the well-known comprehension syntax { 𝑥 ← 𝑐 ; . . . } for computations 𝑐 with algebraic

effects, analogous to Haskell’s do-notation or Scala’s for-comprehensions. Within this syntactic

scope, we write return 𝑣 for a computation that directly yields a value 𝑣 . For instance:

c : Int→ ⟨State[Int], IO, E⟩Unit
c = 𝜆𝑠.{𝑥 ← put 𝑠; 𝑠1 ← get; 𝑠2 ← get; 𝑦 ← writeInt (𝑠1 + 𝑠2); return 𝑦}.

For brevity, we may also use return 𝑐 as syntactic sugar for { 𝑣 ← 𝑐 ; return 𝑣 } whenever possible,
and omit bindings of unused values in sequences, e.g.,

c = 𝜆𝑠.{put 𝑠; 𝑠1 ← get; 𝑠2 ← get; return writeInt (𝑠1 + 𝑠2)}.
To assign meanings to effect operations, we need to define effect handlers, which are first-

class, composable values that define a user-defined interpretation of the effect operations. The

decoupling of effect signatures and interpretations has advantages concerning modular abstraction

and instantiation over the more conventional monad transformers approach (cf. [Kammar et al.

2013]). Various means for implementing effects and handlers exist, such as delimited control/CPS
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eval : Expr→ ⟨State[Store], IO⟩Value
eval(𝑣) = return 𝑣

eval(𝑥) = { 𝜎 ← get; return 𝜎 (𝑥) }
eval(𝑜𝑝 (𝑒)) = { 𝑣 ← eval(𝑒); return primEval

1
(𝑜𝑝, 𝑣) }

eval(𝑜𝑝 (𝑒1, 𝑒2)) = { 𝑣1 ← eval(𝑒1); 𝑣2 ← eval(𝑒2); return primEval
2
(𝑜𝑝, 𝑣1, 𝑣2) }

eval(read) = return readInt

Fig. 5. Definitional interpreter for expressions. The definitions of primEval{1,2} are elided.

transformation [Hillerström et al. 2017; Kammar et al. 2013] or free(r) monads [Kiselyov and Ishii

2015; Swierstra 2008; Wu et al. 2014]. We implement these in Scala using the latter approach

(cf. Section 5). We discuss concrete handlers while introducing the definitional interpreter of Imp
in the rest of this section.

2.4 A Definitional Interpreter for Imp
We define definitional interpreters in terms of pure functions from abstract syntax on expres-

sions and statements into computations with effects. The definitional interpreters for expressions

(Figure 5) and statements (Figure 6) have the following type signatures:

eval : Expr→ ⟨State[Store], IO⟩Value
exec : Stmt→ ⟨State[Store], IO⟩Unit.

We represent all the effects of the object language in terms of effect interfaces appearing in the

effect row of the definitional interpreter(s). In our case, Imp’s mutation and I/O primitives (Figure 2)

translate to the State effect carrying a Store type and the IO effect, respectively (Figure 3).

The Store type represents the memory and corresponds to partial function of type Var→ Value.
If 𝜎 is a Store, we write 𝜎 [𝑥 ↦→ 𝑣] to denote the store 𝜎 ′ such that 𝜎 ′(𝑧) = 𝑣 if 𝑧 = 𝑥 and 𝜎 ′(𝑧) = 𝜎 (𝑧)
otherwise.

We also assume two primitive evaluators for arithmetic and boolean operations:

primEval
1
: Op

1
× Value→ Value

primEval
2
: Op

2
× Value × Value→ Value.

With the given effect operations and primitive evaluators, Figures 5 and 6 implement the standard

store-transformer semantics of Imp [Nielson and Nielson 2007]. When executing a conditional

statement cond, we use the conditional clause if/else from the metalanguage for branching. We

execute loops by unrolling the syntactic constructs while(e, s), one step each time.

2.5 Handlers for Concrete Execution
For completing the object language’s definitional interpreter, one must define concrete interpre-

tations of the abstract effects in the interpreter’s effect row via effect handlers. Figure 4 shows

the handlers for Imp’s State and IO effects. Intuitively, effect handlers (or simply handlers) are

control-flow abstractions behaving similarly to exception handlers, but they may resume the

underlying computation that “threw” an effect operation. Formally, handlers are computation

transformers/homomorphisms of type

⟨X , E⟩𝐴→ ⟨Y , E⟩𝐵
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exec : Stmt→ ⟨State[Store], IO⟩Unit
exec(assign(𝑥, 𝑒)) = { 𝑣 ← eval(𝑒); 𝜎 ← get; return put(𝜎 [𝑥 ↦→ 𝑣]) }

exec(cond(𝑒, 𝑠1, 𝑠2)) = { 𝑏 ← eval(𝑒); return if (𝑏) exec(𝑠1) else exec(𝑠2) }
exec(while(𝑒, 𝑠)) = { 𝑏 ← eval(𝑒); return if (𝑏) exec(seq(𝑠,while(𝑒, 𝑠))) else exec(skip) }
exec(write(𝑒)) = { 𝑣 ← eval(𝑒); return writeInt(𝑣) }

exec(seq(𝑠1, 𝑠2)) = { _← exec(𝑠1); return exec(𝑠2) }
exec(skip) = return ()

Fig. 6. Definitional Interpreter for statements.

that resolve a finite prefix X in an effect row and possibly induce effects from the list Y while

doing so. They may also transform the computation’s return type 𝐴 into type 𝐵. For example, the

handlers for Imp’s effects (Figure 4) have types

StateHandler : 𝑆 → ⟨State[𝑆], E⟩𝐴→ ⟨E⟩(𝑆 ×𝐴)
IOHandler : ⟨IO, E⟩𝐴→ ⟨E⟩𝐴,

that interpret the State and IO effect (respectively) to another effect computation, explained further

below. Handlers have clauses for handling the specified effect operation, which bind the operation’s

parameters as specified by the operation’s interface and the continuation of the computation, usually

designated by 𝑘 . The special clause return defines the behavior when the handled computation

returns with a result. We often omit this clause in the case of identity functions.

Functional State Handler. Given an initial state 𝑠 of type 𝑆 , the StateHandler (Figure 4, left) handles
the State effect (Figure 3) by transforming the handled computation into a tuple of type 𝑆 × 𝐴,
returning the answer 𝐴 of the computation along with the final state at the end of the computation.

For example, we have that

(StateHandler(21) {𝑠1 ← get; 𝑠2 ← get; put 0; return (𝑠1 + 𝑠2)}) ≡ {return (0, 42)}.

StateHandler is a parameterized/indexed handler in Koka’s style [Leijen 2017b]. It binds the current

state value 𝑠 as a local parameter. The continuations in the clauses additionally take an updated

state value used for handling subsequent state operations. In contrast, the IOHandler (Figure 4)

does not have a parameter.

Handling I/O with Real Side Effects. The StateHandler above defines a user-defined functional

simulation of a state, but not an actual mutation side effect. Indeed, we may handle algebraic effects

with “real” side effects if present in the metalanguage. Assuming we have access to actual I/O

primitives, we define the IOHandler (Figure 4) to resolve the abstract IO effect in the definitional

interpreter by delegating the effect operations readInt and writeInt to these primitives.

3 SYMBOLIC DEFINITIONAL INTERPRETERS WITH ALGEBRAIC EFFECTS
Given an object language’s definitional interpreter with algebraic effects (Section 2), the next step

is refining the interpreter to a symbolic definitional interpreter, which specifies a generic symbolic

execution semantics for the object language. The refinement introduces additional effects to cater

to symbolic execution. The recipe for refinement is as follows:

• Extend the Value domain with symbolic values.

• Lift primitive evaluators so that they can operate on symbolic values.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 164. Publication date: November 2020.



Compiling Symbolic Execution with Staging and Algebraic Effects 164:9

effect Nondet :=
choice[𝑋 ] : List[𝑋 ] → 𝑋

effect SMT :=

sat? : PC→ B
concretize : PC × Var

→ Option[Value]

effect IO#
:=

readInt : Value

writeInt : Value→ Unit

Fig. 7. Effects during symbolic execution.

• Introduce a nondeterminism effect to abstract over different exploration strategies for branch-

ing constructs.

• Maintain a path condition (i.e., set of Boolean expressions expressing the path constraint)

using another state effect.

• Introduce an SMT effect to interact with external solvers, if required.

This section continues the Imp example, refining its definitional interpreter (Figures 5 and 6) to a

symbolic version that implements the semantics from [King 1976].

3.1 Symbolic Values and Path Conditions
The first step is to extend the value domain with symbolic values:

𝑣 ∈ Value ::= Z | B | sym(𝑒).

In contrast to the value domain defined in Figure 2, we additionally have sym(𝑒), which holds an

expression 𝑒 with symbolic values/unknowns. The sym form represents unknown inputs of the

target program, as well as symbolic computation on symbolic inputs. For instance, sym(𝑥) is a
symbolic value for a fresh variable 𝑥 ∈ Var. A value 𝑣 ∈ Value is symbolic if it is of the form sym(𝑒)
and concrete otherwise. Analogously, an expression 𝑒 is symbolic if it contains a subexpression

sym(𝑒 ′).
We represent path conditions by sets of (Boolean) expressions

𝜋 ∈ PC = P(Expr),

where each set 𝜋 represents the logical conjunction of its elements, expressing the path constraint

posed on the symbolic inputs during the symbolic execution. Path conditions are initially empty

when starting the execution, thus vacuously true. Whenever the symbolic definitional interpreter

evaluates a conditional statement cond(𝑒, 𝑠1, 𝑠2) where 𝑒 involves symbolic values, it may separately

execute 𝑠1 under a new path condition containing 𝑒 and execute 𝑠2 under a new path condition

containing ¬𝑒 , i.e., path conditions are path-sensitive. The branch choice depends on the concrete

path exploration strategy.

3.2 Effects for Symbolic Execution
Symbolic execution requires slight modifications to the effect interfaces (Section 2.4), which intro-

duce additional effects.

State Effect for Path Conditions. A path condition is an additional piece of state in symbolic

execution next to the Store (Section 2.4). The state for symbolic execution now consists of a product

S = Store × PC,

and the symbolic definitional interpreter induces a State[S] effect.
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Branching as Nondeterminism Effect. If the condition at a branching point is a symbolic value,

then the symbolic definitional interpreter may explore multiple paths; the Nondet effect interface
(Figure 7) abstracts over concrete strategies for choosing such paths. The polymorphic operation

choice offers a finite number of candidates to choose from to the handling context. The caller of

this operation determines the concrete type 𝑋 of choices.
1

SMT Solver Interactions and Symbolic I/O Effects. Some symbolic execution scenarios invoke a

decision procedure to discharge path conditions/logical formulae. For example, we may need to

query an SMT solver for the current path conditions’ satisfiability at a branching point. Depending

on the answer, we may either disregard a path (unsatisfiable) or commit to a satisfiable path.

Another use of SMT solvers is concretization of symbolic expressions, i.e., generating a concrete

value satisfying a given path condition. E.g, concretization is necessary for calling external functions

that cannot take symbolic arguments. Finally, the eventual goal of symbolic execution is generating

test cases, which are also obtained by concretization. We cover all of these uses cases with the SMT
effect interface (Figure 7).

The operation sat? takes a path condition and produces a Boolean value, indicating the condition’s
satisfiability. The operation concretize accepts the path condition argument and the variable for

concretization. It returns an optional Value, which is either Some(𝑣) for a concrete value 𝑣 satisfying
the path condition, or None if no such value exists. Usually datatypes in the object language can be

encoded as finite-sized bit-vectors, SMT arrays, or other theories supported by the solver. We elide

the details of encoding these here and take a high-level view of SMT solver interactions.

We also change the previous IO effect to produce or yield symbolic values (i.e., sym(𝑥 ) where 𝑥

is fresh and unconstrained): the effect’s operations now operate on the Value type. We denote the

new effect signature for symbolic input/output operations by IO#
(Figure 7).

3.3 Symbolic Definitional Interpreter
The type signatures of the symbolic definitional interpreters for expressions and statements only

differ in their effect row from their non-symbolic counterparts in Figures 5 and 6:

eval : Expr→ ⟨State[S], IO#⟩Value.
exec : Stmt→ ⟨State[S], IO#, SMT,Nondet⟩Unit.

As motivated above, the state effect now carries a store and path conditions, and we use the refined

IO#
effect for I/O with symbolic values. Furthermore, the interpreter for statements induces the

Nondet and SMT effects, abstracting over branch exploration, and SMT solver interactions.

The definitions of the interpreter functions remain, for the most part, unchanged from Figures 5

and 6. In the following, we elaborate on the differences:

3.3.1 Interpretation of Primitives. Because symbols and expressions are now part of the values

domain, we must lift the primitive evaluators primEval
1
and primEval

2
accordingly. For example,

we would need to lift integer addition (and similarly, other cases) as follows:

primEval
#

2
(+, 𝑛1, 𝑛2) = primEval

2
(+, 𝑛1, 𝑛2) if 𝑛1, 𝑛2 ∈ Z

primEval
#

2
(+, 𝑒1, 𝑒2) = sym(+(𝑒1, 𝑒2)) otherwise.

3.3.2 Interpretation of Branches and Loops. A significant departure from the previous definition

of exec (Figure 6) is the evaluation of conditional statements and loops: we must record path

1
For a handler, the type 𝑋 is an abstract/existential type. Supplying the empty list of choices is equivalent to a failure/excep-

tion, because the handler cannot resume the computation if the list of available 𝑋 s is empty.
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conditions and explore branches according to some strategy, e.g., nondeterministically. This change

affects the cases for cond and while in the definition of exec.

In what follows, we rely on helper functions that act on the individual components of the Store
and path condition states:

getPathCond : ⟨State[S]⟩PC
getPathCond = { (𝜎, 𝜋) ← get; return 𝜋 }
putPathCond : Expr→ ⟨State[S]⟩Unit

putPathCond(𝑒) = { (𝜎, 𝜋) ← get; return put((𝜎, {𝑒 [𝜎]} ∪ 𝜋)) }
getStore : ⟨State[S]⟩Store
getStore = { (𝜎, 𝜋) ← get; return 𝜎 }
putStore : Var × Value→ ⟨State[S]⟩Unit

putStore(𝑥, 𝑣) = { (𝜎, 𝜋) ← get; return put((𝜎 [𝑥 ↦→ 𝑣], 𝜋)) }

The helper function putPathCond will add expression 𝑒 to path condition, where 𝑒 is substituted

with concrete values in the current store, if there is any, denoted by 𝑒 [𝜎] in its definition.

Furthermore, we define a helper function exec
′
that updates path conditions and then executes

the statement, shown below:

exec
′
: Stmt × Expr→ ⟨State[S], IO#, SMT,Nondet⟩Unit

exec
′(𝑠, 𝑒) = { _← putPathCond(𝑒); return exec(𝑠) }.

Depending on the symbolic semantics we would like to follow, there are different ways to handle

conditionals and loops. The naive one is to nondeterministically execute both branches, using the

Nondet effect (Figure 7), no matter the value of the condition:

exec(cond(𝑒, 𝑠1, 𝑠2)) = { _← eval(𝑒); (𝑠 ′, 𝑒 ′) ← choice((𝑠1, 𝑒), (𝑠2,¬𝑒)); exec(𝑠 ′, 𝑒 ′) }.

However, naively executing both branches is neither economical nor correct, as spurious execution

paths would lead to false errors. The refined version would mix concrete evaluation and symbolic

execution (not to be confused with concolic execution
2
[Godefroid et al. 2005b]), by only nonde-

terministically executing both branches when the value of condition 𝑒 is indeterminate. That is,

in the case of symbolic conditions, we invoke the choice effect operation and execute 𝑠1 and 𝑠2
nondeterministically:

exec(cond(𝑒, 𝑠1, 𝑠2)) = { 𝑏 ← eval(𝑒);
return if (𝑏 ≡ true) exec′(𝑠1, 𝑒)

else if (𝑏 ≡ false) exec′(𝑠2,¬𝑒)
else { (𝑠 ′, 𝑒 ′) ← choice((𝑠1, 𝑒), (𝑠2,¬𝑒)); exec′(𝑠 ′, 𝑒 ′) } }

Using the same syntactic unrolling idea in concrete execution, we define loop execution by desug-

aring to cond and while. However, online unrolling of loops during the symbolic execution may

result in the nontermination of the engine. While the user may intervene and halt this at any point,

we choose a more straightforward way that statically unfolds the loop a constant number of times:

exec(while(𝑒, 𝑠)) = exec(unfold(𝑘,while(𝑒, 𝑠)))

2
Concolic execution uses concrete inputs to guide symbolic execution and usually does not have nondeterministic

exploration.
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NondetHandler : ⟨Nondet, E⟩𝐴→ ⟨E⟩List[𝐴]
NondetHandler = handler

return(𝑥) ↦→ return List(𝑥)
choice(xs, 𝑘) ↦→ return fold(xs, {return List()}, 𝑓 )

where 𝑓 : ⟨E⟩List[𝑇 ] ×𝑇 → ⟨E⟩List[𝑇 ]
𝑓 (acc, 𝑥) = { ys← acc; xs← 𝑘 (𝑥); return ys ++ xs }

Fig. 8. Effect handler for Nondet.

SMTHandler : ⟨SMT, E⟩𝐴→ ⟨E⟩𝐴
SMTHandler = handler

sat?(𝜋, 𝑘) ↦→ { 𝑏 ← oracle(𝜋); return 𝑘 (𝑏) }
concretize(𝜋, 𝑥, 𝑘) ↦→ { 𝑣 ← oracle(𝜋, 𝑥); return 𝑘 (𝑣) }

Fig. 9. Effect handler for SMT.
where unfold is defined as

unfold(0,while(𝑒, 𝑠)) = skip;

unfold(𝑘,while(𝑒, 𝑠)) = cond(𝑒, seq(𝑠, unfold(𝑘 − 1,while(𝑒, 𝑠))), skip).
However, syntactic unrolling may lead to undesirable exponential code duplication. In Section 4.4,

we address generating dynamic loops in the symbolic compiler.

3.4 Handlers for Symbolic Execution
To put all the pieces together, we must still define the interpretation of the Nondet and SMT effects,

and redefine a symbolic interpretation for the IO#
effect (Figure 7). The handler of State effect

remains the same as in concrete execution (Figure 4).

3.4.1 Handling Nondeterminism. We handle the nondeterminism effect in the following fashion

(Figure 8): In the return case, we lift the value 𝑥 into a singleton list, indicating that this is the only

“choice”. In the choice case, we resume the continuation 𝑘 of the computation requesting the choice

with all the supplied candidates, and concatenate all the resulting lists into a single list (by folding

over the candidate list xs from left to right).

While the handler in Figure 8 exhaustively explores every candidate, one may implement other

strategies, which we will discuss in Section 6.

3.4.2 Handling SMT Operations. The most convenient way to handle the SMT effect is to invoke

an external SMT solver, such as Z3 or CVC4. This requires first to encode the path condition into a

format (such as smt-lib) that can be recognized by the chosen solver, and then invoke the solver

with the encoded formulae. We elide this part’s details, but assume an oracle will produce the

desired answer for satisfiability and concretizing symbolic values, as sketched in Figure 9.

3.4.3 Handling IO, Symbolically. The remaining piece of symbolic execution is to make the IO effect

symbolic. readInt can now return a symbolic value sym(𝑥), where 𝑥 is a fresh and unconstrained

variable. We have more choices of handling writeInt: (1) if the argument value is symbolic, we may

concretize it to a concrete value and output that to standard output, or (2) instead of outputting

values to the system’s standard output, the analysis could collect all symbolic outputs and their

associated constraints during the execution in the fashion of a writer monad. Here we favor

simplicity and show the handler of the first approach in Figure 10.
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IO
#
Handler : ⟨IO#, E⟩𝐴→ ⟨E⟩𝐴

IO
#
Handler = handler
readInt(𝑘) ↦→ { return 𝑘 (sym(𝑥)) } where 𝑥 is fresh

writeInt(𝑒, 𝑘) ↦→ { 𝑛 ← concretize(𝑒); _← StdOut.print(𝑛); return 𝑘 (()) }
Fig. 10. Effect handler for IO#.

3.5 Assembling Symbolic Definitional Interpreters
Composing handlers of State,Nondet, SMT and IO#

effects with the refined eval and exec functions

(cf. Section 3.3.2) yields an artifact for symbolically executing object language programs. The order

in which we compose the handlers produces different types of results. Due to the fact that in

symbolic execution the states are path-sensitive, we must interpret the state effect as a “local” state,

in the sense that each path has its own state, instead of sharing a single “global” state. Hence, we

should apply the StateHandler handler first, and Nondet handler afterwards:

SymExeHandler : ⟨State[S], SMT, IO#,Nondet⟩Unit→ List[S × Unit]
SymExeHandler = NondetHandler ◦ SMTHandler ◦ IO#

Handler ◦ StateHandler(𝑠0)

where 𝑠0 is an initial value of the symbolic state.

With this combination of handlers, the eventual result value after effect-handling is a list, where

each element contains the symbolic state S of an execution path. Given an Imp program 𝑝 , we shall

further compose SymExeHandler and exec to obtain the result of symbolic execution:

(SymExeHandler ◦ exec) (𝑝) : List[S × Unit]

We could also generate inputs for the explored paths by invoking SMT operations on the obtained

set of path conditions after applying exec but before effect handling.

Given a program of finite paths, the symbolic execution as presented here is both sound and

complete, in the following sense [Baldoni et al. 2018]:

Definition 3.1 (Soundness). A symbolic execution is sound if it can find all unsafe inputs.

Definition 3.2 (Completeness). A symbolic execution is complete if its reported unsafe inputs are

indeed unsafe.

Proof sketch. Soundness and completeness stem from the fact that we explore every path,

under the assumption that the underlying decision procedure is also sound and complete. □

Soundness implies that the symbolic execution explores all feasible paths, and, as demonstrated

later in Section 6, practical symbolic executions often have to drop this property by using different

heuristics and execution strategies.

4 STAGED SYMBOLIC EXECUTION: INTERPRETER AND COMPILER
Having derived a symbolic definitional interpreter (Section 3) the next step is eliminating the

overhead of interpretation and effect handling for efficient symbolic execution. We apply the first

Futamura projection [Futamura 1971, 1999] using heterogeneous multi-stage programming. This

yields a staged symbolic interpreter, i.e., a symbolic compiler. The required steps are as follows:

• Conduct a manual binding-time analysis and add stage annotations to the symbolic interpreter.

I.e., which parts of the interpreter’s computation happen statically (i.e., at compile-time, first

stage) versus dynamically (i.e., at run time, second stage).
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• Handle the interpreter’s effects strictly at compile-time, generating code which is free of

handlers. This step requires refining the effect handlers to transform computations into

second-stage code representations instead of first-stage values.

4.1 A Two-Stage Binding-Time Notation
We borrow the binding-time notation from two-level 𝜆-calculus [Nielson and Nielson 1985, 1992]

for our metalanguage, where an underlined term 𝑒 or type 𝑇 indicates a second-stage (dynamic)

computation or type, and an undecorated term or type indicates a first-stage (static) computation

or type. We interpret the underlying evaluation of the two-stage binding-time notation in the way

of LMS [Rompf 2016], which preserves the call-by-value evaluation order of our metalanguage in

the second stage.

Example 4.1 (Functions). Int→ Int is a second-stage function type, and 𝜆𝑥.𝑥 + 1 is a term of

this type. However, Int → Int is a first-stage function type whose domain and codomain are

second-stage integers. An example term of that type is 𝜆𝑥.𝑥 + 1, where 𝜆 is not underlined.

Example 4.2 (Applications). If 𝑓 is second-stage function and 𝑥 a second-stage value, then 𝑓 (𝑥)
is a second-stage application; whereas (𝜆𝑥.𝑥 + 1) (𝑦) is a first-stage application, which reduces to

𝑦 + 1 at the first stage.

Example 4.3 (Lifting). A first-stage available term can be lifted into the second stage. For example,

from 𝑣 : Int, to 𝑣 : Int.

Well-formedness. The two-stage binding-time notation also poses a well-formedness requirement

on types and terms. Base types at either stage are well-formed. However, if a function type is second

stage, then so must be its domain and codomain, e.g., Int→Int is ill-formed. This rule applies to

other type constructors such as product or list types, e.g., List[Int] is ill-formed.

Similarly, second-stage conditionals if require second-stage conditions and branches:

𝑒1 : B 𝑒2 : 𝑇 𝑒3 : 𝑇

if (𝑒1) 𝑒2 else 𝑒3 : 𝑇
(WF-IF)

In the case of first-stage conditionals, the condition must be first-stage too, but may have second-

stage branches, e.g., if (true) 𝑒2 else 𝑒3 is well-formed.

First-Stage Effect Computation and Handlers Only. We prohibit algebraic effect computations and

handlers in the second stage for performance reasons. Hence, underlined computation types ⟨E⟩𝐴
are ill-formed for any non-empty or variable effect row E, whereas ⟨⟩𝐴 ≡ ⟨⟩𝐴 ≡ 𝐴 (effect-free

computations) and ⟨E⟩𝐴 (first-stage computations producing second-stage values) are permitted.

We also rule out second-stage handlers ⟨E1⟩𝐴→ ⟨E2⟩𝐵, but permit ⟨E1⟩𝐴 → ⟨E2⟩𝐵 (first-stage

handlers transforming second-stage values). Similarly, we forbid underlining effect operations

so that no algebraic effect leaks into the second stage, e.g., put 5 is ill-formed, whereas put 5 is
well-formed.

4.2 Two-Stage Symbolic Definitional Interpreters
Starting from the symbolic definitional interpreters (Section 3), we first add the required binding-

time annotations, which is straightforward (Figures 11 and 12). Their type signatures become:

eval : Expr→ ⟨State[S], IO#⟩Value
exec : Stmt→ ⟨State[S], IO#, SMT,Nondet⟩Unit.
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eval : Expr→ ⟨State[S], IO#⟩Value
eval(𝑣) = return 𝑣

eval(𝑥) = { 𝜎 ← getStore; return 𝜎 (𝑥) }
eval(𝑜𝑝 (𝑒)) = { 𝑣 ← eval(𝑒); return primEval

#

1
(𝑜𝑝, 𝑣) }

eval(𝑜𝑝 (𝑒1, 𝑒2)) = { 𝑣1 ← eval(𝑒1); 𝑣2 ← eval(𝑒2); return primEval
#

2
(𝑜𝑝, 𝑣1, 𝑣2) }

eval(read) = return readInt

primEval
#

1
: Op

1
× Value→ Value

primEval
#

2
: Op

2
× Value × Value→ Value

Fig. 11. The 2-stage symbolic definitional interpreter for expressions. Definitions of primEval
#

{1,2} elided.

exec : Stmt→ ⟨State[S], IO#, SMT,Nondet⟩Unit
exec(assign(𝑥, 𝑒)) = { 𝑣 ← eval(𝑒); 𝜎 ← getStore; return putStore(𝜎 [𝑥 ↦→ 𝑣]) }

exec(write(𝑒)) = { 𝑣 ← eval(𝑒); return writeInt(𝑣) }
exec(seq(𝑠1, 𝑠2)) = { _← exec(𝑠1); return exec(𝑠2) }

exec(skip) = return ()
exec(cond(𝑒, 𝑠1, 𝑠2)) = { 𝑏 ← eval(𝑒); 𝑠 ← get

return if ↑↓𝑠 (𝑏 ≡ true) exec′(𝑠1, 𝑒)
else if ↑↓𝑠 (𝑏 ≡ false) exec′(𝑠2,¬𝑒)
else { (𝑠 ′, 𝑒 ′) ← choice((𝑠1, 𝑒), (𝑠2,¬𝑒)); exec′(𝑠 ′, 𝑒 ′) } }

exec(while(𝑒, 𝑏)) = { 𝑠 ← get; reflect(loop(𝑠)) }
where loop : S→ List[S × Unit]

loop(𝑠) = reify(𝑠){ 𝑐 ← eval(𝑒); 𝑣 ← continue?(𝑐);

return if ↑↓𝑠 (𝑣) { _← exec
′(𝑏, 𝑒); 𝑠 ′← get; return reflect(loop(𝑠 ′)) }

else exec′(skip,¬𝑒) }
Fig. 12. Definition of the 2-stage symbolic definitional interpreter for statements.

The object language syntax (expressions and statements) is first stage, hence it is not underlined. We

classify runtime constructs as second stage, including values 𝑣 ∈ Value, stores 𝜎 ∈ Store, and path

conditions 𝜋 ∈ PC = P(Expr). Although we represent the path conditions as syntactic expressions,

we classify them as second stage, as their construction happens there. The path conditions can be

transformed to proper SMT encodings, therefore will not pose interpretation overhead.

The functions eval and exec are first stage, but return second-stage Values, respectively Unit
with effects. As explained earlier, algebraic effects should not leak into the second stage and hence

remain first-stage only. However, the effect operations and handlers do compute second-stage

terms, e.g., the State effect carries now a second-stage symbolic state (Section 3.2) of type S.
Modulo binding times, the definition of the staged eval remains identical to the version from

Section 3. This holds for most cases of exec, too. However, the cases for cond and while are more

intricate and we discuss them in the following sections.
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reify : S→ ⟨State[S], SMT, IO#,Nondet⟩Unit→ List[S × Unit]
reify(𝑠0) = NondetHandler ◦ SMTHandler ◦ IO#

Handler ◦ StateHandler(𝑠0)
reflect : List[S × Unit] → ⟨State[S], SMT, IO#,Nondet⟩Unit

reflect(𝑠𝑠) = { 𝑠 ← choice(𝑠𝑠); _← put(fst(𝑠)); return snd(𝑠) }
Fig. 13. Implementation of reify and reflect.

4.3 Staging Conditionals
Attempt 1 (ill-formed). A first attempt might look as follows (simplified without considering

symbolic values and nondeterminism):

exec(cond(𝑒, 𝑠1, 𝑠2)) = { 𝑏 ← eval(𝑒); if (𝑏) exec(𝑠1) else exec(𝑠2) }
Unfortunately, this is not a well-formed two-stage binding-time notation, because if requires its
branches to be both second-stage, but exec(𝑠𝑖 )𝑖∈{1,2} produces first-stage effect computations. We

could delay exec(𝑠𝑖 ) into the second stage, but that requires second-stage effects and handlers,

which is undesirable for performance.

Attempt 2 (ill-behaved). There is an “obvious” well-formed way that fixes of the problem:

exec(cond(𝑒, 𝑠1, 𝑠2)) = { 𝑏 ← eval(𝑒); 𝑐1 ← exec(𝑠1); 𝑐2 ← exec(𝑠2); if (𝑏) 𝑐1 else 𝑐2 },
which sequentially executes the first-stage effects of each branch, but produces ill-behaved second-

stage code. To see why, consider a simplified example that applies an indexed state handler

StateHandler maintaining a second-stage state value:

StateHandler(0){ 𝑐1 ← (put(1); get); 𝑐2 ← (put(2); get); if (true) 𝑐1 else 𝑐2 }
Evaluating it results in (2, 1), where 2 is the state and 1 is value returned from the "then" branch.

However, since the condition is true, wewould expect to observe the effects of the “then” branch only,
resulting in (1, 1). This discrepancy comes from the fact that the underlying monad computation is

executed sequentially – binding 𝑐2 has changed the handler state left after binding 𝑐1. In future

work, we would like to investigate if handlers for arrow or idiom computations [Lindley 2014;

Pieters et al. 2020] are more adequate in this situation.

Moreover, the metalanguage’s if is a pure expression that cannot capture the branch effects

encapsulated in the effect computation. In contrast, the object language Imp’s conditional is a
statement where each branch only performs effects (yielding Unit values), and the effect of a branch
should carry over to the join point of the conditional. We need to rule out branch interference

when handling first-stage effects and ensure that handlers update their state based on a proper

first-stage representation of if ’s second-stage join point.

Attempt 3 (well-formed and well-behaved). To properly stage cond with algebraic effects, we need

a bridge that connects second-stage representation of pure values and first-stage effectful computation.
We adapt the terminology “reflection” and “reification” from the metaprogramming literature

[Friedman and Wand 1984]: reflection transforms second-stage representations of data to first-stage

effectful computation, and reification transforms effectful computation into second-stage values.

Luckily, we already have the reification function, which is the composed symbolic execution

handler operating on first-stage effect computations (although NondetHandler requires minor

changes, which will be discussed in Section 4.5). The implementations of reify/reflect are shown in

Figure 13.
3
The reflect function takes a second-stage list of S-and-Unit, which are the representation

3
To be precise, StateHandler(𝑠0) yields a value of type ⟨E⟩S × Unit, which is implicitly converted to ⟨E⟩S × Unit.
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of the symbolic execution results of multiple paths, and uses the nondeterminism effect syntax

choice to lift them back into a first-stage effectful computation. It is worth noting that this choice
operation takes a second-stage list of symbolic execution results; in Section 4.5, we will discuss the

stage-polymorphic behavior of the choice operation. After obtaining each single S-and-Unit pair,
we re-install the state S using put and return the Unit value.

With the reify and reflect functions in hand, we can now correctly stage cond (Figure 12). We

first define a syntactic sugar if ↑↓ which takes the state 𝑠 before branching, the condition value 𝑐 of

type B, and two first-stage effectful computations 𝑒1 and 𝑒2. The desugared form applies reify with

state 𝑠 in each branch, resulting in values of type List[S × Unit], and uses second-stage if to make

a choice over the "then" list or "else" list based on the value of 𝑐 , and finally uses reflect to recover

the whole second-stage if expression to first-stage effect computation.

𝑠 : S 𝑐 : B 𝑒1 : ⟨E⟩Unit 𝑒2 : ⟨E⟩Unit E = State[S], SMT, IO#,Nondet

if ↑↓𝑠 (𝑐) 𝑒1 else 𝑒2 =
Δ

reflect(if (𝑐) reify(𝑠) (𝑒1) else reify(𝑠) (𝑒2)) : ⟨E⟩Unit
(if ↑↓)

We can now define the staged symbolic execution of the cond case using if ↑↓ (Figure 12, case
cond), which is similar to the unstaged counterpart. Additionally, note that the last branch again uses

the stage-polymorphic nondeterminism effect syntax choice to choose over first-stage statements

𝑠𝑖 and their corresponding path condition.

4.4 Staging Loops
It is relatively straightforward to stage loops if we have pre-unfoldedwhile for a constant number of

times into several conds, which we addressed in the previous section. More sophisticated execution

strategies for loops may depend on next-stage dynamic heuristics. Such dynamic heuristics decide

when to stop executing a loop, for example, based on the second-stage total number of explored

paths. We assume an effect operation continue? returning a B value, indicating if the loop can

continue. This effect can be handled by generating a second-stage native effect operation.

To actually execute loops in the second stage, an intuitive idea is to generate a recursive function

that invokes itself at the second stage. However, it is not immediately clear what the type of such a

function would be. Again, we need to use the reify/reflect function and if ↑↓ to ensure such looping

functions act only on pure, second-stage values.

We show in Figure 12 the loop function. Note that the function itself is a second-stage function,

indicated by its type S→ List[S × Unit]. The function takes an initial state 𝑠 of type S, which the

state will be used to reify the following computation: first, the condition is evaluated to a value 𝑐;

second, we query if the loop can continue (which is an effect operation that results in generating

code with native effects), and get a value 𝑣 of B; finally, we use if ↑↓ to insert a “branch” between

two effect computations, where the first branch executes the loop body 𝑏 and recursively invokes

loop with the state 𝑠 ′ after executing the loop body, and the second branch is simply executing skip.
After defining loop, the execution of while can be simply derived (Figure 12): we get the current

state 𝑠 , invoke loop(𝑠) yielding a second-stage application, and reflect the second-stage representa-

tion back to effectful computation.

4.5 Nondeterminism Effect and Handler for Staging
When implementing the reflect function (Figure 13), we use the effect operation choice in a stage-

polymorphic manner: It can take either a second-stage list of choices, or a first-stage list of choices.

We refine the effect signature of Nondet to be explicitly stage-polymorphic (Figure 14, left). The

choice with first-stage candidates is used to nondeterministically execute multiple statements at
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effect Nondet :=
choice[𝑋 ] : List[𝑋 ] → 𝑋

choice[𝑋 ] : List[𝑋 ] → 𝑋

NondetHandler : ⟨Nondet⟩𝐴→ ⟨⟩List[𝐴]
NondetHandler = handler

return(𝑥) ↦→ return List(𝑥)
choice(xs, 𝑘) ↦→ return fold(𝑥𝑠, List(), 𝑓 )

where 𝑓 : List[𝑇 ] ×𝑇 → List[𝑇 ]
𝑓 (acc, 𝑥) = 𝑎𝑐𝑐 ++ 𝑘 (𝑥)

Fig. 14. Stage-polymorphic nondeterminism effect (left) and handler of choice with second-staged data (right)

a fork point, as the syntactic AST is indeed statically known; while the choice with second-stage

candidates is used to reflect an unknown number of results back to effect computation at a join
point, as in general we do not have the information of how many paths will be explored.

If the candidates are formed in a second-stage list, its corresponding handler used in reify also

needs to be marginally adapted (Figure 14, right): The Nondet effect now must come last in the

effect row, as the type indicates. Permitting more effects to come after Nondet interacts badly with

choice invocations having arguments whose length is unknown in the first stage. In that case, we

cannot handle Nondet without delaying the effect computation or handlers into the second stage.

During the development of our approach, we have found this limitation is not an issue at all, as the

Nondet effect is indeed the last effect for symbolic execution.

If we restrict NondetHandler’s effect row in the above way, then its unstaged and staged versions

can have the same piece of code, modulo the binding-time annotations. Thus, NondetHandler in

Figure 14 should be in fact considered stage-polymorphic (although the figure specifically shows

two-stage binding times).

4.6 Assembling Staged Symbolic Definitional Interpreters
Now, we can combine exec and reify to derive the staged symbolic definitional interpreter. Given a

program 𝑝 and initial state 𝑠0, we have a second-stage representation of the result,

(reify(𝑠0) ◦ exec) (𝑝) : List[S × Unit]
which can be readily used for code generation if they are implemented with an actual MSP system.

It is worth noting that here we have achieved the first Futamura projection by specializing the

symbolic interpreter exec. The result of type List[S × Unit] represents the symbolic execution

without the interpretation and effect handling overhead. It is also reusable and composable, in the

sense that we can reuse the specialization result under other program contexts.

5 IMPLEMENTATION
We implement our approach by embedding an algebraic effect system using freer monads [Kiselyov

and Ishii 2015] into Scala. We utilize the Lightweight Modular Staging framework (LMS) [Rompf

and Odersky 2010] for staging, which allows expressing binding times at the type level. With LMS,

we can specialize the staged symbolic interpreter given static programs and generates second-stage

programs in C++. This section describes the implementation and code generation.

5.1 Algebraic Effects using Free Monads
We follow Kiselyov and Ishii [2015]’s freer monad to implement algebraic effects and handlers

with open unions for type-level effect rows in Scala (Figure 15). Computations of type Comp[R, A]

return values of type A, and induce user-defined algebraic effects described by the effect row R,

which is a subtype of the type-level list Eff. A computation finishes either with an answer value
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sealed trait Eff // type-level list representing an effect row

trait ∅ extends Effs; trait ⊗[A[_], TL <: Eff] extends Eff

abstract class Comp[R <: Eff, +A] // freer monads

case class Return[R <: Eff, A](a: A) extends Comp[R, A]

case class Op[R <: Eff, A, X](op: U[R, X], k: X ⇒ Comp[R, A]) extends Comp[R, A]

Fig. 15. Freer monad definition in Scala.

(Return), or an impure effect operation invocation (Op), carrying the effect operation op, which is

contained in the effect row R and has response (continuation) type X, along with a continuation k

of type X ⇒ Comp[R, A], defining the next computation step after handling the operation.

We also use T ∈ R to represent that an effect operation T exists in an effect row R. The effect

operations (e.g., get, put), are case classes and will be lifted into the desired effect row via inj.

trait ∈[T[_], R <: Eff] {

def inj[X](sub: T[X]): U[R, X]

def prj[X](u: U[R, X]): Option[T[X]]

}

For illustration, we now define the effect signature of symbolic execution SymEff, which follows

our description in Section 3. State[S, *] is the State effect, parameterized by S and represented by

a higher-kinded type in Scala. IO, SMT, and Nondet are similarly defined, and ∅ is the void effect.

type S = (Store, PC); type SymEff = State[S, *] ⊗ (IO ⊗ (SMT ⊗ (Nondet ⊗ ∅)))
In order to define effect-polymorphic computations, one may write programs against an abstract

effect row R and implicitly require T ∈ R as a type-level constraint, which specifies which effects

must be present in R. For example, one may require that eval perform the state effect, as follows:

def eval[R <: Eff](e: Expr)(implicit I: State[S, *] ∈ R): Comp[R, Value].

5.2 Multi-Stage Programming with LMS
Lightweight Modular Staging (LMS) [Rompf and Odersky 2010] is an extensible Scala framework

for multi-stage programming. The framework utilizes the implicit conversions and overloading

mechanisms in Scala [Rompf et al. 2012] to allow writing stage-polymorphic programs [Amin and

Rompf 2018; Carette et al. 2009; Hofer et al. 2008; Ofenbeck et al. 2017]. In contrast to syntactic MSP

languages, LMS transforms the front-end programs to an intermediate representation, which will

be further transformed to target code. A built-in ANF transformation [Flanagan et al. 1993] avoids

unnecessary code duplication and preserves the call-by-value evaluation order [Rompf 2016].

The core interface provided by LMS is a type constructor Rep[T]. A value v of Rep[T] represents

a next-stage computation whose value is unknown in the current stage. To minimize syntactic

burden, it is idiomatic to use Scala’s implicit conversions to lift operations on values of Rep[T] to

operations on a class defined elsewhere, whose operations build up the intermediate representations.

The following code snippet shows the idea of lifting a map lookup m(k) to the IR:

implicit class MapOps[K, V](m: Rep[Map[K, V]]) {

def apply(k: Rep[K]): Rep[V] = reflect(IRMapApply, m, k) // Other ops omitted

}

Using LMS, we can annotate a function’s dynamic arguments and return value with Rep[_]

type, and the binding-times of body terms will be inferred by Scala’s local type inference, which

corresponds to a local binding-time analysis.

LMS provides a Base class to be extended, which exposes the Rep type and minimal infrastructure

for users. When extending Base, one may also mix in other classes that provide extensions, such as

overloaded representations for data structures. The metaprograms should be written in a class that
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extends Base. Additionally, LMS supplies a virtualize annotation which macro-transforms the

control primitives (e.g., if) as well into the IR, therefore we have the ability to naturally write those

second-stage primitives (e.g., if in Section 4). The virtualize annotation can be used at either

class-level or method-level in Scala.

Internally, LMS uses a graph-based intermediate representation [Click and Paleczny 1995]. The

execution of current-stage programs with Rep types constructs the IR of next-stage programs. Then

the IR can be sent out to a code generation backend, which determines the output code. The code

generation can be highly customized, for example, generating code in different languages. During

both graph construction and code generation, we may apply rewritings rules to optimize the code.

5.3 The Organization of Staged Symbolic Execution with LMS
Our staged symbolic execution engine is organized as follows. The trait StagedSymbolicImp is

extended from Base and other supporting classes, where our staged symbolic executor is defined

with algebraic effect signature Comp[SymEff, Rep[Unit]].

@virtualize trait StagedSymbolicImp extends Base with ... /* Other mixins omitted */ {

def eval(e: Expr): Comp[SymEff, Rep[Value]] = ...

def exec(s: Stmt): Comp[SymEff, Rep[Unit]] = ...

}

The definition of Comp is already parameterized to the answer type: we thus provide a Rep[T] to it

(i.e., Comp[R, Rep[T]]). With this type, the free monads are first-stage data structures that represent

the manipulation of the representations of second-stage computations at the effect level.

To use (specialize) an Imp program with regard to the staged symbolic execution engine, there is

a specialize function that applies reify (i.e. handlers) to the result of exec:

def specialize(s: Stmt): Rep[List[(S, Unit)]] = reify(state0)(exec(s))

Because exec yields first-stage effect computation, we can also apply handlers to resolve all effects

in the same stage, which ensures the overhead of effect interpretation will not be residualized into

the generated code. Given the returned value of specialize, LMS’s back-end will further generate

C++ code from the representations.

5.4 Generating Symbolic Execution Code in C++
LMS allows us to manipulate intermediate representations and customize their code generation

as compiler passes. Therefore, we have the flexibility to choose among different target languages.

Mainly for performance reasons, we elect to generate C++ code after specialization. We may also

leverage sophisticated optimizations in existing C++ compilers.

Since we handle the effects in a purely functional way (i.e., state effects transformed to functions

that take a state argument), we obtain generated C++ code free from side-effects. We also develop

simple runtime representations of symbolic values, memories, and path conditions in C++, consisting

of ~200 LOC. The generated code that manipulates these runtime constructs uses persistent data

structures and shared pointers. We use a C++ library Immer [Puente 2017] to represent and

manipulate high-level data structures such lists, maps and sets. Due to the fact that our generated

code is also functional, potentially it can be parallelized without too much effort. Certainly, there

is a design space of how to represent runtime symbolic values, stores, and constraints; we elect

for simplicity. The generated code directly orchestrates SMT invocations with their C++ API. Our

prototype implementation uses the STP SMT solver [Ganesh and Dill 2007].
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CoinChoice : ⟨Nondet, E⟩𝐴→ ⟨E⟩List[𝐴]
CoinChoice(𝑝) = handler

return(𝑥) ↦→ return List(𝑥)
choice(𝑥𝑠, 𝑘) ↦→

return 𝑘 (uniformSample(𝑥𝑠))

CoinChoice : ⟨Nondet⟩𝐴→ ⟨⟩List[𝐴]
CoinChoice(𝑝) = handler

return(𝑥) ↦→ return List(𝑥)
choice(𝑥𝑠, 𝑘) ↦→ unchanged, see 𝐹𝑖𝑔𝑢𝑟𝑒 14

choice(𝑥𝑠, 𝑘) ↦→ {
val 𝑟 = uniformSample(0 . . . |𝑥𝑠 | − 1)
return buildSelection(𝑟, 𝑥𝑠, 𝑘) }

Fig. 16. Left: general single-stage random sampling handler for choice; Right: restricted two-stage handler
that generates random sampling code.

5.5 A Staged Symbolic Executor Is a Symbolic Compiler
With all the tools in place, we are able to connect everything and construct a symbolic execution

engine that generates code. The obtained staged symbolic execution engine acts as a compiler,

which, given an input program, outputs instrumented C++ code where the interpretation overhead

from the symbolic definitional interpreter and effect handling are eliminated.

We have turned a high-level definitional symbolic interpreter into a “symbolic compiler”, by

specializing it w.r.t. input programs, via the first Futamura projection [Futamura 1971, 1999].

6 FLEXIBLE PATH-SELECTION STRATEGIES VIA EFFECT HANDLERS
If a symbolic execution encounters a branching point, then the branching condition might depend

on symbolic information, leaving the resulting Boolean value indeterminate. A symbolic execution

engine then proceeds by choosing a branch according to a given path-selection strategy/heuristic.

For instance, KLEE [Cadar et al. 2008] supports depth-first, breadth-first, random path selection

strategies, etc. This section shows that our approach, based on effects and handlers, uniformly and

extensibly abstracts over these strategies, which are particular interpretations of a nondeterminism

effect. The handlers presented here apply to the choice (Figure 14, left) operation with first-stage

known candidates, as the branch statements are syntactic and static objects. The handler for the

choice operation with second-stage candidates (Figure 14, right) remains unchanged.

6.1 Random Path Sampling
One may also explore paths of nondeterministic computations by random selection at branches,

which is straightforward to implement with effect handlers. Figure 16 (left) shows the general

single-stage handler that uniformly selects one element from the candidates xs, i.e., only one path

will be executed. The selection is delegating to a real random source

uniformSample : List[𝐴] → 𝐴,

which invokes a system library implementing a fair random selection.

The probability that each element 𝑥 ∈ xs being selected is 1/|xs |. We shall still commit to resolve

the nondeterminism effect to a list of execution results, which can be convenient when performing

multiple times of sampling.

To integrating the random sampling handler with our staged symbolic interpreter, we have two

choices to move forward: 1) execute the sampling procedure in the first stage; the generated code

is determined by this choice; 2) execute the sampling procedure in the second stage; each time we

execute the generated code, we may have a different sampling result.

The former is obviously less useful, so we commit to the latter approach (Figure 16, right). The

handler clause for choice(xs, 𝑘) first defines a second-stage random number 𝑟 : Int, uniformly
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Fig. 17. Preprocessing step for fair random path selection in a loop-unrolled source program with three
branches, propagating branch counts along edges bottom up.

Explore = shallow_handler
return(𝑥) ↦→ { acc(sol, 𝑥); schedule() }

choice(𝑥𝑠, 𝑘) ↦→ { insert (ps, ks); schedule() }
where ks = map(𝑥𝑠, 𝜆𝑥 .𝜆().𝑘 (𝑥))

schedule() = { if (nonEmpty?(ps)) {𝑐 ← next(ps); Explore(𝑐)} else { return sol }}
Fig. 18. Single-stage generic nondeterminism handler for exhaustive path exploration.

sampled from the interval [0, |xs | − 1], and then uses an auxiliary function

buildSelection : Int→ List[𝑋 ] → (𝑋 → List[𝐴]) → List[𝐴]
to build a second-stage nested branching program using if , where the 𝑖-th branch corresponds to

the computation of applying continuation 𝑘 to the 𝑖-th element of xs.

6.2 Fair Random Path Sampling
We further generalize random search so that all possible paths starting at a given branch are chosen

with equal probability. This strategy requires counting the number of following branches at any

given branch, in order to compute the correct probability parameter for a biased coin flip. We

assume that the input program has a finite number of paths and a preprocessing step (e.g., [Zhang

et al. 2019]) attaches the number of paths to the AST. Figure 17 illustrates path counting on an

unbalanced binary AST.

We also extend the effect operation choice to pchoice, such that the probability information is

accompanied with each candidate:

pchoice : List[𝑋 × Float] → 𝑋 .

Then we can handle pchoice in the similar fashion of the uniformly random sampling, but using a

biased random sample function. The code snippet below shows the handler clause with a second-

stage sampling function biasedSample that additionally takes the weight of each candidate:

pchoice(xps, 𝑘) ↦→ { val 𝑟 = biasedSample(0 . . . |ps | − 1, ps); return buildSelection(𝑟, 𝑥𝑠, 𝑘) }
where ps is the list of probabilities and xs is the list of candidates, each projected from the xps list.

6.3 Depth- and Breadth-First Search
The nondeterminism handler in Section 3.4 implements an exhaustive exploration of all paths in a

depth-first manner. With a few generalizations, we obtain a handler (Explore in Figure 18) that is

variable in the search strategies and accumulation of explored results.

The handler is parametric over a data structure ps, which collects and selects branches of the

choice effect. Accordingly, insert, nonEmpty?, and next, are operations for inserting the branches

into ps, checking for its non-emptiness, and selecting the next unexplored branch from it. For
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instance, we obtain the depth-first exploration of paths by choosing a stack for ps, and the breadth-

first strategy by choosing a queue. Furthermore, it is parameterized over an additional collection sol
and an operation acc, for inserting the result of terminated paths into it. If all result values should

be returned, we can take the type of sol to be a list or a set.

Explore is a shallow handler [Hillerström and Lindley 2018]. The intuitive difference between

standard deep and shallow handlers is analogous to a complete fold over a tree (i.e., deep, Church

encoding) versus a single fold (i.e., shallow, Scott encoding). Shallowness is useful to implement

cooperative concurrency via handlers, because we can just store the continuations of the choice
effect as they are in the ps collection. Specialized variants of Explore have been used for implemen-

tations of asynchrony operations, and cooperative interleaving concurrency in the algebraic effects

literature [Bračevac et al. 2018; Dolan et al. 2017; Leijen 2017a].

Similar to the two-stage CoinHandler, it is appealing to generate code that makes the scheduling

happen at the second-stage execution. We sketch the two-stage version based on Figure 18: First, we

will have to transform the candidates 𝑥𝑠 to a second-stage list of thunks (functions) 𝑘𝑠 , where the

body of each thunk 𝑘 (𝑥) is a first-stage application yielding second-stage representations. Second,

it is necessary to have runtime support for the data collection 𝑝𝑠 , sol and operations insert, next,

etc. Finally, those operations and collections can store, retrieve, or invoke the thunks, all in the

second stage, which implement different scheduling schemes.

7 SCALING UP: FROM IMP TO LLVM IR
In the previous sections, we have presented our approach to building symbolic execution engines

for the Imp language, which is small but sufficient to show how algebraic effects and multi-stage

programming can improve the flexibility and performance. We now discuss extending our approach

to a real-world language: a subset of the LLVM IR language, for which we implemented a prototype

symbolic execution engine based on our approach.

We model a number of essential instructions, including br, ret, switch, unreachable, alloca,

store, load, getelementptr, icmp, sext, zext, call, phi, select, and a few arithmetics. These

instructions are sufficient to cover a large set of programs and many non-trivial language features,

e.g., dynamic allocation and memory indirection. We devote the remainder of this section to

necessary adaptations for new challenges.

Block-based Semantics and Jumps. LLVM IR features a block-based, static single assignment form.

Each block has a label and consists of a sequence of statements and a terminal statement. For

example, a terminal statement can be a direct jump or a conditional jump to other blocks (both

using the br instruction). Other forms of control flow transfers are function calls call and multiway

conditional jumps switch.

To effectively generate code for these control structures, we generate next-stage functions for

each LLVM function and its contained blocks. Jumps and function calls are translated to invocations

of the second-stage functions. However, if a jump target is dynamically computed, we must also

generate code that computes the target (i.e., the address to which to jump). Since the execution

of blocks are generated as functions, loops are straightforward to handle — as they are indirectly

translated into function calls representing jumps.

Memory. Compared to Imp, LLVM also has a fully-featured, machine-level, memory model,

which introduces a notion of pointers. A notion of global store is similar to what we have in

Imp. In addition, locally-used memory can be dynamically allocated using the alloca instruction.

The LLVM IR program can store values into locations, and load values from locations. Low level

memory layout details, such as alignments, are also introduced. To model this behavior in addition

to function calls, we use two contiguous regions of memory for representing the “heap” and “stack”
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respectively; they are carried by the state effect. Their second-stage representation in C++ is the

flex_vector data structure from Immer (cf. Section 5.4), which can be accessed using integer

indices. Meanwhile, locations are also values (i.e., pointers) that can be passed or returned. Our

prototype uses a concrete memory model, therefore it has to concretize the jump address if it is a

symbolic value.

Implementation. According to LLVM IR’s syntactic structure, we have the following top-level

functions, where the effect row E contains the state, nondeterminism, IO, and SMT effect.

def execTerm(inst: Terminator): Comp[E, Rep[Value]]

def execBlock(bb: BasicBlock): Comp[E, Rep[Value]]

def execInst(inst: Instruction): Comp[E, Rep[Unit]]

def execValueInst(inst: ValueInstruction): Comp[E, Rep[Value]]

def eval(v: LLVMExpr): Comp[E, Rep[Value]]

The function execTerm executes terminator instructions, whose result will be used as the value of

executing its containing block in execBlock. Instructions such as assign and store are handled by

execInst, whose return value in the free monad encoding is Rep[Unit], as those instructions only

perform side effects. Evaluating value instructions (such as load and arithmetics) and expressions

(such as constants) both yield Rep[Value] in the effect encoding, and is handled by execValueInst

and eval respectively. When implementing those functionalities, we are able to reuse the same

effects, handlers, as well as the reify/reflect function introduced in the previous sections.

The generated code of our prototype is again purely functional. States are passed among the

generated C++ functions, which represent the execution of LLVM blocks and functions.

8 PERFORMANCE EVALUATION
In this section, we present the performance evaluation brought by staging. We build the prototype

staged symbolic execution engine for a subset of LLVM IR, as described in the last section, and

compare the performance with the unstaged baseline (Scala) and KLEE [Cadar et al. 2008], which are

both interpretation-based engines. We aim to answer the following two questions on performance:

(1) Compared with a high-level definitional symbolic interpreter written with algebraic effects in

Scala, how much performance improvement can be brought by eliminating the interpretation

and effect handling overhead? To answer this question, we measure the path traversal time

of the unstaged version and staged version.

(2) Compared with a state-of-the-art symbolic interpreter written in C++, KLEE, how is the

performance of our prototype build upon our staging and algebraic effect approach? To

answer this question, we use micro benchmarks which involves building SMT expressions

and solver invocations. Our prototype and KLEE both use the STP
4
solver and query the

solver for generating concrete inputs.

Environment. We run all the experiments on Ubuntu 20.04 (kernel 5.4.0), with an 8-core AMD

3700X CPU and 32GB RAM. We compile the C++ programs generated by our prototype together

with Immer using g++ version 9.3.0, with compilation option -std=c++17 -O3. The benchmarks and

input to the symbolic execution engines are LLVM IR programs. The LLVM IR files are generated

by clang 5
from C programs. Running times of Scala code are measured by recording the time of

function-level executions. Running times of executables are measured by the time command. For

all experiments, we set the timeout for 1 hour execution.

4
https://stp.github.io/

5
clang version 10.0.0; LLVM IR generated with -O0 -S -fno-discard-value-names -emit-llvm
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Table 1. Description of the benchmarks, including the number of static instructions (#inst, excluding invoca-
tions of klee_make_symbolic), the number of total executed instructions (#exec inst), the number of paths
(#path), and a list of used instructions in the program.

name #inst #exec inst #path IR instructions and features used
multipath-1 146 29733 1024 (2

10
) alloca, store, load, br, icmp, add, ret

multipath-2 230 2687035 65536 (2
16
) same as above

multipath-3 285 51380299 1048576 (2
20
) same as above

maze 156 65210 309 above + sext, call, getelementptr, switch, array

Table 2. Running time of the multi-path benchmarks. 1) “unstaged” reports pure execution time of the
definitional symbolic interpreter written in Scala, which accumulates path conditions but will not invoke
external solvers. 2) “KLEE” reports the running time of KLEE (ver. 2.1) with -max-memory=100000. 3) “staged”
reports the running time of generated C++ programs, staged from our prototype. Both KLEE and staged code
invokes STP for generating one input. The staging time (i.e., specialization time) and the size of generated
programs are also reported.

benchmark unstaged (Scala) KLEE staged (C++) staging time generated LOC
multipath-1 0.58 s 0.087 s 0.055 s 0.9 s 1741

multipath-2 63.37 s 10.41 s 4.80 s 1.67 s 2731

multipath-3 timeout 350.35 s 96.26 s 2.08 s 3391

Benchmarks. Table 1 shows the description of the benchmarks we used. The multipath-* series

of benchmarks are made to be small but have exponential number of paths, involving basic memory

operations, branching, and simple arithmetic instructions. For a benchmark with 2
𝑛
paths, the

number of symbolic variables in this benchmark is𝑛. We also collect a program maze found in a KLEE

tutorial [Manzano 2010], which further exhibits more involved instructions (e.g. getelementptr)

and data structures (e.g. arrays). All execution engines are expected to exhaustively explore every

path in the space.

Evaluation Question 1. Table 2 shows the running time of the high-level definitional symbolic

interpreter (unstaged) and the generated programs (staged). We additionally report the staging

time spent on specialization and the line of numbers of generated C++ programs. We can observe

that 1) the staging time is relatively small, proportional to the number of instructions. Compared

with the actual execution time, staging time can be negligible when the search space becomes

larger. 2) The size of the generated code (generated LOC in Table 2) is also proportional to the

number of instructions. 3) The running time of staged programs (i.e., the running time of the

second stage) significantly outperforms their unstaged counterparts. From the preliminary result,

we may conclude that staging can bring 10~30x running time improvement. As the number of

paths increases, we can expect the ratio of performance improvement also increases. Note that the

unstaged interpreter does not invoke SMT solvers, but the staged one invokes STP for generating

one test case. Thus, the performance gap in fact is even greater.

Evaluation Question 2. The results are also shown in Table 2. Both KLEE and our generated code

invokes STP for querying one test case on multipath-*. In addition, we evaluate an end-to-end

symbolic execution on maze, in the sense that both KLEE and our prototype not only explores every

path, but also invokes STP for generating inputs of every reachable path. KLEE finishes 309 paths

in 0.27 seconds, and our generated code finished the same number of paths in 0.14 seconds.

We still observe that our staged tool outperforms KLEE, approximately 2~3x faster. We expect

that the performance of our prototype can be further improved, by 1) using low-level data structures

to represent the program states at runtime, instead of using functional data structures, 2) utilizing

the LMS framework to perform staging-time optimizations and generating smaller programs.
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9 RELATEDWORK
Symbolic Execution. Originally proposed in the 1970s [Boyer et al. 1975; Howden 1977; King 1976],

symbolic execution is widely used for program testing and debugging. Overviews and extensive

surveys of modern symbolic execution can be found in Baldoni et al. [2018]; Cadar and Sen [2013];

Yang et al. [2019]. The symbolic execution technique considered in this paper is forward symbolic

execution; Schwartz et al. [2010] discussed this technique in a security context, using a compact

low-level intermediate language, and presented a formalization of forward symbolic execution

in small-step operational semantics. That work also discusses existing challenges of symbolic

execution and potential mitigations.

Widely used symbolic execution engines are mostly interpretation-based [Anand et al. 2007;

Cadar et al. 2008; Păsăreanu and Rungta 2010] or instrumentation-based [Burnim 2014; Cadar et al.

2006]. Commonly, assembly- or binary-level symbolic execution engines are implemented based on

instrumentation [Luk et al. 2005]. Nelson et al. [2019] used the Rosette DSL [Torlak and Bodik 2014]

to build symbolic interpreters and verifiers for low-level languages and ISAs, including RISC-V,

LLVM, and x86-32. Very recently, SymCC uses LLVM’s infrastructure to instrument LLVM IR and

generate binary code that performs symbolic execution [Poeplau and Francillon 2020], obtaining a

compiler for symbolic execution. However, SymCC’s approach is substantially different from this

paper in several aspects: 1) SymCC does not use the Futamura projection, i.e., deriving compilers

by specializing interpreters. It is implemented as an LLVM pass, which is closer to a traditional

instrumentation-based approach. 2) The generated code by SymCC performs single-path concolic

execution and does not involve nondeterministic execution or path selection strategies.

In a functional programming context, Mensing et al. [2019] described an approach that derives

symbolic execution engines from definitional interpreters. Similar to our implementation, the

definitional interpreter is written with free monads. But Mensing et al. [2019]’s symbolic execution

engine does not use an external SMT solver; instead, a tiny reasoning engine in the fashion of

miniKanren [Byrd et al. 2017; Friedman et al. 2018] is embedded. Therefore, the symbolic executor

can be used to generate test cases, albeit its scalability is limited. Darais et al. [2017] derived a King-

style symbolic executor from a big-step monadic abstract interpreter, notably with a termination

guarantee. Higher-order symbolic execution has been applied to contract verification [Nguyen et al.

2018, 2014]. Targeting modern dynamic and interpretation-based languages such as Python and

Lua, Bucur et al. [2014] proposed to leverage the existing interpreter as the semantic specification

and turn it into a symbolic execution engine by instrumenting the interpreter itself.

Our staging technique is conceptually similar to, but should not be confused with, Siddiqui and

Khurshid [2012]’s staged symbolic execution, where the first stage generates abstract symbolic

inputs that will be shared and used across other methods in later stages. This paper instead leverages

metaprogramming techniques such as MSP [Taha and Sheard 1997] and runtime code generation.

Effects in Functional Programming. Using monads to uniformly structure the denotational seman-

tics of computational effects was pioneered by Moggi [1991]. Shortly after that, monads became

popular as a programming abstraction in functional languages, representing effects in an immutable,

referentially transparent manner [Peyton Jones and Wadler 1993; Wadler 1992]. The predominant

approach to composing multiple effects is monad transformers [Liang et al. 1995; Steele 1994],

which, however do not compose as well as algebraic effects and handlers [Kammar et al. 2013].

Resolving their composability issues is an active area of research.

Algebraic effects stem from Plotkin and Power [2003] investigating the equational laws behind

specific monadic effects, eventually leading Plotkin and Pretnar [2013] to propose effect handlers

as modular denotations for effect algebras. A similar but slightly less modular approach appeared

in [Cartwright and Felleisen 1994], which delegates effects to a monolithic, central authority. There
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are plenty of new language implementations of algebraic effects and handlers [Chandrasekaran

et al. 2018], due to its convenience for defining and interpreting effects.

Besides modeling the semantics of (imperative) languages, monads are used to formalize and

understand non-standard semantics such as abstract interpretation [Sergey et al. 2013] and query

languages [Breazu-Tannen et al. 1992]. We argue that symbolic execution should not be an exception.

Program Specialization. The idea of program specialization can be traced back to Kleene’s 𝑆𝑚𝑛
theorem [Kleene 1938]. Futamura [1971] introduced a hierarchy of specializations of self-interpreters

for automatically deriving compilers and compiler generators, known as the Futamura projections

[Futamura 1971, 1999]. The two-level binding-time notation and the two-level 𝜆-calculus are due to

[Nielson 1989; Nielson and Nielson 1988, 1992]. Partial evaluation [Jones et al. 1993] and multi-stage

programming (MSP) [Taha 1999; Taha and Sheard 1997] are two related realizations to achieve

program specialization systematically: the former relies on automatic binding-time separation

(online or as an offline analysis), while the latter allows programmers to control which part of

the program should be specialized using explicit annotations. The classical approach of MSP uses

syntactic quotations and splices and has been widely adopted in functional languages, including Lisp

and Scheme [Bawden 1999], MetaML [Taha and Sheard 2000], F#, MetaOCaml [Calcagno et al. 2003;

Kiselyov 2014], Template Haskell [Sheard and Jones 2002], as well as Dotty [Stucki et al. 2018]. This

paper uses Lightweight Modular Staging (LMS) [Rompf and Odersky 2010], a Scala library providing

type-based stage annotations and evaluation-order preserving specialization [Rompf 2016]. Due

to LMS’s flexible IR design, we can use different back-ends to achieve heterogeneous staging, i.e.,

generate programs in languages other than the metalanguage. A survey of metaprogramming

languages can be found in [Lilis and Savidis 2019].

Multi-stage programming has shown success in several performance-critical scenarios [Rompf

et al. 2015], such as query compilation in databases [Essertel et al. 2018; Klonatos et al. 2014;

Rompf and Amin 2015; Tahboub et al. 2018; Tahboub and Rompf 2020; Tahboub et al. 2019], stencil

and matrix computation in HPC [Aktemur et al. 2013; Kiselyov 2018; Ofenbeck et al. 2013], etc.

Metaprogramming and generative programming have been applied to build and optimize program

analyzers [Torlak and Bodik 2014], abstract interpreters in particular [Boucher and Feeley 1996;

Johnson et al. 2013; Wei et al. 2019, 2018], as well as to program verification [Amin and Rompf

2017].

10 CONCLUSION
The paper proposes the use of algebraic effects and program specialization techniques to derive

flexible and efficient symbolic execution engines. Algebraic effects model aspects of the symbolic

execution semantics as an effectful definitional interpreter, and handlers can be plugged in to

implement various different execution strategies. Guided by the two-stage binding-time annotations,

the symbolic interpreter is turned to a symbolic compiler that reliably eliminates the interpretation

overhead and abstraction layers introduced for flexibility.
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