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Abstract—Symbolic execution is a powerful program analysis
and testing technique. Symbolic execution engines are usually
implemented as interpreters, and the induced interpretation over-
head can dramatically inhibit performance. Alternatively, imple-
mentation choices based on instrumentation provide a limited
ability to transform programs. However, the use of compilation
and code generation techniques beyond simple instrumentation
remains underexplored for engine construction, leaving potential
performance gains untapped.

In this paper, we show how to tap some of these gains using
sophisticated compilation techniques: We present GENSYM, an
optimizing symbolic-execution compiler that generates symbolic
code which explores paths and generates tests in parallel.
The key insight of GENSYM is to compile symbolic execution
tasks into cooperative concurrency via continuation-passing style,
which further enables efficient parallelism. The design and
implementation of GENSYM is based on partial evaluation and
generative programming techniques, which make it high-level
and performant at the same time. We compare the performance
of GENSYM against the prior symbolic-execution compiler LLSC
and the state-of-the-art symbolic interpreter KLEE. The results
show an average 4.6× speedup for sequential execution and 9.4×
speedup for parallel execution on 20 benchmark programs.

Index Terms—symbolic execution, compiler, code generation,
metaprogramming, continuation

I. INTRODUCTION

Symbolic execution (SE for short) [1]–[4] is a popular

program analysis technique which is effective at test-suite

generation and bug finding. The key idea is to use symbolic

values to represent unknown runtime inputs of programs.

By collecting path constraints imposed on symbolic values,

we obtain logical constraints describing inputs that trigger

certain program behaviors. Modern SE was made practical

by improvements in constraint solving (e.g., SMT [5]) and

techniques to combine concrete and symbolic execution, such

as execution-generated testing [6] and concolic execution [7],

[8]. However, SE still faces challenges at scale, such as path

explosion and environment modeling issues [9], [10].

A well-studied avenue to improve the performance of SE

is semantics-preserving program transformations [11]–[13]

applied before passing programs to an SE engine. However,

the execution mechanism behind most SE engines leaves

further optimization opportunities untapped. They work as

symbolic interpreters of source programs, in contrast to how

performance-critical tools are commonly implemented, i.e.,

† Work done at Purdue University.

as compilers. This practice misses opportunities to further

improve the performance of SE and advance the development

of engines.
In this paper, we study constructing scalable SE engines

using code generation and compiler techniques. We present

the design, implementation, and evaluation of GENSYM, a

symbolic-execution compiler for the LLVM intermediate rep-

resentation (IR). Given an input LLVM IR program, GENSYM

generates C++ code that schedules parallel path exploration

and orchestrates SMT solver invocations. Running this C++

program generates test cases for explored paths and failed as-

sertions. The novel contribution of GENSYM is its aggressive

use of code generation techniques for a systematic, principled,
and high-level construction process yielding optimized and

performant symbolic execution engines.

From Interpreters to Compilers. Interpreters are an easy

and high-level approach for building symbolic execution en-

gines. However, a naively built interpreter without carefully

engineered optimizations can be orders of magnitude slower

than a compiled program. One of the major contributors to the

slowdown is the interpretation overhead [14] from inspecting

and dispatching on the program representation. This overhead

is absent in compiled programs.
Nevertheless, building a compiler from scratch is difficult,

error prone, and perhaps not economic in many cases. The

fact that SE induces a non-standard language semantics adds

to the challenges of compiler construction from scratch.
We adopt recent approaches developed for compiled

domain-specific languages (DSLs) [15]–[19], which greatly

simplify developing SE compilers by making use of higher-

level programming abstractions [20]. The language with its

symbolic semantics is understood as a DSL, which can be

realized as a symbolic interpreter. To compile this DSL, we

exploit Futamura’s observation from the 1970s [21], [22]

which states that interpretation and compilation are funda-

mentally connected. In essence, GENSYM is about partially

evaluating [14] (i.e., specializing) a symbolic interpreter given

an input program. The result of partial evaluation is a faster

program that is equivalent to running the input program under

the interpreter. Therefore, partially evaluating interpreters is

equivalent to compilation (a.k.a. the first Futamura projection).
Building on this foundation and modern code generation

techniques, the development effort for the GENSYM com-

piler is as lightweight as developing an ordinary high-level
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(symbolic) interpreter for a programming language. At the

same time, GENSYM exhibits the efficiency and performance

of compilation, since it completely eliminates interpretation

overhead in the generated code: there is no residual syntactic

component (e.g., AST or IR) of source programs left at

runtime, and inspection/dispatch on source program represen-

tations is entirely absent.

Beyond Concolic Semantics and Instrumentation. Al-

though several recent works (e.g., [23], [24]) have advocated

compilation-based symbolic execution, they compile concolic
semantics, where only a single symbolic path is guided by

concrete inputs. Moreover, the approach to compilation in

these works is using commodity compiler frameworks (e.g.,
LLVM) to instrument code at the IR level, and then generate

executables with existing compilation pipelines.

This “instrumentation-by-compilation” approach works well

for single-path concolic execution, but cannot effectively scale

to multipath symbolic execution with sophisticated search

strategies, which requires generating non-trivial code that ex-

plores multiple paths with no interference. The key challenge

is to represent program states (e.g., the heap) and control struc-

tures (e.g., branching) so that we can manipulate and transform

them conforming to some multi-path symbolic semantics (e.g.,
pausing/resuming execution of paths).

GENSYM tackles this challenge by generating code in

continuation-passing style (CPS) [25], a widely used compiler

IR in functional languages [26]–[30]. CPS represents control

flow explicitly as first-class entities that can be stored in

data structures, permitting suspension and resumption of path

execution. After a path is executed for a while, its execution

proactively yields the control to a scheduler, which selects the

next interesting path to explore (e.g., guided by a heuristic).

This is essentially a form of cooperative concurrency.
Scheduling Parallel Execution. The nature of symbolic

semantics makes it suitable for parallelization, since little

communication is needed between paths. However, running

interpreters in parallel is not optimal, since the interpretation

overhead is observed repeatedly for each interpreter instance.

Compiling to cooperative multitasking with continuations

not only eliminates the interpretation overhead, but also un-

locks parallelism using multicore CPUs (Section IV) with little

memory and context-switching overhead. Once the scheduler

regains control, it dispatches paths to workers that run in

parallel from a fixed-sized thread pool of OS threads.

Prior work on LLSC [31] also generates parallel SE code.

Without using CPS, it however lacks fine-grained manipulation

of control structures, and thus uses C++’s asynchrony prim-

itives with limited scalability. To the best of our knowledge,

GENSYM is the first tool that achieves performant parallel SE

using continuations and cooperative concurrency.

Generating Optimized Code. Previous works have shown

that compiler optimizations over source programs (e.g., CFG

simplification) can significantly alter the performance of sym-

bolic execution over these programs [11]–[13].

Orthogonal to source code optimizations, GENSYM gen-

erates code optimized for the symbolic execution process

itself (instead of input programs) preserving the symbolic

semantics (Section V). These optimizations eliminate unnec-

essary computation recurring in interpreters and are tailored

for LLVM’s symbolic semantics, leading to smaller and faster

generated SE. GENSYM can also perform optimizations to

reduce unnecessary forks, e.g., merging cases of identical jump

targets when compiling switch instructions.

Interpreters could deploy similar optimizations on-the-fly,

but at the cost of frequently inspecting program representations

or maintaining additional runtime data structures. GENSYM

only needs to pay this overhead once at compile time.

Generative Environment Modeling. Real-world programs

need to interact with their environment, e.g., invoking syscalls

or library functions, for which SE must account. The usual

approach is manually building SE models of external functions

[32], [33]. This is an error-prone and labor-intensive task,

which is highly dependent on engine-specific APIs.

GENSYM simplifies model development by using generative

programming [15], [17]. Instead of writing models against

limited engine APIs in the same language as input programs,

we develop models at the meta level, i.e., in the same language

(and DSL) used to develop our SE compiler. These meta-

models describes the symbolic behavior of syscalls in a con-

cise way by using representations of symbolic values, states,

and control. Meta-models will be translated to executable code

that can be linked with the input program being analyzed. As a

prototype, we have developed a symbolic model of the POSIX

file system (Section VI).

Evaluation. We first validate the core correctness of GENSYM

by examining the tests/paths found by GENSYM on six finite-

path programs against KLEE [32], the de facto standard SE

engine for LLVM IR written as an interpreter. Experiments

show consistent results in all terminating benchmarks.

We evaluate the performance at scale using 14 Coreutils [34]

programs involving a standard C library with file system

interactions. Our evaluation demonstrates speedups obtained

from the synergy of compilation, compile-time optimizations,

and parallelism: we observe an average 4.6× speedup of

execution time (excluding solver time) compared to KLEE,

and speedups up to 9.4× when using 12 threads in parallel.

Finally, we evaluate the effectiveness of compile-time opti-

mizations and the overhead of compilation, showing that our

approach can yield net gains in total running time for non-

trivial SE tasks.

Contributions.

• We articulate the specification and discuss design consid-

erations of symbolic-execution compilers (Section II).

• We propose to compile SE with continuations and de-

velop GENSYM (Section III) based on partial evaluation.

GENSYM is the first SE engine featuring efficient par-

allel execution (Section IV), optimizations for symbolic

semantics (Section V), and executable file system models

(Section VI) all via code generation.
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• We show promising performance speedups on 20 realistic

programs by empirically evaluating and comparing GEN-

SYM with LLSC and KLEE (Section VII).

We discuss related work and conclude in Sections VIII and IX.

Availability. GENSYM is publicly available,1 including the

implementation and benchmarks to reproduce the evaluation.

II. DESIGN SPACE AND CONSIDERATIONS

A. Semantics First

Let us first articulate what is a symbolic-execution compiler

in the general sense, starting from programming language

semantics. For the source language S, we define the concrete
semantics of S as a collecting trace semantics �·�S [35].

A trace t ∈ �p�S is a sequence of states from a concrete

execution instance of the program p.

Symbolic Semantics. Let �·�#S be the multi-path symbolic col-

lecting semantics that introduces symbolic values and records

path conditions for the source language. Such semantics can be

precisely and concisely defined, for example, by an evaluation

function [20] or a small-step state-transition relation [36], lead-

ing to straightforward interpretation-based implementations.

A symbolic semantics usually entails the concrete semantics,

since it needs to perform concrete computation as well.

The symbolic semantics extensionally specifies the set of

symbolic paths of a program. A symbolic path π is a trace

that may contain symbolic states and values. A symbolic path

can be concretized to a set of concrete traces. The symbolic

semantics is sound if all possible concrete traces t are captured

by some symbolic paths from the symbolic semantics:

∀t ∈ �p�S , ∃π ∈ �p�#S s.t. t ∈ concretize(π).

where concretize(π) materializes π to a set of traces, which

in practice is performed with the help of SMT solvers [5].

The symbolic semantics is complete if all symbolic paths

correspond to some concrete execution:

∀π ∈ �p�#S , concretize(π) ⊆ �p�S .

Although the concern of whether �·�#S faithfully models �·�S
is important, it is orthogonal to compilation.

Symbolic-Execution Compiler. A symbolic-execution com-

piler (or SE compiler) C converts a program p ∈ S to another

program C(p) ∈ T in language T such that the result of

running C(p) coincides with the symbolic semantics of S. In
other words, assuming we have a concrete evaluator evalT for

T , the paths produced by running the generated program, i.e.
evalT (C(p)), are equivalent to the paths defined by �p�#S :

evalT (C(p)) � �p�#S .

Under the assumption that the symbolic semantics is sound

and complete, we can also characterize the specification of a

SE compiler in terms of the concrete semantics of S and T :

∀t ∈ �p�S , ∃π ∈ evalT (C(p)), t ∈ concretize(π) (soundness)
∀π ∈ evalT (C(p)), concretize(π) ⊆ �p�S (completeness)

1https://continuation.passing.style/GenSym

x = user_input()
if (x > 42) {

y = x + 10
} else {

y = x - 5
}

pc0 = Set[Constraint]() // init. path constr.
st0 = Map[String, SymValue]() // init. state
st0["x"] = make_symbolic("x")
pc1 = pc0.fork(); st1 = st0.fork() // fork
pc0.add(sym_gt(st0["x"], 42))

st0["y"] = sym_plus(st0["x"], 10)

pc1.add(sym_leq(st1["x"], 42))

st1["y"] = sym_minus(st1["x"], 5)

Fig. 1: An example source program (left), and its compiled

SE code with deep embedding (right, assuming both paths are

feasible). There are two paths {x > 42} and {x ≤ 42}. The
compiled program collects these paths in pc0 and pc1.

In this sense, “instrumentation-by-compilation” for concolic

execution [23], [24] can be considered a special case where

we track only one symbolic path in each run, plus the source

and the target languages are the same. This paper focuses on

the more general case.

B. All About Representations

When designing SE compilers, we must decide how to

represent the constructs (e.g., concrete and symbolic values,

states, control) of the source symbolic semantics in the target

language. This is the central challenge of SE compilers, due

to the discrepancy between the symbolic source and non-

symbolic target semantics.

Deep vs. Shallow Embedding. We argue that a useful

perspective to view this issue is through the lens of DSL

embeddings [19], [37], [38], i.e., how we represent one

language in the host/target language. Such embeddings can

be categorized into “deep” or “shallow”. A deep embedding

uses data structures in T to represent the semantic constructs

of S; in contrast, a shallow embedding directly uses the

semantics of T to encode the desired semantics of S. Deep

embedding is useful as it provides explicit representations

that can be inspected and transformed, at the cost of another

layer of indirection. Shallow embeddings, on the other hand,

usually provide better performance due to the avoidance of

indirections, but have limited expressiveness.

Values. Primitive concrete values of a source language are

straightforwardly represented in shallow embeddings. How-

ever, since the target language usually does not have native

symbolic values, we have to deeply embed symbolic values

and expressions via data structures (i.e., abstract syntax trees)

compatible with external SMT solver APIs.

States. Symbolic execution attempts to explore multiple feasi-

ble paths independently when branch conditions involve sym-

bolic values. Thus, it is convenient to use a deep representation

of program states, which are forkable.

Figure 1 shows a simplified example that compiles a branch-

ing code snippet into a deep embedding of explicit represen-

tations for states and path constraints. Program variables are

deeply embedded in the sense that they translate to strings

which are the keys of a map data structure assigning symbolic

values to each variable (e.g., st0 and st1).

Deep embeddings of states are convenient, but forkable

shallow embeddings are also possible and work with the target
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Fig. 2: GENSYM’s components and workflow. The POSIX

Model and uClibc are adapted from KLEE [32].

language’s program variables/states. For instance, EXE [39]

uses the fork syscall in instrumented programs. However, it

makes search or state-merging heuristics hard to implement,

since there is little control over forks and no direct manipula-

tion of states.

Control. Implementing searches is simpler with an explicit

representation of control in symbolic programs. The simple

branching program shown in Figure 1 generates a hard-coded

program to explore both branches, assuming they are both

feasible. However, considering richer control structures in a

low-level IR, every control transfer (branch, jump, and call)

could yield multiple states and paths, and we cannot decide

path feasibility at compile-time in general. How should we

express such nondeterminism in compiled programs?

A simple but “deep” solution is to reify all possible states/-

paths into a list and explicitly return the list to the caller (as

LLSC [31] does). Nevertheless, this can be very expensive

when the number of paths explodes. Instead, GENSYM models

nondeterminism “less deeply” by particular uses of continu-
ations which abstract over the rest of the execution. To this

end, GENSYM transforms programs into continuation-passing

style (cf. Section III-C), where continuations are explicitly

represented as function values in the target language.

Supporting Heuristics. Search heuristics, although being ad-

hoc in nature, are an important ingredient of modern SE. Rep-

resentations also determine which kinds of search heuristics

can be used in the generated code. Scheduling with heuristics

often requires pausing or resuming the execution of interesting

paths. It pays off to have explicit continuations, since they

enable arbitrary control-flow manipulations, and thus provide

a general framework for arbitrary heuristics and scheduling

policies.

III. GENSYM: DESIGN AND IMPLEMENTATION

A. Workflow

GENSYM is a compiler that translates LLVM IR programs

into C++ programs that perform symbolic execution. Figure 2

shows its overall workflow and components:

• The core at the front end is a symbolic interpreter that can be

specialized (i.e., partially evaluated) with respect to a parsed

LLVM IR program. The specialization constructs the CPS

representation of the compiled program.

• The CPS-IR program will be further simplified and opti-

mized, and afterwards a C++ program is generated from it.

• The generated C++ program is then compiled and linked

with GENSYM’s backend. Optionally, it can be linked with

precompiled symbolic libraries (e.g., uClibc [40]).

• Running the final executable generates test cases, which can

be further used to measure the real coverage (e.g., by gcov).

GENSYM only uses LLVM IR as input and is independent

of the LLVM toolchain. While we focus on LLVM IR,

the techniques presented here also apply to other languages,

including those with structured control statements [20].

B. Compilation by Specialization

Since GENSYM implements compilation by partial evalua-

tion [14], we review the first Futamura projection [21], [22],

a fundamental connection between interpreters and compilers.

Partial Evaluation. Let p(_,_) be an interpreter with two

inputs, s the program representation and d the program’s input.

Executing the interpreter yields the value of program s with

input d, i.e., p(s, d) = v.

Interpreter specialization means dividing the execution of

p into two stages, according to the availability of inputs or

frequency of execution [41], e.g., the program s becomes static

input at compile time and d dynamic input at run time.

A program specializer spec can take p and s as input and

produce a residual program target that has eliminated p’s

static computation over s, i.e., target = spec(p, s). The first

Futamura projection states that running the target program

with d yields the same result as running p with both s

and d, i.e., target(d) = p(s, d). We also say p is partially
evaluated, as only the first argument s is provided.

Futamura [21], [22] discovered that specializing p w.r.t. s

is equivalent to compilation. This theoretical result is also an

effective and practical way to “derive” a compiler from an

interpreter (e.g., [42]–[45]).
Our Approach. GENSYM realizes Futamura’s first projection

without using a dedicated general specializer spec. Instead,

the symbolic interpreter at its core is lightly annotated with

stages at the type level [46], [47]. The stage annotations are

understood by the Lightweight Modular Staging (LMS) [15]

framework, which specializes the staged symbolic interpreter

with program s and constructs the CPS representation. To get

an idea of LMS’s stage annotations, consider the following

staged power function computing bx in Scala:

def power(b: Rep[Int], x: Int): Rep[Int] =
if (x == 0) 1 else b * power(b, x - 1)

The stage annotation Rep[T] is used as the type of b and the

result. It indicates that the current-stage value of Rep[T] is a

representation of a next-stage T value. Moreover, the function

body requires no changes whatsoever, making this approach

to staging lightweight. LMS can specialize power given a

statically known value for x, e.g., when x = 3 we have the

following generated program:
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def power3(b: Int): Int = b * b * b

This design allows us to express the symbolic semantics of

LLVM IR in the form of a staged interpreter [20], a high-level

and easy-to-understand artifact, and then automatically obtain

a compiler that produces efficient and performant code. The

program IR is statically known, thus not marked with Rep type

in the interpreter, whereas the program states (i.e., memory,

PC, etc.) are represented for future manipulation.

C. Compiling Symbolic Semantics of LLVM IR

The essence of GENSYM compilation is to transform source

programs to CPS with symbolic semantics by specializing

the staged symbolic interpreter that operates on an explicit

representation of program state (stack/heap) and control (con-

tinuations) [48].

Compiling Values. LLVM’s concrete values are integers

and floating-point numbers, which compile to corresponding

C++ values. We also introduce symbolic values depending

on supported theories of the solver, and model symbolic

integers using fixed-size bitvectors. Nevertheless, richer solver-

supported datatypes can be readily added. Primitive operations

(e.g., arithmetic) translate to back-end operations that work for

both concrete and symbolic values.

Compiling States. During compilation, GENSYM makes pro-

gram states explicit so that every effectful LLVM instruction

operates on a state. An important aspect of states is they can

be forked, and thus our state representation is deep, i.e., by

using data structures in the target language.

For example, an LLVM assignment instruction to a local

variable is directly translated to a C++ method call on the

current state s:
z = add i32 42 y → s.assign("z", IntV(42) + s.lookup("y"))

Local variables mentioned in this instruction are translated to

a lookup. In Section V, we discuss how to eliminate redundant

assignments and lookups. Memory operations such as store

and load compile analogously:
store i32 z, i32* ptr → s.store(s.lookup("ptr"), s.lookup("z"))

a = load i32, i32* ptr → s.assign("a", s.load(s.lookup("ptr")))

GENSYM’s runtime implements several state operations to

manipulate the stack, heap, and local frames. The interfaces

of these operations are exposed to the symbolic interpreter for

representing and generating code.

Compiling Control. Now we discuss why CPS is the key in

compiling SE. Consider the following LLVM call instruction.
ret = call i32 f(...)

n = ... ; some computation using ret

During symbolic execution, function f could explore an ar-

bitrary number of paths internally. Thus, each of these paths

yields its own return value bound to ret, and each value is used

by an independent instantiation of the rest of the computation

after the call to f, i.e., the program’s continuation.
We make the continuation explicit via the CPS translation

that reifies it into a first-class function, which takes an ar-

gument representing the return value of f. We transform the

function call site to take the continuation as an argument, i.e.,
f(..., k). The function body of f will be transformed as well:

1 /* C source */

2 int power(int x, int n) { if (n == 0) return 1; return x * power(x, n-1); }

3 /* LLVM IR */

4 define i32 @power(i32 x, i32 n) {

5 b0: cmp = icmp eq i32 n, 0

6 br i1 cmp, label b2, label b1

7 b1: subv = sub i32 n, 1

8 retv = call i32 @power(i32 x, i32 subv)

9 mulv = mul i32 x, retv

10 br label b2

11 b2: r = phi i32 [mulv, b1], [1, b0]

12 ret i32 r

13 }

14 /* GenSym’s generated code; S/V are runtime state/value type */

15 using Cont = function<void(S, V)>; // the continuation type

16 void power_b0(S s, List[V] args, Cont k) { // compiled block ‘b0‘

17 s.assign_seq(List("x", "n"), args);

18 V cmp = args[1] == IntV(0L, 32);

19 s.set_cur_block("b0"); // record the current block (for phi node)

20 if (cmp.is_conc()) { // concrete branch condition

21 if (cmp.value() == 1) power_b1(s, k); // jump to block ‘b1‘

22 else power_b2(s, k); // jump to block ‘b2‘

23 } else { // symbolic branch condition

24 // yield the control to scheduler and add two new tasks to schedule

25 schedule(task(s, cmp, power_b2, k), task(s.fork(), !cmp, power_b1, k));

26 }

27 }

28 void power_b1(S s0, Cont k) { // compiled block ‘b1‘

29 V subv = s0.lookup("n") - IntV(1, 32);

30 List[V] args = List(s0.lookup("x"), subv);

31 // recursively call ‘power‘ with a new continuation

32 power_b0(s0, args, [=](S s1, V retv) {

33 s1.assign("mulv", retv * s1.lookup("x"));

34 s1.set_cur_block("b1");

35 power_b2(s1, k);

36 });

37 }

38 void power_b2(S s, Cont k) { // compiled block ‘b2‘

39 V r = s.last_block() == "b1" ? s.lookup("mulv") : IntV(1L, 32);

40 k(s, r);

41 }

Fig. 3: The C, LLVM IR, and GENSYM’s (simplified) gener-

ated code for the recursive power function.

instead of directly “returning” some value from f, we invoke

the continuation k(v) where v is that returned value. Therefore,

if there are multiple returning paths, they each invoke the same

continuation with their own results.

In addition, each continuation in GENSYM takes a state as

an argument, so that each execution path has its own fork of

the (deeply embedded) symbolic program state. This ensures

that invoking the same continuation multiple times has no

unintended side effects.

A Concrete Example. Figure 3 shows the power function

as (1) C source code, (2) its LLVM IR form (the input to

GENSYM), and (3) the symbolic code produced by GENSYM.

There are 3 blocks in the power function (b0, b1, and b2) and

we compile each of them to a C++ function in the generated

code. The compiled function for the entry block b0 takes a

state, a list of argument values, and a continuation. Non-entry

block functions only take a state and a continuation. Contin-

uations are represented by the type function<void(S, V)> in

C++ (line 15) taking a state and a value.

Basic LLVM control instructions compile straightforwardly:

• Direct jumps between blocks become function calls with

the current state and continuation.

• Branches are compiled to first perform a concreteness

check (line 20) of the condition. If it is concrete (line 21-

22), we deterministically execute one branch depending
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on the concrete value; otherwise, we yield control to the

scheduler (line 25) and let it decide which path to explore.

We pack the continuation k into tasks, indicating the two

forked paths sharing the same remaining computation. A

naive scheduler can be realized by executing the two tasks

in order (i.e., DFS search). In Section IV, we discuss how

scheduling works with parallelism.

To explain function-call compilation, consider the recursive

call of power at line 8. In its compiled code (line 32-36),

the continuation is an anonymous function prepared by the

caller and passed into the callee (line 32). The continuation’s

argument retv represents the returned value from the call.

Thus, in the body of the continuation (line 33-35), we use

retv to continue the computation after the callee returns.

At the end of the continuation, we transfer control to block

b2 with the outer-level continuation k, chaining the rest of

the computation. Since continuations are callable first-class

objects, the callee (i.e., block_b0) can directly call it multiple

times (i.e., return multiple values) or store it into the scheduler

for later invocation, as shown in this example.

The LLVM ret instruction is compiled to invoking the cur-

rent continuation with the returned value (e.g., in block b2, line

40). The compiled code also maintains some meta information,

e.g., the currently executing block (set_cur_block, which is

used to resolve phi instructions) and coverage information (not

shown in Figure 3 for brevity).

D. Implementation

GENSYM supports most of the common LLVM instructions

and symbolic operations for integers. GENSYM’s memory

model precisely keeps track of both concrete and symbolic

values with bit-precision. It also supports calling indirect

functions, reading symbolic pointers, and tracking bounds of

allocations, which are essential to execute general C programs.

The front-end GENSYM compiler is written in Scala, con-

sisting of ~3K LOC. The core staged symbolic interpreter

is still quite concise, implemented within ~400 LOC using

LMS [15]. The core runtime implementation is written in

C++ (~4K LOC), including the data structures of values

and states, path scheduler, coverage monitoring, and solver

support. The back-end implementation makes use of per-

sistent data structures [49] to represent memory, allowing

low-overhead structural sharing and non-interference between

multiple concurrent/parallel paths.

IV. PARALLELISM

In practice, the number of paths in SE easily grows expo-

nentially, even on small- to medium-sized programs. Next to

using clever heuristics to select paths, using more hardware

resources is an effective complementary solution to the path

explosion problem. Prior studies have explored interpretation-
based approaches with distributed clusters [33], client-server

frameworks [50], or multi-threads [51], which have complex

architectures and incur considerable communication and in-

terpretation overhead. GENSYM explores this direction by

fork point
yields control

... ...

br

basic
block

basic
block

br br

task 1 task n...
Task pool

Heuristics

thrd 1 thrd m...
Thread pool

selected by

dispatch to

adds two tasks
to the task pool

...

Fig. 4: GENSYM’s backend parallel execution architecture and

the execution flow as a fork tree in the compiled code.

utilizing its unique CPS-based compilation schema and multi-

core CPUs on a single machine:

• The compiled SE tasks are executed cohesively in a

single address space with shared memory, incurring lower

communication overhead and no interpretation overhead.

• Thanks to CPS, the compiled program can execute multiple

paths in parallel and integrate custom search heuristics,

with the cooperation of a scheduler.

Cooperative Concurrency/Parallelism. Figure 4 visualizes

how GENSYM explores multiple paths in parallel. The back-

end scheduler maintains (1) a task pool containing unexplored

paths/states, and (2) a thread pool containing a fixed number

of workers that can be specified at run-time.

At a fork point, the current thread adds new unexplored

paths to the scheduler before yielding control to it. The added

tasks capture the current continuation representing the rest of

the execution (recall line 25, Figure 3). In fact, by generating

CPS code we can yield control at any point and suspend the

rest of the computation in the form of a continuation.

When a thread is running, it executes a “slice” (light blue in

Figure 4) of a path in the whole SE fork tree. This “slice” is a

branch-free atomic task consisting of sequential blocks. When

the task finishes at a fork point, its running thread attempts to

execute the next available path, selected by some heuristic.

Integrating Heuristics. As search heuristics must interact

with the scheduling of paths, our CPS-based approach offers

a simple and effective way to integrate search heuristics

with compilation. We have implemented strategies including

random path and random state search. Orthogonal strategies

to partition paths for parallel SE (e.g., [33], [50]) can also be

integrated. For instance, we could have multiple schedulers,

each exploring certain regions in the execution tree and

dispatching among its assigned threads.

Without explicit control representations as in CPS, one

must use heavyweight mechanisms to implement parallelism

in compiled programs. It also prevents switching to a scheduler

while executing some path, e.g., LLSC [31] uses C++’s

async as a parallelism primitive, which cannot guarantee the

resource utilization. Thus, it is overall less scalable compared

to GENSYM. In Section VII-C, we evaluate the performance of

GENSYM’s parallel execution and show significant speedups.
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V. OPTIMIZATIONS

Under the “two-stage” execution model (Section III-B), we

also distinguish between compile-time and run-time optimiza-

tions in GENSYM. This section highlights selected compile-

time optimizations, some of which are performed online in

interpreters exhibiting recurring overhead. We will not discuss

the run-time optimizations (e.g., hash consing, query caching,

constraint independence, etc.), which are standard and also

found in other engines.

Lookup Elimination. In an SSA IR (e.g., LLVM), local

variables (i.e., virtual registers) are assigned only once. For

example, at line 5 in Figure 3, the result of a comparison is

assigned to register cmp. Interpretation-based engines need to

maintain a map from variables to values and constantly look

up variables when executing instructions referring to them.

However, most of these lookups are redundant since we can

locally resolve their values at compile-time. This is safe since

each register is assigned only once. A lookup operation for

identifier x can be reduced by traversing over the GENSYM-

IR to find the value assigned to x:
s.assign(x, v1) s.assign(x, v1)

... → ...

s.lookup(x) v1

From the perspective of embeddings (Section II-B), this op-

timization shifts a deep embedding of variable bindings to a

shallow embedding.

Assign Elimination. Exhaustive elimination of lookups im-

mediately suggests that dead assignments of registers can

be eliminated as well. We can inspect the GENSYM-IR and

eliminate those unneeded assignments per function scope:
s.assign(x, v1) → ������

s.assign(x, v1)
... /* no lookup of x */ ...

Source program optimization mem2reg [52] performs a similar

job, reducing the memory mapping but not the register binding

map. For instance, the LLVM program in Figure 3 is already

preprocessed by mem2reg and still has the assignment of cmp,

which is eliminated by GENSYM after compilation.

Compile-time State Merging. A simple way to compile

LLVM’s switch is translating it to a series of binary branches.

However, this often amplifies path explosion, especially for

cases that share the same target block. Therefore, instead of

compiling switch instructions naively (left), GENSYM can

generate a single guard by a disjunction of the conditions:
if (c1) tgt(...)

if (...) tgt(...) → if (c1 || . . . || cn) tgt(...)

if (cn) tgt(...)

This is a simple form of static state merging [53] to reduce

forking overhead. Symbolic interpreters can indeed perform

similar optimizations at run-time (e.g., as in KLEE). However,

they have to perform this transformation recurringly, even

when re-encountering the same switch instruction.

Algebraic Simplification. Symbolic expression simplification

is another compile-time optimizations in GENSYM, which may

affect the solver performance. For example, we observe a

pattern in source programs where comparisons are made atop

bit-vector (BV) extensions (which can often be expensive for

solvers), even on source operands of the same width. GENSYM

attempts to decide if the widths of BVs before extension

are identical. In that case, GENSYM would only generate eq
expressions:
eq(ext(v1, bw), ext(v2, bw)) → eq(v1, v2)

GENSYM deploys many similar optimizations exploiting the

equational theory behind these algebraic operations.

Discussion. The demonstrated compile-time optimizations

help generate faster and smaller code. But they are not

exhaustive: Optimizing SE by code generation is still largely

underexplored. We expect more analyses/transformations that

are informed by the static program structure can be naturally

integrated into our two-stage execution model.

VI. ENVIRONMENT MODELING

GENSYM can either use KLEE’s file system model as part

of input programs, or its own built-in generative symbolic file

system (Figure 2).

Reusing KLEE’s Model. KLEE has a POSIX file system

model written in C against its APIs. This model should be

linked with the analyzed program before running the KLEE

engine. During execution, KLEE intercepts those API calls and

performs corresponding symbolic operations. GENSYM can

benefit from reusing KLEE’s file system by exposing similar

APIs to the model and compile it as a normal program.

However, modeling in low-level languages can be labor-

intensive, error-prone, and suboptimal performance-wise.

Since the model is written in C and conceptually a “user”

program, it needs further translation to be executed, incurring

additional overhead. The model can only communicate with

APIs exposed by the engine. This stratification limits the

model’s capability to manipulate states and control.

Generative Meta-level Modeling. We therefore explore a

fused approach to integrate models with the engine at the meta

level, using higher-level programming abstractions. Models

are written in the same language (Scala) we use to develop

our staged symbolic interpreter, which has direct access to

symbolic values, states, and control representations. Using the

same code generation technique (Section III), meta-models

are converted to C++ code which is linked with GENSYM’s

backend and can be used by symbolic programs. This approach

is not only easier to develop, but also provides better perfor-

mance, due to the elimination of indirections. In this way, we

have implemented prototype models for 13 file system calls,

including directory support.

VII. EMPIRICAL EVALUATION

In this section, we aim to answer the following research

questions through empirical evaluation.

RQ1: Does GENSYM generate correct code to perform SE on

LLVM IR?

RQ2: How is the single-thread execution performance of

GENSYM compared with prior works?

RQ3: How is the parallel execution performance of GENSYM?

RQ4: Is it practical to use GENSYM after considering its

compilation overhead?

RQ5: What is the impact of our compile-time optimizations?
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TABLE I: Single-thread performance (in sec.) on algorithm benchmarks. “C/LLVM LOC” describe sizes of input programs

excluding comments/blanks. TSolver includes query caching/optimization time. TSolver + TExec is end-to-end wall time TWhole.

Description LLSC KLEE GENSYM TExec Speedup TWhole Speedup
C

LOC
LLVM
LOC

#Sym
Args #Paths TSolver TExec TWhole TSolver TExec TWhole TSolver TExec TWhole vs. LLSC vs. KLEE vs. LLSC vs. KLEE

bubble sort 38 144 6 720 56.85 0.321 57.17 23.19 0.259 23.45 10.75 0.055 10.81 5.83x 4.70x 5.29x 2.16x
KMP matcher 65 254 10 4181 5.99 0.568 6.56 0.443 0.320 0.763 0.094 0.038 0.128 14.95x 8.42x 51.25x 5.96x
knapsack 40 171 4 1666 156.58 0.459 157.04 204.08 0.807 204.88 263.35 0.107 263.46 4.29x 7.54x 0.60x 0.78x
merge sort 71 337 7 5040 70.54 1.06 71.60 70.04 1.32 71.36 21.44 0.188 21.63 5.64x 7.02x 3.31x 3.30x
nqueen 56 308 25 1363 - - - 0.652 4.73 5.38 1.08 0.793 1.87 - 5.96x - 2.88x
quick sort 44 142 7 5040 112.47 1.40 113.87 149.22 2.35 151.57 39.78 0.293 40.07 4.78x 8.02x 2.84x 3.78x

To answer RQ1, we compare the outcomes of GENSYM

runs against KLEE [32] and LLSC [31]. To answer RQ{2,3},

we conduct a performance evaluation and compare GENSYM

with KLEE and LLSC under various settings. To answer RQ4,

we report the compilation time and reveal its viability. To

answer RQ5, we evaluate the overhead and consequence (size

and running time of generated code) of these optimizations.

We discuss threats to validity in Section VII-F.

Environment and Setup. All experiments are conducted on

a machine with 4 Intel Xeon 8168 CPUs and 3TB memory,

running Ubuntu 20.04 with kernel 5.4.0. The machine is

a NUMA (non-uniform memory access) machine with 96

physical cores in total (8 nodes). numactl is used to set

CPU and memory affinities of processes. We use clang 11

to generate source LLVM IR from C programs and g++ 9.4.0

-O3 to compile the code generated by GENSYM. KLEE (ver.

2.3) and GENSYM use the Z3 solver [54] (ver. 4.8.12). LLSC

(brach fse21demo) only supports STP [55] (ver. ac1b92b).

Benchmarks. The first set of benchmarks (Table I) are algo-

rithm implementations with fixed input sizes. They are small

but realistic programs consisting of finite paths and covering

the core semantics of LLVM IR. We use this benchmark set

to validate the correctness (RQ1) of GENSYM. We also report

the running times on these benchmarks for RQ2.

We further use a subset of the GNU Coreutils v8.32

programs for a larger-scale performance evaluation:

base32 base64 cat comm fold echo dirname
expand paste cut join link true pathchk

These programs are nontrivial and representative examples of

real-world programs that exercise important features such as

interaction with the C library, with the shell environment (e.g.,
handling command line arguments), and with the file system

(e.g., reading/writing to stdin/stdout and files). Therefore they

are linked with KLEE’s POSIX FS system model [56] and

uClibc library [40]. We generate LLVM IR (.ll) from the

KLEE POSIX and uClibc source code, so that they can be

used as inputs to GENSYM. The average LLVM IR size of

linked Coreutils program is 28334LOC.

C-to-LLVM generation is performed by clang with -O0,

along with preprocessing steps used in KLEE (e.g., clean

up intrinsics and inlined assembly, etc.) to make sure both

engines take the same input programs. To ensure accurate path

number counting, both engines treat switch instructions as

non-mergeable branches.

A. RQ1: Validating Correctness

This experiment is concerned with the correctness of the

compiled SE, i.e., whether GENSYM generates code that does

not explore any spurious path and does not miss any true

path. Since formally verifying the correctness of SE compilers

would be another challenging issue, this is conducted by em-

pirically examining the coverage and the generated tests. All

SE engines are expected to achieve 100% path coverage. The

differences in SMT constraint encoding and search heuristics

of the engines should not bring in different results.

Results. As expected, all engines report 100% path coverage

for the benchmarks listed in Table I (excluding nqueen where

LLSC fails on an unsupported instruction). This validates

that GENSYM generates correct code regarding core LLVM

instructions.

B. RQ2: Single-Thread Execution Performance

We compare the single-thread performance of GENSYM

with LLSC and KLEE. The reported running times are divided

into “solver time” and “execution time”. The former accounts

for caching, optimizing, and solving queries, and the latter

for scheduling and executing paths, summing up to the total

running time (wall time). Our focus is evaluating execution
time (TExec).

Comparison with LLSC. Since LLSC lacks support of file

systems, we can only compare GENSYM with LLSC on the

algorithmic benchmark set. Table I shows the result.

First, we clarify the differences in solver time character-

istics. With similar state and value encodings, LLSC uses

STP and deploys no solver optimization, while GENSYM uses

Z3 and simplifies queries before solving them. Nevertheless,

solver time improvement is not a contribution of GENSYM.

For execution time, we observe GENSYM to be 7× faster

than LLSC on average. While both tools are compilers, their

difference stems from how they represent nondeterminism in

path exploration. GENSYM uses CPS and invokes continua-

tions multiple times, whereas LLSC reifies and manages a list

data structure for alternatives, which is more expensive.

Comparsion with KLEE. In addition to the algorithm bench-

mark set, we use Coreutils (with POSIX/uClibc) benchmarks

to compare GENSYM and KLEE. Both engines use a random

path search strategy and output tests only for new states

discovered. KLEE applies its default query optimizations

pipeline, while GENSYM only uses hash consing, query

caching, and constraint independence resolving.

On algorithm benchmarks (Table I), we observe an average

of 6.9× speedup in GENSYM’s execution time. The greatest
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TABLE II: Single-thread performance (in sec.) on Coreutil programs. sym-stdin/sym-files/sym-arg indicate the number of

symbolic inputs in stdin/files/CLI arguments (n × m means n files with m symbolic values; n + m means two symbolic

arguments of size n and m). Both engines use symbolic stdout. TQuery is the actual constraint solving time (included in TSolver).

Benchmark Configuration KLEE GENSYM

sym-stdin sym-files sym-arg Path
Cov

Line
Cov TQuery TSolver TExec TWhole

Path
Cov

Line
Cov TQuery TSolver TExec TWhole

TExec
Speedup

TWhole
Speedup

base32 2 2×2 2 10521 73.33% 3.21 5.77 47.38 53.15 10621 73.33% 28.72 33.97 12.54 46.51 3.78x 1.14x
base64 2 2×2 2 10524 73.33% 3.26 5.83 47.50 53.33 10624 73.33% 28.89 34.12 12.49 46.61 3.80x 1.14x
cat 2 - 2 29151 80.58% 5.07 9.88 126.34 136.22 28539 80.91% 25.80 34.53 28.49 63.02 4.43x 2.16x

comm 2 2×2 2+1 23846 70.11% 6.44 11.59 107.29 118.88 23846 72.3% 32.37 42.31 28.21 70.52 3.80x 1.69x
cut 2 2×2 2+2 28558 72.09% 6.05 11.20 129.58 140.79 28481 65.86% 16.63 21.54 33.48 55.01 3.87x 2.56x

dirname 2 - 6+10 287386 100.0% 1.29 18.28 341.51 359.79 287386 100.0% 2.61 10.98 93.84 104.83 3.64x 3.43x
echo - - 2+7 216136 84.17% 2.55 9.02 239.26 248.27 216136 84.17% 2.58 4.46 63.05 67.52 3.79x 3.68x

expand 2 2×2 2 10870 72.37% 4.18 6.85 49.11 55.96 10870 71.05% 37.65 42.98 13.03 56.01 3.77x 1.0x
true - - 10 16 100.0% 0.22 0.23 0.06 0.29 16 100.0% 0.02 0.04 0.03 0.07 2.00x 4.14x
fold 2 2×2 2 11015 74.36% 4.12 6.86 49.46 56.32 11015 74.36% 37.37 42.79 13.12 55.91 3.77x 1.01x
join 2 2×2 2+1 25054 71.75% 11.14 16.77 113.05 129.82 25046 70.93% 94.56 105.18 30.15 135.33 3.75x 0.96x
link 2 2×2 2+1+1 11233 60.0% 2.85 6.20 74.72 80.93 11233 60.0% 6.89 17.90 21.11 39.01 3.54x 2.07x
paste 2 2×2 2+1 24760 76.08% 7.10 12.28 110.96 123.23 22622 76.08% 36.27 45.91 26.41 72.32 4.20x 1.70x

pathchk 2 2×2 2+2 10923 63.31% 6.69 11.95 50.57 62.52 10923 63.31% 35.50 46.20 15.32 61.51 3.30x 1.02x

sym-stdin sym-files sym-arg Path
Cov

Line
Cov TQuery TSolver TExec TWhole

Path
Cov

Line
Cov TQuery TSolver TExec TWhole

Path Throughput
Ratio

base32 4 2×2 4 565835 90.83% 37.28 166.50 3434.22 3600.72 1104408 90.83% 848.75 1729.35 1377.32 3106.67 4.87x
base64 4 2×2 4 569296 90.83% 36.15 159.98 3440.71 3600.69 1104674 90.83% 1051.77 1933.35 1351.34 3284.69 4.94x
cat 3 - 3 715174 85.12% 9.93 127.60 3482.59 3610.19 2549614 85.12% 83.06 1002.99 2598.26 3601.25 4.78x

comm 3 2×2 3+1 565438 90.8% 12.37 119.38 3480.96 3600.34 1913738 91.38% 88.12 1154.43 2446.83 3601.26 4.81x
cut 3 2×2 3+3 551059 88.84% 31.47 153.85 3447.76 3601.61 2232944 86.05% 241.00 840.13 2761.12 3601.26 5.06x

dirname 6 - 9+15 4063657 100.0% 1.87 260.52 3388.31 3648.83 12838901 100.0% 6.87 341.76 3259.63 3601.39 3.28x
echo - - 4+8 2712142 84.17% 3.36 120.26 3496.94 3617.20 10952611 84.17% 3.41 143.68 3458.14 3601.82 4.08x

expand 3 2×2 3 92478 92.11% 3107.99 3134.37 466.45 3600.81 1062845 90.79% 60.10 718.39 1287.12 2005.51 4.17x
fold 3 2×2 3 567926 97.44% 20.20 139.38 3460.90 3600.28 1099906 97.44% 468.87 1130.24 1417.35 2547.59 4.73x
join 3 2×2 3+3 582806 80.41% 60.67 194.64 3409.56 3604.20 2246226 76.7% 69.75 808.07 2793.69 3601.76 4.70x
link 3 2×2 3+3+3 552717 80.0% 9.06 156.73 3451.60 3608.33 1241043 80.0% 25.94 1277.89 2323.53 3601.42 3.34x
paste 3 2×2 3+3 517354 92.82% 563.83 776.72 2825.86 3602.58 2020402 92.82% 376.65 1165.32 2436.07 3601.39 4.53x

pathchk 3 2×2 3+3 537795 71.22% 402.34 724.59 2875.70 3600.30 1132308 71.22% 172.57 1780.38 1821.11 3601.49 3.32x

speedup is 8.4× on KMP matcher. Notably, KLEE spends a

dominant execution time of 4.73s on nqueen, whereas GEN-

SYM uses only 0.79s.

Then, we use two configurations to test Coreutils programs.

The short-running configuration (upper, Table II) has fewer

symbolic inputs and both engines perform a similar job and

terminate in a few minutes, thus we can faithfully compare ex-

ecution time speedup. The long-running configurations (lower,

Table II) has more symbolic inputs and we set a 1-hour

timeout, thus we compare the throughput assuming paths are

homogeneous. Path throughput is computed by comparing the

number of paths explored by GENSYM and KLEE per second

(excluding the solver time). To validate effectiveness, we also

report path and line coverages (from klee-replay/gcov).

In Table II (upper), we first notice that GENSYM has similar

path coverage (hence line coverage) as KLEE on most cases.

The slight mismatches are caused by different concretization

strategies. Overall, we observe an average of 3.7× speedup in

execution time. Moreover, speedups are consistent, indicating

a constant advantage over KLEE. In Table II (lower), KLEE

times out on all benchmarks, whereas GENSYM finishes

base32, base64, fold, and expand within timeout. On all cases

we observe that GENSYM explores more paths than KLEE,

although it spends less time in execution and more time in the

solver chain. With more paths explored, GENSYM however

does not achieve higher line coverage on these programs

using a random path selection heuristic. We expect a smarter

heuristic could use GENSYM’s power more effectively. To

conclude, GENSYM explores 4.7× as many paths in a unit

time as KLEE does in the long-running experiment.

Query/Solver Time. Table II reports a separate query time
(TQuery), which is the time spent in actual constraint solving

(i.e., in Z3). Query time is included in solver time. Although

query/solver time is not within the scope of our contribution,

we explain the difference in observed query/solver times.
First, GENSYM uses bit-vectors to encode constraints and

resolves memory reads/writes within the engine, whereas

KLEE uses symbolic arrays. GENSYM has not aggressively

simplified the query before sending to the solver, therefore

GENSYM tends to spend more time in TQuery. We however

notice that different solvers may behave quite differently, e.g.,
GENSYM’s TQuery is much less when using STP.

Second, KLEE’s solver-chain time (TSolver − TQuery) is

shorter than GENSYM’s, especially on long-running bench-

marks. KLEE deploys well-tuned solver optimizations (e.g.,
query caching, equality rewriting, constraint independence),

which exhibit better efficiency under higher pressure. In con-

trast, GENSYM’s implementation of solver optimizations is

still effective (since query time is reduced vs. optimizations

disabled), but less efficient in larger Coreutils benchmarks.
The solver-chain implementation is an orthogonal issue to

GENSYM compilation schema, given that the paths explored

by both tools are similar. We expect that the solver-chain

performance can be improved significantly by adopting op-

timizing implementations.

Results. We have consistently observed speedups in execution

time (7× vs. LLSC, 4.6× vs. KLEE) on all 20 benchmarks.

Even with the solver time considered, GENSYM is on average

2.4× faster than KLEE on these benchmarks. There are 2 (out

of 20) programs where GENSYM is slightly slower than KLEE

end-to-end.

C. RQ3: Parallel Execution Performance
We use the Coreutils benchmarks and short-running config-

urations as in RQ2 to evaluate GENSYM’s parallel execution
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TABLE III: Speedups of parallel execution (1-thread as 1.0x

baseline).

With Solver Opt Without Solver Opt
4 th 8 th 12 th 4 th 8 th 12 th

base32 2.12x 2.69x 2.72x 3.64x 6.95x 9.51x
base64 2.15x 2.70x 2.58x 3.97x 7.03x 9.82x
cat 1.89x 2.60x 2.89x 3.80x 7.58x 10.47x

comm 1.88x 2.50x 2.73x 3.68x 7.02x 9.74x
cut 2.09x 3.09x 3.76x 3.74x 7.16x 10.44x

dirname 2.53x 3.87x 4.54x 3.33x 5.89x 8.47x
echo 2.38x 3.50x 4.13x 3.59x 6.81x 9.82x

expand 2.13x 2.83x 2.83x 3.39x 6.11x 7.97x
fold 2.23x 2.92x 3.05x 3.60x 6.43x 8.74x
join 1.84x 2.62x 3.09x 3.48x 6.29x 8.79x
link 2.14x 2.80x 3.04x 3.66x 6.81x 9.49x
paste 1.95x 2.64x 2.86x 3.64x 6.55x 8.95x

pathchk 2.08x 2.84x 3.10x 3.54x 6.50x 8.85x

average 2.08x 2.83x 3.10x 3.63x 6.74x 9.36x

performance and compare it with single-threaded execution.

Under parallel execution model, each worker uses an inde-

pendent SMT solver, and caching or independence constraint

resolving result are not shared among solvers. Moreover,

a global dispatcher (e.g., by selecting a random path) is

synchronized and guarded by locks. We run 4/8/12 threads

within a NUMA node, which consists of 12 physical cores.

Results. We show the parallel execution speedups in Table III.

Overall, we observe an average 2.08×/2.83×/3.10× speedup

when using 4/8/12 threads vs. the single-thread baseline.

Considering the increasing amount of resources, short-running

benchmarks do not exhibit ideal speedup ratios. Since the

single-thread execution is already relatively short (less than

1 minute for most of the benchmarks), using more threads

would not deliver higher performance.

Another bottleneck preventing higher scalability again lies

in the query optimization, since each worker uses a separate

solver instance with isolated caching/optimization facilities.

We expect that the efficiency can be further improved if the

solver chain or query optimizations can be shared.

We further experiment with disabling query-chain optimiza-

tions (right half of Table III), which more faithfully evaluates

the efficiency of continuation-based parallel execution. The av-

erage speedups 3.63×/6.74×/9.36× exhibit higher speedup/re-

source ratio and confirms the efficiency of the continuation-

based parallel execution.

D. RQ4: Compilation Cost

Being a prototype for generating optimized code, GENSYM

itself has not yet been optimized to reduce compilation time.

Highly optimized code is achieved often at the cost of in-

creased compilation time. Still, we show that it is practical to

use GENSYM with the cost considered. As a compiler, GEN-

SYM can benefit from separate compilation. To compile large

programs such as Coreutils, we first prepare the POSIX/uClibc

library as an LLVM module (98081 LOC). GENSYM compiles

it to C++ and further to a binary library, which can be reused

by any application relying on it. Symbols are resolved during

code generation, leaving no overhead at runtime.

Results. GENSYM takes 78s to compile the POSIX/uClibc

library and an additional 4min10s to generate the binary

from C++ code using 96 physical cores in parallel. Although

relatively large, this is an entirely one-time effort. With the

TABLE IV: Evaluation of compilation time (RQ5) and

compile-time optimizations (RQ6). All timings are shown

in seconds. Code size and Texec compares optimized and

unoptimized versions.

Tw/o opt
IR→C++ Tw/o opt

C++→bin Tw/ opt
IR→C++ Tw/ opt

C++→bin Code Size Texec
base32 1.51 51.99 2.12 (+0.61) 49.36 (-2.63) -15.90% -12.05%
base64 1.47 51.25 2.05 (+0.59) 48.28 (-2.97) -15.68% -9.97%
cat 1.65 48.73 1.99 (+0.34) 46.68 (-2.05) -15.27% -17.49%

comm 1.50 50.56 2.27 (+0.77) 49.14 (-1.41) -16.05% -15.95%
cut 1.58 51.80 2.25 (+0.66) 48.43 (-3.37) -16.55% -21.24%

dirname 0.99 46.06 1.34 (+0.35) 44.32 (-1.74) -15.45% -32.41%
echo 1.15 46.54 1.54 (+0.39) 44.36 (-2.17) -15.00% -36.84%

expand 1.23 50.72 1.73 (+0.50) 48.17 (-2.55) -15.08% -10.58%
fold 1.36 49.25 2.24 (+0.88) 44.58 (-4.67) -14.90% -9.92%
join 2.88 56.06 3.61 (+0.73) 53.32 (-2.74) -15.92% -10.37%
link 0.93 47.22 1.28 (+0.35) 45.29 (-1.93) -15.50% -21.58%
paste 1.27 48.53 1.73 (+0.47) 46.24 (-2.29) -15.40% -14.62%

pathchk 1.21 48.84 1.67 (+0.46) 46.29 (-2.55) -15.52% -36.37%
true 0.94 45.58 1.60 (+0.66) 43.22 (-2.36) -15.42% -0.15%

libraries prepared, an application such as echo (LLVM IR

size 6922 LOC, without library code) takes 1.54s to generate

C++ code and 44.36s for the final executable using parallel

compilation, as reported in Table IV. In contrast, compiling

echo with libraries linked (LLVM IR size 29448 LOC) takes

37s to generate C++ and 1m2s to build the executable. The cost

is worth paying regarding the runtime speedup shown in RQ2,

especially considering repeated runs on larger problem sizes.

This is in accordance with other applications presented in

Table IV. The compilation overhead can be further alleviated

by existing techniques, such as pre-building the header-only

runtime, which is mostly an engineering effort and orthogonal

to our contribution.

E. RQ5: Overhead & Effectiveness of Optimizations

So far, all experiments are conducted with compile-time

optimizations enabled. In this experiment, we evaluate the

overhead and performance with and without our compile-time

optimizations. Table IV shows the impact of these optimiza-

tions on the Scala-end time in emitting the C++ code, the size

of the generated C++ code (LOC), the time in compiling the

C++ code (96 cores in parallel), and the execution time of

the built code. Atop the optimizations discussed in Section V,

we exclude the compile-time state merging for faithful path

counting, and additionally incorporate ordinary optimizations

including constant folding, dead code elimination, and func-

tion inlining. We use the short-running configurations of

Coreutils programs (upper Table II) to measure the execution

time impact. The unoptimized applications are linked with an

unoptimized version of the prebuilt library, which takes about

59s in code emission and 4min26s in parallel C++ compilation.

Results. By applying the optimizations, the time in compiling

IR to C++ has increased by a modest margin across all

applications. As this phase is relatively short, the increased

time is acceptable. As the outcome of the optimizations, we

observe a consistent ∼15% lines of code fewer in generated

C++ code. With less code generated, the time in compiling

C++ code to executables has decreased by again a modest

margin for all applications. As for the execution time, the

optimized applications show a reduction of 9–37%, except

for true whose running time is too short. To conclude, with
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small investments in compilation time, we obtain perceivable

performance benefits by deploying these optimizations.

F. Discussion

Threats to Validity. We strived for making the comparison

with KLEE as fair as possible, e.g., by implementing a similar

random-path strategy and solver optimizations. However, it is

possible that KLEE can be further tuned to perform better.

We are aware that [57] reports overwhelming solver-time

proportions in KLEE, which we only observe in a few cases

in RQ2. This is potentially due to using different solvers (STP

vs. Z3), different search strategies (DFS vs. random path), and

changes made in KLEE over the last decade.

For SE tasks where “execution time” are already negligible

or only take a small fraction of the overall time, compilation

appears to be not economic in terms of end-to-end time,

although the “execution speedup” is real.

Summary. Overall we find that GENSYM outperforms state-

of-the-art SE tools. We observe average speedups of 4.6×
in execution time vs. KLEE, and end-to-end speedups up to

9.4× in parallel vs. sequential execution. Their combination

yields more than an order of magnitude speedup compared to

KLEE. The current bottleneck of GENSYM lies in its current

solver optimization implementation, which can be improved

by adopting existing solutions. It would be also interesting to

explore compiling to KLEE’s backend, e.g., reusing its state-

of-the-art solver optimization implementation.

VIII. RELATED WORK

Execution in Symbolic Analysis. Two closely related works

are KLEE [32] and its predecessor EXE [39]. Both GENSYM

and KLEE have similar functionality and the same input

language. The difference lies in interpretation vs. compilation.

Unlike KLEE’s interpretation mode, EXE uses CIL [58] for

source-to-source translation to instrument C programs. For

multipath SE, EXE invokes the fork syscall to spawn OS pro-

cesses coordinating with a search server process. We consider

this approach heavyweight, since it delegates “control” to the

OS and relies on OS-level concurrency and inter-process com-

munication. In contrast, GENSYM compiles to continuations

for a more lightweight concurrency implementation.

Several recent works on concolic execution propose using

off-the-shelf compilation frameworks for IR-level instrumen-

tation. SymCC [23] uses LLVM IR as the source and target

of instrumentation, where the result will be compiled to native

code by LLVM. SymQEMU [24] applies the similar idea to

QEMU’s IR. Under our view of “embedding” (Section II),

instrumentation for concolic execution compiles to a shallow

embedding of states and control. Compared to simple instru-

mentation that rarely alters control representations, GENSYM

implements a more sophisticated compilation that transforms

both value, state, and control representations.

Many other SE engines are also implemented as interpreters,

e.g., Symbolic Path Finder [59] for the JVM bytecode, Angr

[60] for the VEX IR [61], etc. Our techniques can be applied

to these languages/IRs as well.

Parallel Symbolic Execution. Cloud9 [33] is an extension

of KLEE for use in distributed clusters. Cloud9 also uses a

cooperative scheduler to simulate POSIX multithreading, but

it is not based on CPS. Our approach would provide a unified

way to symbolically executing multi-threaded programs as

well, since we can use CPS-based cooperative scheduling to

simulate OS preemptive scheduling, which is a future work.

Staats and Păsăreanu [50] design a client-server framework

for parallelizing the JFP symbolic interpreter with a static

path partition technique. Similar to GENSYM, Nowack et

al. [51] propose a multi-thread architecture for parallel SE.

However they use an interpreter for each worker, amplifying

the interpretation overhead.

Partial Evaluation for Program Analysis. The idea of

partially evaluating a static analyzer with respect to the in-

put program is known as abstract compilation [62], which

has been applied to different kinds of program analyses,

e.g., control-flow analysis [63], constraint-based analysis [64],

abstract interpretation [65], and other variants of symbolic

execution [66]. The underlying methodology of this paper is

also aligned with abstract compilation.

GENSYM’s approach is inspired by LLSC [20], [31] that

uses multi-stage programming [15], [47] to achieve partial

evaluation of symbolic interpreters. The novel contribution

of GENSYM is generating the code in CPS form, enabling

scalable cooperative parallelism and flexible support of heuris-

tics. Compared to LLSC, GENSYM is much more mature

in the sense that it supports more LLVM IR instructions,

solver optimizations, file system models, and provides better

performance and integration with coverage measuring tools.

Soufflé [67] uses the same partial evaluation idea as our

work to specialize Datalog programs, mainly targeting rule-

based program analysis. Both Soufflé and GENSYM can be

considered generators for program analyzers that are special-

ized to specific input programs. Rojas and Păsăreanu [68] use

partial evaluation to improve compositional SE, where a “path-

specialized” program is used together with summaries of path

conditions.

IX. CONCLUSION

We have presented the design and implementation of GEN-

SYM. The novel insight of compiling SE to continuation-

passing style with partially-evaluated symbolic interpreters

also leads to practical performance speedups compared to

state-of-the-art tools. We believe GENSYM’s underlying tech-

niques and methodology are key enablers for developing

performant symbolic execution engines in the future.

ACKNOWLEDGEMENT

We would like to thank the anonymous reviewers of ICSE

’23 and ESEC/FSE ’22 for their valuable feedback. We thank

Xiangyu Zhang and Colin Gordon for their comments on

the earlier drafts. This work was supported in part by NSF

awards 1553471, 1564207, 1918483, 1910216, DOE award

DE-SC0018050, as well as gifts from Facebook, Google,

Microsoft, and VMware.

1330



REFERENCES

[1] R. S. Boyer, B. Elspas, and K. N. Levitt, “SELECT - a formal system
for testing and debugging programs by symbolic execution,” in Reliable
Software. ACM, 1975, pp. 234–245.

[2] J. C. King, “Symbolic execution and program testing,” Commun. ACM,
vol. 19, no. 7, pp. 385–394, 1976.

[3] W. E. Howden, “Symbolic testing and the DISSECT symbolic evaluation
system,” IEEE Trans. Software Eng., vol. 3, no. 4, pp. 266–278, 1977.

[4] L. A. Clarke, “A program testing system,” in ACM Annual Conference.
ACM, 1976, pp. 488–491.

[5] C. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli, “Satisfiability
modulo theories,” in Handbook of satisfiability. IOS Press, 2021, pp.
1267–1329.

[6] C. Cadar and D. R. Engler, “Execution generated test cases: How to
make systems code crash itself,” in SPIN, ser. Lecture Notes in Computer
Science, vol. 3639. Springer, 2005, pp. 2–23.

[7] K. Sen, D. Marinov, and G. Agha, “CUTE: a concolic unit testing engine
for C,” in ESEC/SIGSOFT FSE. ACM, 2005, pp. 263–272.

[8] P. Godefroid, N. Klarlund, and K. Sen, “DART: directed automated
random testing,” in PLDI. ACM, 2005, pp. 213–223.

[9] R. Baldoni, E. Coppa, D. C. D’Elia, C. Demetrescu, and I. Finocchi, “A
survey of symbolic execution techniques,” ACM Comput. Surv., vol. 51,
no. 3, pp. 50:1–50:39, 2018.

[10] C. Cadar and K. Sen, “Symbolic execution for software testing: Three
decades later,” Commun. ACM, vol. 56, no. 2, pp. 82–90, Feb. 2013.

[11] C. Cadar, “Targeted program transformations for symbolic execution,”
in ESEC/SIGSOFT FSE. ACM, 2015, pp. 906–909.

[12] J. Chen, W. Hu, L. Zhang, D. Hao, S. Khurshid, and L. Zhang,
“Learning to accelerate symbolic execution via code transformation,”
in ECOOP, ser. LIPIcs, vol. 109. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2018, pp. 6:1–6:27.

[13] S. Dong, O. Olivo, L. Zhang, and S. Khurshid, “Studying the influence
of standard compiler optimizations on symbolic execution,” in ISSRE.
IEEE Computer Society, 2015, pp. 205–215.

[14] N. D. Jones, C. K. Gomard, and P. Sestoft, Partial evaluation and
automatic program generation, ser. Prentice Hall international series in
computer science. Prentice Hall, 1993.

[15] T. Rompf and M. Odersky, “Lightweight modular staging: a pragmatic
approach to runtime code generation and compiled DSLs,” in GPCE.
ACM, 2010, pp. 127–136.

[16] O. Kiselyov, “Reconciling abstraction with high performance: A metao-
caml approach,” Foundations and Trends® in Programming Languages,
vol. 5, no. 1, pp. 1–101, 2018.

[17] T. Rompf, K. J. Brown, H. Lee, A. K. Sujeeth, M. Jonnalagedda,
N. Amin, G. Ofenbeck, A. Stojanov, Y. Klonatos, M. Dashti, C. Koch,
M. Püschel, and K. Olukotun, “Go Meta! A case for generative pro-
gramming and DSLs in performance critical systems,” in SNAPL, ser.
LIPIcs, vol. 32. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2015, pp. 238–261.

[18] P. Hudak, “Building domain-specific embedded languages,” ACM Com-
put. Surv., vol. 28, no. 4es, p. 196, 1996.

[19] C. Elliott, S. Finne, and O. de Moor, “Compiling embedded languages,”
J. Funct. Program., vol. 13, no. 3, pp. 455–481, 2003.
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