
Graph Neural Reasoning for 2-Quantified Boolean Formula Solvers

Zhanfu Yang 1 Fei Wang 1 Ziliang Chen 2 Guannan Wei 1 Tiark Rompf 1

Abstract
In this paper, we investigate the feasibility of
learning GNN (Graph Neural Network) based
solvers and GNN-based heuristics for specified
QBF (Quantified Boolean Formula) problems.
We design and evaluate several GNN architectures
for 2QBF formulae, and conjecture with empiri-
cal support that GNN has limitations in learning
2QBF solvers. Then we show how to learn heuris-
tics for a CEGAR-based 2QBF solver. We fur-
ther explore generalizing GNN-based heuristics to
larger unseen instances and uncover some interest-
ing challenges. In summary, this paper provides a
comprehensive surveying view of applying GNN-
embeddings to specified QBF solvers and aims to
offer guidance in applying ML to more compli-
cated symbolic reasoning problems.

1. Introduction
A propositional formula expression consists of Boolean
constants (>: true, ?: false), Boolean variables (xi), and
propositional connectives such as ^, _, ¬, and etc. The
SAT (Boolean Satisfiability) problem, which asks if a given
formula can be satisfied (as >) by assigning proper Boolean
values to the variables, is the first proven NP-complete prob-
lem (Cook, 1971). As an extension of propositional formula,
QBF (Quantified Boolean Formula) allows quantifiers (8
and 9) over the Boolean variables. In general, a quantified
Boolean formula can be expressed as such:

QiXiQi�1Xi�1...Q0X0�

Where Qi denote quantifiers that differ from its neighboring
quantifiers, Xi are disjoint sets of variables, and � is propo-
sitional formulae with all Boolean variables bounded. The
QBF problem is PSPACE-complete (Savitch, 1970). For this
issue, researchers previously proposed incremental determi-
nation (Rabe & Seshia, 2016; Rabe et al., 2018) or CEGAR-

1Department of Computer Science, Purdue University, USA
2Sun Yat-Sen University, China. Correspondence to: Zhanfu Yang
<yang1676@purdue.edu>, Tiark Rompf <tiark@purdue.edu>.

Preliminary work. Under review at the ICML 2019 Workshop
on Learning and Reasoning with Graph-Structured Data. Do not
distribute.

based (Janota et al., 2016) solvers to solve it. They are non-
deterministic, e.g., employing heuristics guidance for search
a solution. Recently, MaxSAT-based (Janota & Marques-
Silva, 2011) and ML-based (Janota, 2018) heuristics have
been proposed into CEGAR-based solvers. Without exist-
ing decision procedure, Selsam et al. (2018) presented a
GNN architecture that embeds the propositional formulae.
Amizadeh et al. (2019) adapt a RL-style explore-exploit
mechanism in this problem, but considering circuit-SAT
problems. However, these solvers didn’t tackle unsatisfi-
able formulae. In terms of the above discussion, there is
no desirable general solver towards a QBF problem in prac-
tice. Therefore, we focus on 2QBF formulae in this paper, a
specified-QBF case with only one alternation of quantifiers.

Extended from SAT, 2QBF problems keep attracting a lot of
attentions due to their practical usages (Mishchenko et al.,
2015; Mneimneh & Sakallah, 2003; Remshagen & Truem-
per, 2005), yet remaining very challenging like QBF. For-
mally, Q1XQ2Y.�, where Qi 2 {8, 9}, X and Y are sets
of variables, and � is quantifier-free formula. The quantifier-
free formula � can be in Conjunctive Normal Form (CNF),
where � is a conjunction of clauses, clauses are disjunctions
of literals, and each literal is either a variable or its negation.
For example, the following term is a well-formed 2QBF
in CNF: 8x, y9z.(x _ z) ^ (y _ ¬z). If � is in CNF, it is
required that the 8 quantifier is on the outside, and the 9
quantifier is on the inside. Briefly, the 2QBF problem is to
ask whether the formula can be evaluated to > considering
the 8 and 9 quantifications. It’s presumably exponentially
harder to solve 2QBF than SAT because it characterizes the
second level of the polynomial hierarchy.

Our work explores several different 2QBF solvers by way
of graph neural-symbolic reasoning. In Section 2, we in-
vestigate famous SAT GNN-based solvers (Selsam et al.,
2018)(Amizadeh et al., 2019). We found these architectures
hard to extend to 2QBF problems, due to that GNN is unable
to reason about unsatisfiability. To solve this, we further
make some effective reconfiguration to GNN. In Section 3,
on behalf of a traditional CEGAR-based solver, three ways
to learn the GNN-based heuristics are proposed: to rank the
candidates, to rank the counterexamples, and their combi-
nation. They aim to avoid multiple GNN embeddings per
formula, to reduce the GNN inference overhead. Relevant
experiments showcase their superiorities in 2QBF.

Graph Neural Reasoning for 2-Quantified Boolean Formula Solver

2. GNN-based QBF Solver Failed
Let’s first revisit the existing GNN-based SAT solvers, and
analyze why they fails to suit the 2QBF problem.

2.1. GNN for QBF
Embedding of SAT SAT formulae are translated into bi-
partite graphs Selsam et al. (2018), where literals (L) repre-
sent one kind of nodes, and clauses (C) represent the other
kind. We denote EdgeMatrix (E) as edges between literal
and clause nodes with dimension |C| x |L|. The graph of
(x _ ¬y) ^ (¬x _ y) is given below as an example.

C1

C2

x

y

¬x
¬y

As below, EmbL and EmbC denote embedding matrices
of literals and clauses respectively, MsgX!Y denotes mes-
sages from X to Y , MX denotes MLP of X for generating
messages, LX denotes LSTM of X for digesting incoming
messages and updating embeddings, X · Y denotes matrix
multiplication of X and Y , XT denotes matrix transporta-
tion of X , [X,Y] denotes matrix concatenation, and Emb¬L

denotes the embedding of L’s negations.
MsgL!C = ML(EmbL)

EmbC = LSTMC(E · MsgL!C)
MsgC!L = MC(EmbC)

EmbL = LSTML([ET · MsgC!L,Emb¬L])

Iterations are fixed for train but can be unbounded for test.

Embedding of 2QBF We separate 8-literals and 9-literals
in different groups, embed them via different NN modules.
The graph representation of 8x9y.(x_¬y)^(¬x_y) shows:

C1

C2

x

¬x

y

¬y
We use 8 and 9 to denote all 8-literals and all 9-literals
respectively. We use EX denote the EdgeMatrix between X
and C, and MC!X denote MLPs that generate MsgC!X .

Msg8!C = M8(Emb8)
Msg9!C = M9(Emb9)

EmbC = LSTMC([E8 · Msg8!C ,E9 · Msg9!C])
MsgC!8 = MC!8(EmbC)
MsgC!9 = MC!9(EmbC)

Emb8 = LSTM8([ET
8 · MsgC!8,Emb¬8])

Emb9 = LSTM9([ET
9 · MsgC!9,Emb¬9])

We designed multiple architectures (details in supplemen-
tary) and used the best one as above for the rest of the paper.

Data Preparation For training and testing, we follow
Chen & Interian (2005), which generates QBFs in conjunc-
tive normal form. Specifically, we generate problems of
specs (2,3) and sizes (8,10). Each clause has five literals, 2
of them are randomly chosen from a set of 8 8-quantified

Table 1. GNN Performance to Predict SAT/UNSAT

DATASET 40 PAIRS 80 PAIRS 160 PAIRS

8 ITERS (0.98, 0.94) (1.00, 0.92) (0.84, 0.76)
TESTING (0.40, 0.64) (0.50, 0.48) (0.50, 0.50)

16 ITERS (1.00, 1.00) (0.96, 0.96) (0.88, 0.70)
TESTING (0.54, 0.46) (0.52, 0.52) (0.54, 0.48)

32 ITERS (1.00, 1.00) (0.98, 0.98) (0.84, 0.80)
TESTING (0.32, 0.68) (0.52, 0.50) (0.52, 0.50)

Table 2. GNN Performance to Predict Witness of UNSAT

DATASET 160 UNSAT 320 UNSAT 640 UNSAT

8 ITERS (1.00, 0.99) (0.95, 0.72) (0.82, 0.28)
TESTING (0.64, 0.06) (0.67, 0.05) (0.69, 0.05)

16 ITERS (1.00, 1.00) (0.98, 0.87) (0.95, 0.69)
TESTING (0.64, 0.05) (0.65, 0.05) (0.65, 0.06)

32 ITERS (1.00, 1.00) (0.99, 0.96) (0.91, 0.57)
TESTING (0.63, 0.05) (0.64, 0.05) (0.63, 0.05)

variables, three are randomly chosen from a set of 10 9-
quantified variables. We modify the generation procedure
that it generates clauses until the formula becomes unsatis-
fiable. We then randomly negate a 9-quantified literal per
formula to make it satisfiable.
SAT/UNSAT We vote MLPs from 8-variables and use
average votes as logits for SAT/UNSAT prediction:

logits = mean(Mvote(Emb8))

As in table 1, Each block of entries are accuracy rate of UN-
SAT and SAT formulae respectively. The models are tested
on 600 pairs of formulae and we allow message-passing
iterations up to 1000. GNNs fit well to smaller training
dataset but has trouble for 160 pairs of formulae. Perfor-
mance deteriorates when embedding iterations increase, and
most GNNs become very biased at high iterations.
8-Witnesses of UNSAT Proving unsatisfiability of 2QBF
needs a witness of unsatisfiability, which is an assignment
to 8-variables that eventually leads to UNSAT. We use lo-
gistic regression in this experiment. To be specific, the final
embeddings of 8-variables are transformed into logits via
a MLP Masn and used to compute the cross-entropy loss
with the known witness unsatisfiability of the formulae.

witness = softmax(Masn(Emb8))

This training task is very similar to Amizadeh et al. (2019),
except our GNN has to reason about unsatisfiability of the
simplified SAT formulae, which we believe infeasible. We
summarize the results in Table 2. In each block of entries,
we list the accuracy per variable and accuracy per formulae
on the left and right separately. Entries in the upper half of
each block are for training data and lower half for testing
data. From the table, we see that GNNs fit well to the
training data. More iterations of message-passing give better
fitting. However, the performance on testing data is only

Graph Neural Reasoning for 2-Quantified Boolean Formula Solver

slightly better than random. More iterations in testing do
not help with performance.

2.2. Why GNN-based QBF Solver Failed

We conjecture current GNN architectures and embedding
processes are unlikely to prove unsatisfiability or reason
about 8-assignments. Even in SAT problem Selsam et al.
(2018), GNNs are good at finding solutions for satisfiable
formulae, while not for confidently proving unsatisfiabil-
ity. Similarly, Amizadeh et al. (2019) had little success
in proving unsatisfiability with DAG-embedding because
showing SAT only needs a witness, but proving UNSAT
needs complete reasoning about the search space. A DPLL-
based approach would iterate all possible assignments and
construct a proof of UNSAT. However, a GNN embedding
process is neither following a strict order of assignments nor
learning new knowledge that indicates some assignments
should be avoided. The GNN embedding may be mostly
similar to vanilla WalkSAT approaches, with randomly ini-
tialized assignments and stochastic local search, which can
not prove unsatisfiability.

This conjecture may be a great obstacle for learning 2QBF
solvers from GNN because proving either satisfiability or
unsatisfiability of the 2QBF problem needs not only a wit-
ness. If the formula is satisfiable, proof needs to provide
assignments to 9-variables under all possible assignments of
8-variables or in a CEGAR-based solver. If the formula is
unsatisfiable, then the procedure should find an assignment
for the 8-variables.

3. Learn GNN-based Heuristics
In Section 2, we know that GNN-based 2QBF Solvers are
unlikely to be learned; therefore, the success of learning
SAT solvers (Selsam et al., 2018; Amizadeh et al., 2019)
cannot simply extend to 2QBF or more expressive logic.
We consider the CEGAR-based solving algorithm to reduce
the GNN inference overhead. We first present the CEGAR-
based solving procedure in Algorithm 1 (Janota & Marques-
Silva, 2011).

Note that ! is constraints for candidates. Initially, ! is
;, and any assignment of 8-variables can be proposed as
a candidate which may reduce the problem to a smaller
propositional formula. If we can find an assignment to
9-variables that satisfy the propositional formula, this as-
signment is called a counterexample to the candidate. We
denote �counter as all clauses in � that are satisfied by the
counterexample. The counterexample can be transformed
into a constraint, stating that next candidates cannot simul-
taneously satisfy clauses (� \ �counter) since those candi-
dates are already rejected by the current counterexample.
This constraint can be added to ! as a propositional term,

Algorithm 1 CEGAR 2QBF solver
Input: 8X9Y �
Output: (sat, -) or (unsat, witness)
Initialize constraints ! as empty set.
while true do

(has-candidate, candidate) = SAT-solver(!)
if not has-candidate then

return (sat, -)
end if
(has-counter, counter) = SAT-solver(�[X ! candidate])
if not has-counter then

return (unsat, candidate)
end if
add counter to constraints !

end while

thus finding new candidates is done by solving constraints-
derived propositional term !.

3.1. Ranking the Candidates

To decide which candidate to use from SAT-solver (!), we
can rank solutions in MaxSAT-style by simplifying the for-
mula with candidates and ranking them based on the number
of clauses they satisfy. We use it as a benchmark compari-
son. Besides, the hardness can be evaluated as the number of
solutions of the simplified propositional formula. Thus the
training data of our ranking GNN is all possible assignments
of 8-variables and the ranking scores that negatively relate
to the number of solutions of each assignment-propagated
propositional formula (Details shown in supplementary).

We extend the GNN embedding architecture so that the final
embedding of the 8-variables are transformed into a scoring
matrix (Sm8) for candidates via a MLP (M8,scoring). A
batch of candidates (C) are ranked by passing through a
two-layer MLP without biases, where the weights of the
first layer are the scoring matrix (Sm8), and the weights of
the second layer is a weight vector (Wv8).

Sm8 = M8,scoring(Emb8)
Score8 = ReLU(C · Sm8) · Wv8

We make use of the TensorFlow ranking library (Pasumarthi
et al., 2018) to compute the pairwise-logistic-loss with
NDCG-lambda-weight for supervised training. What’s
more, we evaluate our ranking heuristics by adding them
to CEGAR cycle and measure the average steps needed to
solve the problems. It requires us to change the SAT (!)
subroutine to a nSAT (!) subroutine, where once a solu-
tion is found, it is added back to the formula as constraint,
and search for a different solution, until no solutions can be
found, or maximal number of solutions is reached. Then the
heuristics ranks the solutions and proposes the best one as a
candidate. We use four datasets: (1)TrainU: 1000 unsatisfi-
able formulae used for training; (2) TrainS: 1000 satisfiable
formulae used for training; (3) TestU: 600 unsatisfiable for-
mulae used for testing; (4) TestS: 600 satisfiable formulae

Graph Neural Reasoning for 2-Quantified Boolean Formula Solver

Table 3. Performance of CEGAR Candidate Ranking

DATASET TRAINU TRAINS TESTU TESTS

- 21.976 34.783 21.945 33.885
MAXSAT 13.144 30.057 12.453 28.863

GNN1 13.843 31.704 13.988 30.573
GNN2 15.287 32.0 14.473 30.788

used for testing); and four ranking heuristics: (1) -: no rank-
ing; (2) MaxSAT: ranking by the number of satisfied clauses
via on-the-fly formula simplification; (3) GNN1: ranking by
hardness via GNN model inference; (4) GNN2: ranking by
the number of satisfied clauses via GNN model inference.

As shown in Table 3, all 3 ranking heuristics improve the
solving process of all 4 datasets. Unsatisfiable formulae
benefit more from the heuristics, and the heuristics gener-
alizes very well from training formulae to testing formulae.
Machine learning results are repeated twice with different
random seeds, and numbers shown are from models with
best performance on training data.

3.2. Ranking the Counterexamples

We consider a GNN-based heuristics for ranking counterex-
amples. Each counterexample contributes to a constraint in
!, which either shrinks the search space of the witnesses of
unsatisfiability or be added to the constraints indicating that
no candidates are witnesses of unsatisfiability.

As follows, we compute ranking scores for our training data.
For satisfiable 2QBF instances in the training data, we list all
possible assignments of 9-variables and collect all constrain-
ing clauses in !. Then we solve ! with hmucSAT (Nadel
et al., 2013), seeking for unsatisfiability cores. Initially we
plan to give a high ranking score (10) for 9-assignments
corresponding to clauses in unsatisfiability cores, and a low
ranking score (1) for all other 9-assignments. Later, we
choose to give other 9-assignments ranking scores based on
the number of satisfied clauses, in range of [1, 8] because
unsatisfiability cores are often small.

For unsatisfiable 2QBF instances, we collect all constraining
clauses in !. As ! is satisfiable and solutions are witnesses
of unsatisfiability, we add solutions to ! as extra constraints
until the ! becomes unsatisfiable. We then compute the rank-
ing scores. We use another dataset of which rankings scores
are based on the number of clauses satisfied for comparison.
Notations include Sm9 for the scoring matrix, M9,scoring for
a MLP to get scoring matrix from the final embedding of
9-variables, CE for a batch of counterexamples, and Wv9
for the weight vector.

Sm9 = M9,scoring(Emb9)
Score9 = ReLU(CE · Sm9) · Wv9

After supervised training, we evaluate the trained GNN-
based ranking heuristics in a CEGAR-based solver. The
results are shown in Table 4. Based on the MaxSAT heuris-

Table 4. Performance of CEGAR-COUNTER-RANKING

DATASET TRAINU TRAINS TESTU TESTS

- 21.976 34.783 21.945 33.885
MAXSAT 14.754 22.265 14.748 21.638

GNN1 17.492 26.962 17.198 26.598
GNN2 16.95 26.717 16.743 26.325

Table 5. Performance of CEGAR-BOTH-RANKING

DATASET TRAINU TRAINS TESTU TESTS

- 21.976 34.783 21.945 33.885
MAXSAT 9.671 20.777 9.425 19.883

GNN1 11.686 25.021 11.605 24.518
GNN2 12.505 25.505 12.22 24.938
GNN3 11.25 24.76 12.008 24.295

tics, ranking counterexamples benefits solving satisfiable
formulae more than unsatisfiable formulae. However, GNN1
performs worse than GNN2. The likely explanation is that
predicting unsatisfiability cores is far too complicated for
GNN. Moreover, knowledge of unsatisfiability cores can-
not be obtained from each counterexample alone, but needs
analysis of all counterexamples collectively. It may go back
to the limitation of GNN in reasoning about “all possible
solutions”, and the added score information behaves like
an interference rather than knowledge for GNN-based rank-
ing heuristics. Machine learning results are repeated twice,
reporting models with best training data performance.

3.3. Combination of the Heuristics

To combine ranking heuristics and counterexamples in a sin-
gle solver, we extend the GNN-embedding architecture with
ranking data of candidates and counterexamples. We have
GNN1 trained by ranking scores from hardness and unsat-
isfiability cores, GNN2 trained by ranking scores from the
number of satisfied clauses for both candidates and coun-
terexamples, and GNN3 trained by ranking scores from
hardness for candidates, and number of satisfied clauses for
counterexamples. As shown in Table 5, GNN3 is arguably
the best model we obtained from supervised learning via
this ranking method. All machine learning results are re-
peated twice with different random seeds, and models with
the best performance in training data are reported.

4. Conclusion
In this paper, we show learning GNN-based 2QBF solvers
is hard by current GNN architectures due to its inability to
reason about unsatisfiability. Our work extends the previous
GNN-based 2QBF solver in terms of CEGAR-based heuris-
tic. A suite of GNN-based techniques has been made to
improve the GNN embedding for reasoning 2QBF solutions.
Their superiorities are witnessed in our experiments.

Graph Neural Reasoning for 2-Quantified Boolean Formula Solver

References
Amizadeh, S., Matusevych, S., and Weimer, M. Learn-

ing to solve circuit-SAT: An unsupervised differentiable
approach. In International Conference on Learning Rep-
resentations, 2019. URL https://openreview.net/
forum?id=BJxgz2R9t7.

Chen, H. and Interian, Y. A model for generating random
quantified boolean formulas. In IJCAI, pp. 66–71. Pro-
fessional Book Center, 2005.

Cook, S. A. The complexity of theorem-proving procedures.
In Proceedings of the Third Annual ACM Symposium on
Theory of Computing, STOC ’71, pp. 151–158, New York,
NY, USA, 1971. ACM. doi: 10.1145/800157.805047.
URL http://doi.acm.org/10.1145/800157.805047.

Janota, M. Towards generalization in QBF solving via
machine learning. In AAAI, pp. 6607–6614. AAAI Press,
2018.

Janota, M. and Marques-Silva, J. P. Abstraction-based algo-
rithm for 2qbf. In SAT, volume 6695 of Lecture Notes in
Computer Science, pp. 230–244. Springer, 2011.

Janota, M., Klieber, W., Marques-Silva, J., and Clarke, E. M.
Solving QBF with counterexample guided refinement.
Artif. Intell., 234:1–25, 2016.

Mishchenko, A., Brayton, R. K., Feng, W., and Greene, J. W.
Technology mapping into general programmable cells. In
FPGA, pp. 70–73. ACM, 2015.

Mneimneh, M. N. and Sakallah, K. A. Computing vertex
eccentricity in exponentially large graphs: QBF formula-
tion and solution. In SAT, volume 2919 of Lecture Notes
in Computer Science, pp. 411–425. Springer, 2003.

Nadel, A., Ryvchin, V., and Strichman, O. Efficient MUS
extraction with resolution. In FMCAD, pp. 197–200.
IEEE, 2013.

Pasumarthi, R. K., Wang, X., Li, C., Bruch, S., Bender-
sky, M., Najork, M., Pfeifer, J., Golbandi, N., Anil, R.,
and Wolf, S. Tf-ranking: Scalable tensorflow library for
learning-to-rank. CoRR, abs/1812.00073, 2018.

Rabe, M. N. and Seshia, S. A. Incremental determiniza-
tion. In SAT, volume 9710 of Lecture Notes in Computer
Science, pp. 375–392. Springer, 2016.

Rabe, M. N., Tentrup, L., Rasmussen, C., and Seshia, S. A.
Understanding and extending incremental determiniza-
tion for 2qbf. In Chockler, H. and Weissenbacher, G.
(eds.), Computer Aided Verification, pp. 256–274, Cham,
2018. Springer International Publishing. ISBN 978-3-
319-96142-2.

Remshagen, A. and Truemper, K. An effective algorithm
for the futile questioning problem. J. Autom. Reasoning,
34(1):31–47, 2005.

Savitch, W. J. Relationships between nondeterministic
and deterministic tape complexities. Journal of Com-
puter and System Sciences, 4(2):177 – 192, 1970. ISSN
0022-0000. doi: https://doi.org/10.1016/S0022-0000(70)
80006-X. URL http://www.sciencedirect.com/
science/article/pii/S002200007080006X.

Selsam, D., Lamm, M., Bünz, B., Liang, P., de Moura, L.,
and Dill, D. L. Learning a SAT solver from single-bit
supervision. CoRR, abs/1802.03685, 2018.

https://openreview.net/forum?id=BJxgz2R9t7
https://openreview.net/forum?id=BJxgz2R9t7
http://doi.acm.org/10.1145/800157.805047
http://www.sciencedirect.com/science/article/pii/S002200007080006X
http://www.sciencedirect.com/science/article/pii/S002200007080006X

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Graph Neural Reasoning for 2-Quantified Boolean Formula Solver
(Supplementary Manuscript)

Anonymous Authors1

1. All GNN-embedding Architectures
We use subscript symbols 8 to denote all 8-quantified lit-
erals, 9 to denote all 9-quantified literals, L to denote all
literals, and C to denote all clauses. We use notations EmbX

to denote embeddings of X , where X can be subscript 8,
9, L, or C. We use notations Emb¬X to denote embedding
of the negations of X (8, 9, or L), which is part of EmbX

but at different indices. We use notations MsgX!Y to de-
note messages from X to Y . We also use notations MX to
denote MLPs that generate messages from the embeddings
of X , notations MX!Y to denote MLPs that generate mes-
sages from the embeddings of X for Y , notations LX to
denote LSTMs that update embeddings of X given incom-
ing messages, and notations LX Y to denote LSTMs that
update embeddings of X given incoming messages from Y .
We also use notations EX to denote adjacency matrix of X
(8, 9, or C) and clauses, notations X · Y to denote matrix
multiplication of X and Y , notations [X,Y] to denote ma-
trix concatenation of X and Y , and notations XT to denote
matrix transportation of X .

The simplest form of embedding of QBF (Model 1) is given
below.

Model 1:
Msg8!C = M8(Emb8)
Msg9!C = M9(Emb9)

EmbC = LC(E8 · Msg8!C + E9 · Msg9!C)
MsgC!L = MC(EmbC)

Emb8 = L8([ET
8 · MsgC!L,Emb¬8])

Emb9 = L9([ET
9 · MsgC!L,Emb¬9])

In Model 2, we update the clause embedding by 2 LSTMs,
each of them take the messages from 8 and 9 literals sepa-
rately.

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review at the ICML 2019 Workshop
on Learning and Reasoning with Graph-Structured Data. Do not
distribute.

Model 2:
Msg8!C = M8(Emb8)
Msg9!C = M9(Emb9)

EmbC = LC 8(E8 · Msg8!C)
EmbC = LC 9(E9 · Msg9!C)

MsgC!L = MC(EmbC)
Emb8 = L8([ET

8 · MsgC!L,Emb¬8])
Emb9 = L9([ET

9 · MsgC!L,Emb¬9])

We switch the order of these 2 LSTMs in Model 3.

Model 3:
Msg8!C = M8(Emb8)
Msg9!C = M9(Emb9)

EmbC = LC 9(E9 · Msg9!C)
EmbC = LC 8(E8 · Msg8!C)

MsgC!L = MC(EmbC)
Emb8 = L8([ET

8 · MsgC!L,Emb¬8])
Emb9 = L9([ET

9 · MsgC!L,Emb¬9])

In Model 4 we concatenate the messages from 8 and 9
literals.

Model 4:
Msg8!C = M8(Emb8)
Msg9!C = M9(Emb9)

EmbC = LC([E8 · Msg8!C ,E9 · Msg9!C])
MsgC!L = MC(EmbC)

Emb8 = L8([ET
8 · MsgC!L,Emb¬8])

Emb9 = L9([ET
9 · MsgC!L,Emb¬9])

The performance of our GNN architectures improve greatly
after we realize that (in Model 5) we may also need to use
different MLP modules to generate messages from clauses
to 8 and 9 literals. Note that this is also the model we
reported in the main paper, and the model we decided to use
for all results reported in main paper.

Model 5:
Msg8!C = M8(Emb8)
Msg9!C = M9(Emb9)

EmbC = LC([E8 · Msg8!C ,E9 · Msg9!C])
MsgC!8 = MC!8(EmbC)
MsgC!9 = MC!9(EmbC)

Emb8 = L8([ET
8 · MsgC!8,Emb¬8])

Emb9 = L9([ET
9 · MsgC!9,Emb¬9])

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Graph Neural Reasoning for 2-Quantified Boolean Formula Solver (Supplementary Manuscript)

We also explore the possibility (in Model 6) of having
two embeddings for each clause, one serving the 8 liter-
als and one serving the 9 literals. We need extra notations:
EmbX!Y denotes embeddings of X that serves Y . LX!Y

denotes LSTMs that updates embedding of X that serves
Y .

Model 6:
Msg8!C = M8(Emb8)
Msg9!C = M9(Emb9)

EmbC!8 = LC!8([E8 · Msg8!C ,E9 · Msg9!C])
EmbC!9 = LC!9([E8 · Msg8!C ,E9 · Msg9!C])

MsgC!8 = MC!8(EmbC!8)
MsgC!9 = MC!9(EmbC!9)

Emb8 = L8([ET
8 · MsgC!8,Emb¬8])

Emb9 = L9([ET
9 · MsgC!9,Emb¬9])

We further explore possibility (in Model 7) that our embed-
ding scheme should reflect a CEGAR cycle, which starts
from 8 variables (proposing candidates), to clauses, to 9
variables (finding counterexamples), back to clauses, then
back to 8 variables.

Model 7:
Msg8!C = M8(Emb8)

EmbC!9 = LC!9(E8 · Msg8!C)
MsgC!9 = MC!9(EmbC!9)

Emb9 = L9([ET
9 · MsgC!9,Emb¬9])

Msg9!C = M9(Emb9)
EmbC!8 = LC!8(E9 · Msg9!C)

MsgC!8 = MC!8(EmbC!8)
Emb8 = L8([ET

8 · MsgC!8,Emb¬8])

2. Functions for Ranking Scores
Function for candidate ranking scores based on hardness,
i.e. the number of models of reduced SAT formula.

def n_model_2_ranking_score(n_models):
if n_models <= 3: return 10.0 - n_models
if n_models <= 5: return 6.0
if n_models <= 8: return 5.0
if n_models <= 12: return 4.0
if n_models <= 16: return 3.0
if n_models <= 21: return 2.0
else: return 1.0

Function for candidate ranking scores in maxSAT-style, i.e.
based on the number of satisfied clauses.

def n_clauses_2_ranking_score(n_clauses_list):
n_clauses_min = min(n_clauses_list)
return [max(1, 10 - n_clauses + n_clauses_min)

for n_clauses in n_clauses_list]

Function for counterexample ranking scores based on unsat-
isfiability cores and number of satisfied clauses.
def unsat_core_2_ranking_score(core_index,

n_clauses_list):
n_clauses_max = max(n_clauses_list)
scores = [max(1, 8 - n_clauses_max + n_clauses)

for n_clauses in n_clauses_list]
scores = numpy.array(scores)
scores[core_index] = 10
return scores.tolist

Function for counterexample ranking scores in maxSAT-
style, i.e. based on the number of satisfied clauses.

def n_clauses_2_ranking_score_counter(n_clauses_list):
n_clauses_max = max(n_clauses_list)
return [max(1, 10 - n_clauses_max + n_clauses)

for n_clauses in n_clauses_list]

	Introduction
	GNN-based QBF Solver Failed
	GNN for QBF
	Why GNN-based QBF Solver Failed

	Learn GNN-based Heuristics
	Ranking the Candidates
	Ranking the Counterexamples
	Combination of the Heuristics

	Conclusion

