Polymorphic Reachability Types

Tracking Freshness, Aliasing, and Separation in
Higher-Order Generic Programs

Guannan Wei, Oliver Bracevac, Songlin Jia, Yuyan Bao, Tiark Rompf
Purdue University, Galois Inc, Augusta University

POPL 2024
~
UL AL

AUGUSTA

UNIVERSITY

Motivation

Memory safety, thread safety, performance, ...

Secret sauce: ownership types
[Clarke et al., OOPSLA 98, Nobel et al. ECOOP 98]

Rust most admired language,
Stack Overflow survey says

Stack Overflow 2023 Developer Survey finds
that JavaScript and Python are the most used
and most desired languages, but they fall far
short of Rust in satisfying their users.

Motivation

high-level 4 ?
A
low-level & @
weak strong> What would pOST'RUST

languages resemble?

Motivation

high-level 4)k """ >

~0caml

!
low-level & @

weak strong> What would pOST'RUST
languages resemble?

high-level

low-level

Motivation

Y

—_————

Ownership and Lifetimes
The ownership system is partially implemented, and is expected to get built out in the next couple of months.
The basic support for ownership includes features like:

« Capture declarations in closures.

« Borrow checker: complain about invalid mutable references.

The next step in this is to bring proper lifetime support in. This will add the ability to return references and store
references in structures safely. In the immediate future, one can use the unsafe Pointer struct to do this like
in C++.

weak

strong

Mojo / Modular.ai

Motivation

swift / docs / OwnershipManifesto.md (3

O

re
e

)x- 2 @ uhooi Update OwnershipManifesto.md v/ 3 months ago
. e - - |
high-level > O
1635 lines (1350 loc) - 68.1 KB
!I The)
.l)%aml * Th¢ | Preview l Code Blame Rw @ & 2 -
1 .
I - Ownership
1
The
reft Introduction
low-level «
— Adding "ownership" to Swift is a major feature with many benefits for programmers.
k > This document is both a "manifesto" and a "meta-proposal” for ownership: it lays out
wea Sfrong the basic goals of the work, describes a general approach for achieving those goals,

Swift / Apple

Motivation

) Oxidizing OCaml: Rust-Style Ownership

high-level 4)k """ >

JUN 21, 2023 | 16 MIN READ

)|
« GO

OoCaml

!
low-level @ @

weak strong

OCaml / Jane Street

high-level

low-level

Motivation

) SR

A

OCaml

®

weak

strong

Linear Haskell
Practical Linearity in a Higher-Order Polymorphic Language

JEAN-PHILIPPE BERNARDY, University of Gothenburg, Sweden
MATHIEU BOESPFLUG, Tweag I/O, France

RYAN R. NEWTON, Indiana University, USA

SIMON PEYTON JONES, Microsoft Research, UK

ARNAUD SPIWACK, Tweag I/O, France

Linear type systems have a long and storied history, but not a clear path forward to integrate with existing
languages such as OCaml or Haskell. In this paper, we study a linear type system designed with two crucial
properties in mind: backwards-compatibility and code reuse across linear and non-linear users of a library.
Only then can the benefits of linear types permeate conventional functional programming. Rather than
bifurcate types into linear and non-linear counterparts, we instead attach linearity to function arrows. Linear
functions can receive inputs from linearly-bound values, but can also operate over unrestricted, regular values.

To demonstrate the efficacy of our linear type system — both how easy it can be integrated in an existing
language implementation and how streamlined it makes it to write programs with linear types — we imple-
mented our type system in GHc, the leading Haskell compiler, and demonstrate two kinds of applications of
linear types: mutable data with pure interfaces; and enforcing protocols in I/O-performing functions.

Substructural type systems
e.g. Linear Haskell [POPL 2018]

high-level

low-level

) SR

OoCaml

Motivation

®

weak

strong

Capturing Types

ALEKSANDER BORUCH-GRUSZECKI and MARTIN ODERSKY, EPFL
EDWARD LEE and ONDREJ LHOTAK, University of Waterloo
JONATHAN BRACHTHAUSER, Eberhard Karls University of Tiibingen

Type systems usually characterize the shape of values but not their free variables. However, many desirable
safety properties could be guaranteed if one knew the free variables captured by values. We describe CC <.q,
a calculus where such captured variables are succinctly represented in types, and show it can be used to
safely implement effects and effect polymorphism via scoped capabilities. We discuss how the decision to
track captured variables guides key aspects of the calculus, and show that CC <. admits simple and intuitive
types for common data structures and their typical usage patterns. We demonstrate how these ideas can be
used to guide the implementation of capture checking in a practical programming language.

CCS Concepts: « Theory of computation — Type structures; « Software and its engineering — Object
oriented languages;

Additional Key Words and Phrases: Scala, type systems, effects, resources, capabilities

Scala 3 Capturing Types [TOPLAS 2023]

high-level 4

low-level

Motivation

How to smoothly combine functional/type
abstractions with resource tracking/control?

OOOOO

?
I\
1
1
|
@ Rust’s “secret sauce”

strong Vs
Pervasive sharing from functional abstraction

high-level 4

low-level

Motivation

How to smoothly combine functional/type
abstractions with resource tracking/control?

) S
o A
| “shared XOR mutable”
@ @ Rust’'s =—seeret-satece—
weak strong> Vs

Pervasive sharing from functional abstraction

Motivation

How to smoothly combine functional/type
abstractions with resource tracking/control?

high-level 4 !)k """ > ?
A A
E “shared XOR mutable”
low-level @ @ Rust's =]
weak sTrong> vs

Pervasive sharing from functional abstraction

first class functions, capturing, escaping ...

Reachability Types

e e - T q| e How to smoothly combine functional/type
abstractions with resource tracking/control?
e Context: what capabilities can be observed Reachability Types: tracking sharing and
o lexical scope, capturing, escaping separation in higher-order languages
e Space: where are things/heap topology [OOPSLA 2021, Bao et al.]

o reachability, aliasing/sharing, separation
e Time: how things change by execution order
o flow-sensitive effects, affinity, ownership transfer

Inspired by previous work of alias types,
region-based type systems, effect systems, etc.

Reachability Types

e e - T q| How to smoothly combine functional/type
abstractions with resource tracking/control?

Example: Escaping pairs with shared mutable data
def counter(n: Int): Pair[() => Unit, () => Unit] = { Reachability Types: tracking sharing and

val ¢ = new Ref(n) . . . _
() => ¢ += 1, () = ¢ -= 1) separation in higher-order languages

} [OOPSLA 2021, Bao et al.]

val ctr = counter(9)
// i Pair[(() => Unit)°'", ((
val incr = fst(ctr) // : (()
val decr = snd(ctr) // : (()

Reachability
Types / @ x

) => Unit)ctr]ctr
> Unit)c°tr
> Unit)etr

Reachability Types

e e - T q| How to smoothly combine functional/type
abstractions with resource tracking/control?

Rust, state-of-the-art Reachability types, HH o H -
ownership type systems soparation logic, Reachability Types: tracking sharing and
separation in higher-order languages
Borrowing: temporarily relax Uniqueness, separation:
access where neelded restrict access where needed [OOPSLA 2021’ BGO eT GI]

Sharing, reachability: flexible
heap properties, no globally
enforced invariants

Ownership: unique access
paths, global heap invariant

Strict foundation, Liberal foundation,
selectively relaxed. selectively restricted.

Rust, state-of-the-art
ownership type systems

Borrowing: temporarily relax
access where needed

Ownership: unique access
paths, global heap invariant

Strict foundation,
selectively relaxed.

Reachability types,
separation logic,

Uniqueness, separation:
restrict access where needed

Sharing, reachability: flexible
heap properties, no globally
enforced invariants

Liberal foundation,
selectively restricted.

Polymorphic Reachability Types

How to smoothly combine functional/type
abstractions with resource tracking/control?

This work: smoothly combining
reachability types with polymorphism

% a new notion of freshness
% precise lightweight reachability polymorphism
% bounded type-and-reachability polymorphism

Qualifying Types with a Set of Variables

q
Keyidea: [- e : T

g the set of variables that can be reached from the evaluation result of e.

val x = new Ref(42) // : Ref[Int]*
val y = X // : Ref[Int]Y in context [y: Ref[Int]*, ...]
val i = 42 // : Int®, untracked

Qualifying Types with a Set of Variables

q
Keyidea: [- e : T

g the set of variables that can be reached from the evaluation result of e.

val x = new Ref(42) // : Ref[Int]*
val y = X // : Ref[Int]Y in context [y: Ref[Int]*, ...]
val i = 42 // : Int®, untracked

Function types track the observable context:

val ¢ = new Ref(42)

(n: Int) => { ¢ :=n } // : (Int => Unit){C}

Qualifying Types with a Set of Variables
o Keyidea: [- e : TCI

g the set of variables that can be reached from the evaluation result of e.

e What should be the qualifier for fresh allocations?
new Ref(42) /] Ref[Int]?

Qualifying Types with a Set of Variables
Key idea: I - e : TCI

g the set of variables that can be reached from the evaluation result of e.

What should be the qualifier for fresh allocations?
new Ref(42) /] Ref[Int]l

Possible option 1: L shared nothing, but confused with untracked!

Either unsound if without special treatment to distinguish it from untracked,
or the system becomes non-parametric and leads to loss of precision (as in Bao et al.)

Qualifying Types with a Set of Variables

q
o Keyidea: [e : T

g the set of variables that can be reached from the evaluation result of e.

e What should be the qualifier for fresh allocations?
new Ref(42) /] Ref[Int]T

Possible option 2: T can be potentially shared with everything, but not really!

|.e. the universal/root capture set in Scala Capture Types, also need a special treatment to
prevent “unboxing” the universal capability.

A New Notion of Freshness

e Key idea: use a special marker ¢ to represent statically unobservable

variables/locations.
new Ref(42) // : Ref[Int]®, fresh allocation

A New Notion of Freshness

Key idea: use a special marker ¢ to represent statically unobservable

variables/locations.
new Ref(42) // : Ref[Int]®, fresh allocation

Unobservable variables/locations may materialize during evaluation:
new Ref(42) — @ // : Ref[Int]{¥

A New Notion of Freshness

Key idea: use a special marker ¢ to represent statically unobservable

variables/locations.
new Ref(42) // : Ref[Int]®, fresh allocation

Unobservable variables/locations may materialize during evaluation:
new Ref(42) — @ // : Ref[Int]{¥

Bound/known reachability sets cannot upcast to *:
val x = new Ref(42) // : Ref[Int]* not subtype of Ref[Int]*

A New Notion of Freshness

Key idea: use a special marker ¢ to represent statically unobservable

variables/locations.
new Ref(42) // : Ref[Int]®, fresh allocation

Unobservable variables/locations may materialize during evaluation:
new Ref(42) — @ // : Ref[Int]{¥

Bound/known reachability sets cannot upcast to *:
val x = new Ref(42) // : Ref[Int]* not subtype of Ref[Int]*

Leads to a parametric treatment of reachability;
No conflation of unfracked vs fresh resources anymore (cf. Bao et al.).

A New Notion of Freshness

e Key idea: use a special marker ¢ to represent statically unobservable
variables/locations.

e Support both scoped and non-scoped introduction forms of resources:
def try[A](f: CanThrow® => A): A

try[CanThrow®](c => ¢) // error: CanThrow® not subtype of CanThrow®

A New Notion of Freshness

e Key idea: use a special marker ¢ to represent statically unobservable
variables/locations.

e Support both scoped and non-scoped introduction forms of resources:
def try[A](f: CanThrow® => A): A

try[CanThrow®](c => ¢) // error: CanThrow® not subtype of CanThrow®

try[Ref[Int]®](c => new Ref(42)) // okay

A New Notion of Freshness

Key idea: use a special marker ¢ to represent statically unobservable
variables/locations.

Support both scoped and non-scoped introduction forms of resources:
def try[A](f: CanThrow® => A): A

try[CanThrow®](c => ¢) // error: CanThrow® not subtype of CanThrow®
try[Ref[Int]®](c => new Ref(42)) // okay

More flexible and expressive compared with Scala Capturing Types:
try[Ref[Int]T](c => new Ref(42)) // not permitted to be “unboxed”

The Absence of Reachability

In intersection type systems
Int & String <: Nothing // not typically derivable in syntactic subtyping

For reachability qualifiers, need to check stronger properties such as separation:
ql N g2 € @

The Absence of Reachability

e In intersection type systems
Int & String <: Nothing // not typically derivable in syntactic subtyping

e For reachability qualifiers, need to check stronger properties such as separation:
ql N g2 € @

e Key Idea: freshness marker as the argument qualifier
def id(x: T®): T = x // : ((x: T®) => THXH)?
id(y) // okay
id(new Ref(42)) // okay

The Absence of Reachability

e In intersection type systems
Int & String <: Nothing // not typically derivable in syntactic subtyping

e For reachability qualifiers, need to check stronger properties such as separation:
ql N g2 € @

e Key Idea: freshness marker as the argument qualifier
def id(x: T®): T = x // : ((x: T®) => THXH)?
id(y) // okay
id(new Ref(42)) // okay

Any argument is fresh for closed function id!

Are there cases that we cannot apply some argument?

Checking Separation

e Applications check observable separation between the function and argument:

val c1: Ref[Int]{": val c2: Ref[Int]f{c%}
def addRef(r: Ref[Int]®) = { c1 := 'c1 + 'r; c1 }

Checking Separation

Applications check observable separation between the function and argument:

val c1: Ref[Int]{": val c2: Ref[Int]f{c%}
def addRef(r: Ref[Int]®) = { c1 := 'c1 + 'r; c1 }

addRef(c1) // type error because {c1} n {c1} € »

Checking Separation

Applications check observable separation between the function and argument:
val c1: Ref[Int]{": val c2: Ref[Int]f{c%}
def addRef(r: Ref[Int]®) = { c¢1 := lc1 + !'r; c1 }

addRef(c1) // type error because {c1} n {c1} € »
addRef(c2) // ok because {c2} N {c1} € @

Checking Separation

Applications check observable separation between the function and argument:
val c1: Ref[Int]{": val c2: Ref[Int]f{c%}
def addRef(r: Ref[Int]®) = { c¢1 := lc1 + !'r; c1 }

addRef(c1) // type error because {c1} n {c1} € »
addRef(c2) // ok because {c2} N {c1} € @

Key idea: argument is fresh in context if the function
can’t observe overlap with other variables!

Checking Separation

Applications check observable separation between the function and argument:

val c1: Ref[Int]{": val c2: Ref[Int]f{c%}

def addRef(r: Ref[Int]®) = { c¢1 := lc1 + !'r; c1 }
addRef(c1) // type error because {c1} N {c1} ¢ o
addRef(c2) // ok because {c2} N {c1} € @

Key idea: argument is fresh in context if the function
can’t observe overlap with other variables!

Function argument qualifier describes permissible overlap/aliasing patten:

def addRef2(c: Ref[Int]{c! ®}) =
addRef2(c1) // ok now {c1} N {c1} < {c1}

Checking Separation -- Safe Parallelization

Requiring disjoint qualifiers of two thunks to ensure non-interference:

// library code
def par(a: (() => Unit)®)(b: (() => Unit)*®): Unit

// user code
val c1 = new Ref(8), c2 = new Ref(0)

par {
// ok: operate on c¢1 only, cannot access c2
cl += 42

+ A
// ok: operate on c2 only, cannot access c1
c2 -= 100

}

Precise Reachability Polymorphism

Lightweight (quantification-free) reachability polymorphism:

def id[T](x: T®): T = x // : ((x: T®) => THX}H)?

id(42) // : Int’
id(new Ref(42)) // : Ref[Int]*
id(x) // : Ref[Int]®

Result reachability can precisely depend on the argument reachability.

Precise Reachability Polymorphism

Lightweight (quantification-free) reachability polymorphism:

def id[T](x: T®): T = x // : ((x: T®) => THX}H)?

id(42) // : Int’
id(new Ref(42)) // : Ref[Int]*
id(x) // : Ref[Int]®

Result reachability can precisely depend on the argument reachability.

Bounded parametric reachability a la F_,

def id[T? <: Top®](x: T®): TH™ = x
val p = makePair(a, b) // : Pair[Ref[Int]{®, Ref[Int]{"}]
fst(p) // : Ref[Int]{®

° F:-calculus with bounded polymorphism

Formalization & Metatheory

Simply-typed A®-calculus

o Typability of Church-encoding of pairs

Syntactic soundness

o Progress

o Preservation: qualifiers may grow only due to

freshness (new allocations)

Term Typing

x%T9el xX€EQ

T¢Fx:T*)

(T, f:F,x:P)3%f rt:0 gcCo
F=(f(x:P) - Q)17
I'?r Af(x).t: F

(T-ABS)

T bt (f(x:TP) > Q)9 TPk tp:TP
o¢p Q=U" rcepxf fef(U)
T? v tit2:Qlp/x.q/f]

(T-APP)
T? vk t1:(f(x:TP") > Q)9 TP+ tp:TP
Q=U" rCex, f
sep=>x¢fv(U) fefv(U)

T? v t1t:Qlp/x.q/f]
(T-APP#)

Preservation of separation: two separate terms remain

separate after reduction steps.

(T-CST)

c€EB
[k 5B2
e e &.749 +dq
_ (T-REF)
T? + reft:(RefT9)*
TP+ t:(RefTP)? ¢¢p pCo
I? vlt:TP

(T-DEREF)
T? +t;:(RefTP)T TP v t5:TP @ ¢p
T? F t; =t : Unit?

(T-ASSGN)

T’ rt:Q TrHQO<:TT gCep
| R T T

(T-suB)

Mechanization & Implementation

e Mechanized syntactic formalization in Coq
o Alternative logical relation formalization in progress

e Prototype implementation Diamond language

o Type checking of reachability types

e Both can be found at https://github.com/TiarkRompf/reachability

Contribution & Conclusion

% Polymorphic reachability types

o Tracking sharing/separation in higher-order generic languages
o Representing freshness explicitly
o Precise reachability polymorphism

o F-sub style bounded polymorphism

% Paves the way for integration of reachability types
in practical impure functional languages.

% Mechanization & prototype implementation:

https://github.com/TiarkRompf /reachability

https://github.com/TiarkRompf/reachability

Contribution & Conclusion

% Polymorphic reachability types
o Tracking sharing/separation in higher-order generic languages
o Representing freshness explicitly
o Precise reachability polymorphism

o F-sub style bounded polymorphism

% Paves the way for integration of reachability types
. o . I'm on the job market!
in practical impure functional languages.
More about my research:

% Mechanization & prototype implementation: https://continuation.passing.style/

https://github.com/TiarkRompf /reachability

https://github.com/TiarkRompf/reachability

