
Polymorphic Reachability Types
Tracking Freshness, Aliasing, and Separation in

Higher-Order Generic Programs

Guannan Wei, Oliver Bračevac, Songlin Jia, Yuyan Bao, Tiark Rompf
Purdue University, Galois Inc, Augusta University

POPL 2024

Motivation

Memory safety, thread safety, performance, ...

Secret sauce: ownership types
[Clarke et al., OOPSLA 98, Nobel et al. ECOOP 98]

Motivation

What would post-Rust
languages resemble?

weak strong
low-level

high-level ?

Motivation

What would post-Rust
languages resemble?

weak strong
low-level

high-level ?

Motivation

Mojo / Modular.aiweak strong
low-level

high-level ?

Motivation

Swift / Apple

weak strong
low-level

high-level ?

Motivation

OCaml / Jane Street

weak strong
low-level

high-level ?

Motivation

Substructural type systems
e.g. Linear Haskell [POPL 2018]

weak strong
low-level

high-level ?

Motivation

Scala 3 Capturing Types [TOPLAS 2023]

weak strong
low-level

high-level ?

Motivation

weak strong
low-level

high-level ?

How to smoothly combine functional/type
abstractions with resource tracking/control?

Rust’s “secret sauce”
vs

Pervasive sharing from functional abstraction

Motivation

weak strong
low-level

high-level ?

How to smoothly combine functional/type
abstractions with resource tracking/control?

Rust’s “secret sauce”
vs

Pervasive sharing from functional abstraction

“shared XOR mutable”

Motivation

weak strong
low-level

high-level ?

How to smoothly combine functional/type
abstractions with resource tracking/control?

Rust’s “secret sauce”
vs

Pervasive sharing from functional abstraction

“shared XOR mutable”

first class functions, capturing, escaping ...

Reachability Types

● Context: what capabilities can be observed
○ lexical scope, capturing, escaping

● Space: where are things/heap topology
○ reachability, aliasing/sharing, separation

● Time: how things change by execution order
○ flow-sensitive effects, affinity, ownership transfer

Reachability Types: tracking sharing and
separation in higher-order languages

[OOPSLA 2021, Bao et al.]

Γ ⊢ e : T | ε
q How to smoothly combine functional/type

abstractions with resource tracking/control?

𝜑

Inspired by previous work of alias types,
region-based type systems, effect systems, etc.

Reachability Types

Reachability Types: tracking sharing and
separation in higher-order languages

[OOPSLA 2021, Bao et al.]

How to smoothly combine functional/type
abstractions with resource tracking/control?

def counter(n: Int): Pair[() => Unit, () => Unit] = {
 val c = new Ref(n)
 (() => c += 1, () => c -= 1)
}

val ctr = counter(0)
// : Pair[(() => Unit)ctr, (() => Unit)ctr]ctr
val incr = fst(ctr) // : (() => Unit)ctr
val decr = snd(ctr) // : (() => Unit)ctr

Example: Escaping pairs with shared mutable data

❌Reachability
Types ✓

Γ ⊢ e : T | ε
q𝜑

Reachability Types

Reachability Types: tracking sharing and
separation in higher-order languages

[OOPSLA 2021, Bao et al.]

How to smoothly combine functional/type
abstractions with resource tracking/control?

Γ ⊢ e : T | ε
q𝜑

Polymorphic Reachability Types

Reachability Types: tracking sharing and
separation in higher-order languages

[OOPSLA 2021, Bao et al.]

How to smoothly combine functional/type
abstractions with resource tracking/control?

This work: smoothly combining
reachability types with polymorphism

★ a new notion of freshness
★ precise lightweight reachability polymorphism
★ bounded type-and-reachability polymorphism

Γ ⊢ e : T | ε
q𝜑

Qualifying Types with a Set of Variables

● Key idea:

● val x = new Ref(42) // : Ref[Int]x

val y = x // : Ref[Int]y in context [y: Ref[Int]x, ...]
val i = 42 // : Int∅, untracked

Γ ⊢ e : T
q

q the set of variables that can be reached from the evaluation result of e.

Qualifying Types with a Set of Variables

● Key idea:

● val x = new Ref(42) // : Ref[Int]x

val y = x // : Ref[Int]y in context [y: Ref[Int]x, ...]
val i = 42 // : Int∅, untracked

● Function types track the observable context:

val c = new Ref(42)

(n: Int) => { c := n } // : (Int => Unit)

Γ ⊢ e : T
q

q the set of variables that can be reached from the evaluation result of e.

{c}

Qualifying Types with a Set of Variables

● Key idea:

● What should be the qualifier for fresh allocations?
new Ref(42) // : Ref[Int]?

Γ ⊢ e : T
q

q the set of variables that can be reached from the evaluation result of e.

Qualifying Types with a Set of Variables

● Key idea:

● What should be the qualifier for fresh allocations?
new Ref(42) // : Ref[Int]
Possible option 1: ⊥ shared nothing, but confused with untracked!
Either unsound if without special treatment to distinguish it from untracked,
or the system becomes non-parametric and leads to loss of precision (as in Bao et al.)

Γ ⊢ e : T
q

q the set of variables that can be reached from the evaluation result of e.

⊥

Qualifying Types with a Set of Variables

● Key idea:

● What should be the qualifier for fresh allocations?
new Ref(42) // : Ref[Int]
Possible option 2: 丅 can be potentially shared with everything, but not really!
I.e. the universal/root capture set in Scala Capture Types, also need a special treatment to
prevent “unboxing” the universal capability.

Γ ⊢ e : T
q

q the set of variables that can be reached from the evaluation result of e.

丅

A New Notion of Freshness

● Key idea: use a special marker ◆ to represent statically unobservable
variables/locations.
new Ref(42) // : Ref[Int]◆, fresh allocation

A New Notion of Freshness

● Key idea: use a special marker ◆ to represent statically unobservable
variables/locations.
new Ref(42) // : Ref[Int]◆, fresh allocation

Unobservable variables/locations may materialize during evaluation:
new Ref(42) → ℓ // : Ref[Int]{ℓ}

A New Notion of Freshness

● Key idea: use a special marker ◆ to represent statically unobservable
variables/locations.
new Ref(42) // : Ref[Int]◆, fresh allocation

Unobservable variables/locations may materialize during evaluation:
new Ref(42) → ℓ // : Ref[Int]{ℓ}

Bound/known reachability sets cannot upcast to ◆:
val x = new Ref(42) // : Ref[Int]x not subtype of Ref[Int]◆

A New Notion of Freshness

● Key idea: use a special marker ◆ to represent statically unobservable
variables/locations.
new Ref(42) // : Ref[Int]◆, fresh allocation

Unobservable variables/locations may materialize during evaluation:
new Ref(42) → ℓ // : Ref[Int]{ℓ}

Bound/known reachability sets cannot upcast to ◆:
val x = new Ref(42) // : Ref[Int]x not subtype of Ref[Int]◆

● Leads to a parametric treatment of reachability;
No conflation of untracked vs fresh resources anymore (cf. Bao et al.).

A New Notion of Freshness

● Key idea: use a special marker ◆ to represent statically unobservable
variables/locations.

● Support both scoped and non-scoped introduction forms of resources:
def try[A](f: CanThrow◆ => A): A

try[CanThrow◆](c => c) // error: CanThrowc not subtype of CanThrow◆

A New Notion of Freshness

● Key idea: use a special marker ◆ to represent statically unobservable
variables/locations.

● Support both scoped and non-scoped introduction forms of resources:
def try[A](f: CanThrow◆ => A): A

try[CanThrow◆](c => c) // error: CanThrowc not subtype of CanThrow◆

try[Ref[Int]◆](c => new Ref(42)) // okay

A New Notion of Freshness

● Key idea: use a special marker ◆ to represent statically unobservable
variables/locations.

● Support both scoped and non-scoped introduction forms of resources:
def try[A](f: CanThrow◆ => A): A

try[CanThrow◆](c => c) // error: CanThrowc not subtype of CanThrow◆

try[Ref[Int]◆](c => new Ref(42)) // okay

● More flexible and expressive compared with Scala Capturing Types:
try[Ref[Int]丅](c => new Ref(42)) // not permitted to be “unboxed”

The Absence of Reachability

● In intersection type systems
Int & String <: Nothing // not typically derivable in syntactic subtyping

● For reachability qualifiers, need to check stronger properties such as separation:
q1 ⋂ q2 ⊆ ∅

The Absence of Reachability

● In intersection type systems
Int & String <: Nothing // not typically derivable in syntactic subtyping

● For reachability qualifiers, need to check stronger properties such as separation:
q1 ⋂ q2 ⊆ ∅

● Key Idea: freshness marker as the argument qualifier
def id(x: T◆): T{x} = x // : ((x: T◆) => T{x})∅

id(y) // okay
id(new Ref(42)) // okay

The Absence of Reachability

● In intersection type systems
Int & String <: Nothing // not typically derivable in syntactic subtyping

● For reachability qualifiers, need to check stronger properties such as separation:
q1 ⋂ q2 ⊆ ∅

● Key Idea: freshness marker as the argument qualifier
def id(x: T◆): T{x} = x // : ((x: T◆) => T{x})∅

id(y) // okay
id(new Ref(42)) // okay

Any argument is fresh for closed function id!

Are there cases that we cannot apply some argument?

Checking Separation

● Applications check observable separation between the function and argument:
val c1: Ref[Int]{c1}; val c2: Ref[Int]{c2}

def addRef(r: Ref[Int]◆) = { c1 := !c1 + !r; c1 }

Checking Separation

● Applications check observable separation between the function and argument:
val c1: Ref[Int]{c1}; val c2: Ref[Int]{c2}

def addRef(r: Ref[Int]◆) = { c1 := !c1 + !r; c1 }

addRef(c1) // type error because {c1} ⋂ {c1} ⊈ ∅

Checking Separation

● Applications check observable separation between the function and argument:
val c1: Ref[Int]{c1}; val c2: Ref[Int]{c2}

def addRef(r: Ref[Int]◆) = { c1 := !c1 + !r; c1 }

addRef(c1) // type error because {c1} ⋂ {c1} ⊈ ∅
addRef(c2) // ok because {c2} ⋂ {c1} ⊆ ∅

Checking Separation

● Applications check observable separation between the function and argument:
val c1: Ref[Int]{c1}; val c2: Ref[Int]{c2}

def addRef(r: Ref[Int]◆) = { c1 := !c1 + !r; c1 }

addRef(c1) // type error because {c1} ⋂ {c1} ⊈ ∅
addRef(c2) // ok because {c2} ⋂ {c1} ⊆ ∅

Key idea: argument is fresh in context if the function
can’t observe overlap with other variables!

Checking Separation

● Applications check observable separation between the function and argument:
val c1: Ref[Int]{c1}; val c2: Ref[Int]{c2}

def addRef(r: Ref[Int]◆) = { c1 := !c1 + !r; c1 }

addRef(c1) // type error because {c1} ⋂ {c1} ⊈ ∅
addRef(c2) // ok because {c2} ⋂ {c1} ⊆ ∅

● Function argument qualifier describes permissible overlap/aliasing patten:
def addRef2(c: Ref[Int]{c1, ◆}) = …
addRef2(c1) // ok now {c1} ⋂ {c1} ⊆ {c1}

Key idea: argument is fresh in context if the function
can’t observe overlap with other variables!

Checking Separation -- Safe Parallelization

● Requiring disjoint qualifiers of two thunks to ensure non-interference:

// library code
def par(a: (() => Unit)◆)(b: (() => Unit)◆): Unit

// user code
val c1 = new Ref(0), c2 = new Ref(0)
par {
 // ok: operate on c1 only, cannot access c2
 c1 += 42
} {
 // ok: operate on c2 only, cannot access c1
 c2 -= 100
}

Precise Reachability Polymorphism

● Lightweight (quantification-free) reachability polymorphism:
def id[T](x: T◆): T{x} = x // : ((x: T◆) => T{x})∅

id(42) // : Int∅

id(new Ref(42)) // : Ref[Int]◆

id(x) // : Ref[Int]{x}

Result reachability can precisely depend on the argument reachability.

Precise Reachability Polymorphism

● Lightweight (quantification-free) reachability polymorphism:
def id[T](x: T◆): T{x} = x // : ((x: T◆) => T{x})∅

id(42) // : Int∅

id(new Ref(42)) // : Ref[Int]◆

id(x) // : Ref[Int]{x}

Result reachability can precisely depend on the argument reachability.

● Bounded parametric reachability a la F<:

def id[Tz <: Top◆](x: T◆): T{x} = x
val p = makePair(a, b) // : Pair[Ref[Int]{a}, Ref[Int]{b}]
fst(p) // : Ref[Int]{a}

Formalization & Metatheory

● Simply-typed λ◆-calculus

● F<:-calculus with bounded polymorphism
○ Typability of Church-encoding of pairs

● Syntactic soundness

○ Progress
○ Preservation: qualifiers may grow only due to

freshness (new allocations)

● Preservation of separation: two separate terms remain

separate after reduction steps.

◆

Mechanization & Implementation

● Mechanized syntactic formalization in Coq
○ Alternative logical relation formalization in progress

● Prototype implementation Diamond language
○ Type checking of reachability types

● Both can be found at https://github.com/TiarkRompf/reachability

Contribution & Conclusion

★ Polymorphic reachability types
○ Tracking sharing/separation in higher-order generic languages
○ Representing freshness explicitly
○ Precise reachability polymorphism
○ F-sub style bounded polymorphism

★ Paves the way for integration of reachability types
in practical impure functional languages.

★ Mechanization & prototype implementation:
https://github.com/TiarkRompf/reachability

https://github.com/TiarkRompf/reachability

Contribution & Conclusion

I’m on the job market!

More about my research:
https://continuation.passing.style/

★ Polymorphic reachability types
○ Tracking sharing/separation in higher-order generic languages
○ Representing freshness explicitly
○ Precise reachability polymorphism
○ F-sub style bounded polymorphism

★ Paves the way for integration of reachability types
in practical impure functional languages.

★ Mechanization & prototype implementation:
https://github.com/TiarkRompf/reachability

https://github.com/TiarkRompf/reachability

