
Compiling & Controlling
Symbolic Execution

Guannan Wei
with Songlin Jia, Ruiqi Gao, Haotian Deng,

Shangyin Tan, Oliver Bračevac, and Tiark Rompf

Northeastern University - Dec 1 2023

Symbolic Execution

2

if (x > 5) {
 if (y < 10) {
 ...
 } else {
 ...
 }
} else {
 ...
}

x = user_input()
y = user_input()

Symbolic Execution

3

if (x > 5) {
 if (y < 10) {
 ...
 } else {
 ...
 }
} else {
 ...
}

x = user_input()
y = user_input()

mark as
symbolic

Symbolic Execution

4

if (x > 5) {
 if (y < 10) {
 ... /* path 1 */
 } else {
 ... /* path 2 */
 }
} else {
 ... /* path 3 */
}

x > 5 x ≤ 5

y < 10 y ≥ 10

x > 5 ∧ y < 10

x > 5 ∧ y ≥ 10

x ≤ 5

x = user_input()
y = user_input()

mark as
symbolic

Symbolic Execution

5

if (x > 5) {
 if (y < 10) {
 ... /* path 1 */
 } else {
 ... /* path 2 */
 }
} else {
 ... /* path 3 */
}

x > 5 x ≤ 5

y < 10 y ≥ 10

x > 5 ∧ y < 10

x > 5 ∧ y ≥ 10

x ≤ 5

path conditions

x = user_input()
y = user_input()

mark as
symbolic

Symbolic Execution

6

if (x > 5) {
 if (y < 10) {
 ... /* path 1 */
 } else {
 ... /* path 2 */
 }
} else {
 ... /* path 3 */
}

x > 5 x ≤ 5

y < 10 y ≥ 10

x > 5 ∧ y < 10

x = user_input()
y = user_input()

solver() = { x = 6, y = 9 }

Symbolic Execution - Applications
● automatic test case generation

● bug finding and exploit generation

● bounded verification

● worst-case execution time analysis

● …

7

Symbolic Execution - Applications

8

Symbolic Execution - Applications

9

and many others ...

Symbolic Execution Engine
a concrete interpreter eval: Prog → (Value, State)

● simulates the execution deterministically

10

concrete
interpreter

input
program

result

Symbolic Execution Engine
a symbolic interpreter evalsym: Prog → Set[(Value, State, PC)]

11

● simulates the execution nondeterministically

● records the condition of each path

symbolic
interpreter

input
program

test
cases

Path Explosion

12

Concrete Execution

1 path
...

... ...

... ...

Symbolic Execution

exponential number of
independent paths

vs

Path Explosion

13

...

... ...

... ...

Symbolic Execution

exponential number of
independent paths

vs
Concrete Execution

1 path

Path Explosion

14

...

... ...

... ...

Symbolic Execution

exponential number of
independent paths

vs
Concrete Execution

1 path

Path Explosion

15

...

... ...

... ...

Symbolic Execution

exponential number of
independent paths

vs
Concrete Execution

1 path

Path Explosion

16

...

... ...

... ...

Symbolic Execution

exponential number of
independent paths

vs
Concrete Execution

1 path

Path Explosion

17

...

... ...

... ...

Symbolic Execution

exponential number of
independent paths

vs

performance matters

Concrete Execution

1 path

Performance Matters

KLEE (C++) 3,000x slower
 angr (Python) 321,000x slower

Data from Qsym: A practical concolic execution engine tailored for hybrid fuzzing. Yun et al., USENIX Security, 2018.
18

symbolic interpreter performance
compared to native execution

evalsym: Prog → Set[(Value, State, PC)]

Performance Matters

19

interpretation overhead

● inspecting program AST/IR
● dispatching the semantics
● recursion/loop at meta-level

Data from Qsym: A practical concolic execution engine tailored for hybrid fuzzing. Yun et al., USENIX Security, 2018.

evalsym: Prog → Set[(Value, State, PC)]

To remove these overheads,

compilation is inevitable.

20

Symbolic-Execution Compilers

Symbolic-Execution Compilers

symbolic
interpreter

input
program

test
cases

Symbolic-Execution Compilers

symbolic
compiler

input
program

compiled
program

generates runtime

inputs

symbolic
interpreter

input
program

test
cases

test
cases

compilation removes interpretation overhead,
optimizes programs, etc.

runs faster

Symbolic-Execution Compilers

symbolic
compiler

input
program

compiled
program

generates

compilation removes interpretation overhead,
optimizes programs, etc.

runs faster

derives

symbolic
interpreter

input
program

test
cases

Our approach: staging/partial evaluation
deriving symbolic-compilers from symbolic-interpreters

via metaprogramming (OOPSLA ‘20)

runtime

inputs test
cases

Symbolic-Execution Compilers

symbolic
compiler

input
program

compiled
program

generates runtime

inputs

symbolic
interpreter

input
program

test
cases

test
cases

runs faster

[Compiler Construction ‘96]

Path Explosion, Worse

25

n = user_input() // i.e. symbolic
while (i < n) {
 <loop-body>
}
<after-loop>

Path Explosion, Worse

26

i < n i ≥ n

<loop-body> <after-loop>

n = user_input() // i.e. symbolic
while (i < n) {
 <loop-body>
}
<after-loop>

Path Explosion, Worse

27

i < n i ≥ n

<loop-body> <after-loop>

n = user_input() // i.e. symbolic
while (i < n) {
 <loop-body>
}
<after-loop>

Path Explosion, Worse

28

i < n i ≥ n

<loop-body>

i < n

<after-loop>

i ≥ n

n = user_input() // i.e. symbolic
while (i < n) {
 <loop-body>
}
<after-loop>

Path Explosion, Worse

29

i < n i ≥ n

<loop-body>

i < n

<after-loop>

i ≥ n

n = user_input() // i.e. symbolic
while (i < n) {
 <loop-body>
}
<after-loop>

Path Explosion, Worse

30

<loop-body> <after-loop>

<loop-body> <after-loop>

n = user_input() // i.e. symbolic
while (i < n) {
 <loop-body>
}
<after-loop>

Path Explosion, Worse

31...

n = user_input() // i.e. symbolic
while (i < n) {
 <loop-body>
}
<after-loop>

32

i < n i ≥ n

<loop-body> <after-loop>

Path Explosion, Worse

Problem: once running into the black hole,
we cannot effectively explore other parts of the program

n = user_input() // i.e. symbolic
while (i < n) {
 <loop-body>
}
<after-loop>

33

i < n i ≥ n

<loop-body> <after-loop>

Escaping the Black Hole

Traditional wisdom: deploys clever path selection heuristics

n = user_input() // i.e. symbolic
while (i < n) {
 <loop-body>
}
<after-loop>

Escaping the Black Hole
● random state/path selection
● coverage-guided heuristics
● …

34

Escaping the Black Hole
● random state/path selection
● coverage-guided heuristics
● …

35

Escaping the Black Hole
● random state/path selection
● coverage-guided heuristics
● …

36

unexplored
function

Escaping the Black Hole
● random state/path selection
● coverage-guided heuristics
● …

Deploying path selection strategies needs the ability
to pause and resume the execution of paths.

37

38

To efficiently execute and effectively explore the program,
compiled symbolic execution must be controlled.

39

How can we do that without an external
interpreter/engine to control the execution?

To efficiently execute and effectively explore the program,
compiled symbolic execution must be controlled.

To efficiently execute and effectively explore the program,
compiled symbolic execution must be controlled.

40

Solution: Compile with continuations,
enabling the program to “control” itself.

How can we do that without an external
interpreter/engine to control the execution?

Making Control Explicitly
represent the rest of execution as a function k in the generated code

41

Making Control Explicitly
represent the rest of execution as a function k in the generated code

42

def g() =
 if (sym_cnd) {
 x = 42
 } else {
 x = 100
 }
 return x

y = g()
z = y + 1
...

Making Control Explicitly
represent the rest of execution as a function k in the generated code

43

def g() =
 if (sym_cnd) {
 x = 42
 } else {
 x = 100
 }
 return x

cnd

ret

y = g()
z = y + 1
...

g
call

z=y+1

static control-flow graph

...

Making Control Explicitly
represent the rest of execution as a function k in the generated code

44

def g() =
 if (sym_cnd) {
 x = 42
 } else {
 x = 100
 }
 return x

cnd

ret

y = g()
z = y + 1
...

g
call

z=y+1

static control-flow graph

...continuation k

Making Control Explicitly
represent the rest of execution as a function k in the generated code

45

def g() =
 if (sym_cnd) {
 x = 42
 } else {
 x = 100
 }
 return x

cnd

ret

y = g()
z = y + 1
...

g
call

z=y+1

... ...

invoke and fork
k(s1); k(s2)

Making Control Explicitly
represent the rest of execution as a function k in the generated code

46

Making Control Explicitly
represent the rest of execution as a function k in the generated code

47

continuation k

Making Control Explicitly
represent the rest of execution as a function k in the generated code

48

save and pause

scheduler.put(() => k(s))

continuation k

Making Control Explicitly
represent the rest of execution as a function k in the generated code

49

continuation k

dispatch and resume

k = scheduler.get(); k()

Parallelism for Free

50

… …

scheduler.put(k1) scheduler.put(k2)

Parallelism for Free

51

worker-thread() {
 k = scheduler.get(); k()
}

thread pool

… …

scheduler.put(k1) scheduler.put(k2)

Controlling Symbolic Execution

52

represent the rest of execution as a function k in the generated code

● invoke and fork
k(s1); k(s2)

● save and pause
scheduler.put(() => k(s))

● dispatch and resume
k = scheduler.get(); k()

● dispatch in parallel

53

Specializing a symbolic interpreter
that itself is written in continuation-passing style

def staged-evalsym(p: Prog, k: Rep[State] => Rep[Unit]): Rep[Unit]

Compiling Symbolic Execution
with Continuations

A Continuation View of
 Symbolic Execution

● Nondeterministic symbolic execution
○ Fork, pause, switch, resume, etc.

A Continuation View of
 Symbolic Execution

● Nondeterministic symbolic execution
○ Fork, pause, switch, resume, etc.

● Concolic execution
○ Deterministic symbolic execution, control guided by concrete inputs
○ Ongoing work: concolic execution for WebAssembly

● State-merging symbolic execution
○ Fork, but with join points
○ Idea: Synchronization of two parallel/concurrency continuations

● Other strategies or heuristics?

GenSym

56

[ICSE ‘23] Compiling parallel
symbolic execution with continuations.

GenSym

57

Takes general
LLVM IR inputs

[ICSE ‘23] Compiling parallel
symbolic execution with continuations.

GenSym

58

Written in
Scala/LMS

[ICSE ‘23] Compiling parallel
symbolic execution with continuations.

GenSym

59

Outputs C++
in CPS

[ICSE ‘23] Compiling parallel
symbolic execution with continuations.

GenSym: Performance Evaluation
● KLEE: state-of-the-art symbolic interpreter for LLVM IR

○ Actively developed over 15+ years
○ Written in C++

● Evaluated on a set of GNU Coreutils programs
○ Using POSIX file system and uClibc library
○ Average program size: 28k LOC of LLVM IR instructions

60

Single-thread Pure Execution

61~4x speedups

Single-thread Throughput

62
Number of explored paths per second in 1 hour: 4.3x more paths on avg.

Parallel Execution Efficiency

63

Speedups using more
cores/threads

 4 threads - 3.6x
 8 threads - 6.7x
12 threads - 9.3x

GenSym：compiling symbolic execution to continuation-passing style to
build high-performance and parallel symbolic execution engine

64

★ Efficient
○ Semantics-based compilation
○ Outperforms state-of-the-art tools

★ Effective
○ Branching as concurrency/parallelism
○ Path-selection heuristics

Code: https://continuation.passing.style/GenSym
[ICSE ‘23] Compiling parallel symbolic execution with continuations.
[OOPSLA ‘20] Compiling symbolic execution with staging and algebraic effects.

https://continuation.passing.style/GenSym

GenSym：compiling symbolic execution to continuation-passing style to
build high-performance and parallel symbolic execution engine

65

★ Efficient
○ Semantics-based compilation
○ Outperforms state-of-the-art tools

★ Effective
○ Branching as concurrency/parallelism
○ Path-selection heuristics

Questions?

Code: https://continuation.passing.style/GenSym
[ICSE ‘23] Compiling parallel symbolic execution with continuations.
[OOPSLA ‘20] Compiling symbolic execution with staging and algebraic effects.

https://continuation.passing.style/GenSym

