
Polymorphic Reachability Types
Tracking Freshness, Aliasing, and Separation in Higher-Order Generic Programs

Guannan Wei1 Oliver Bračevac1,2 Songlin Jia1 Yuyan Bao3 Tiark Rompf1

1 Purdue University / PurPL 2 Galois Inc. 3 Augusta University

Background: Reachability Types New: Reachability Polymorphism

Formalization & Metatheory

● Aiming at bringing Rust-style reasoning principles into
higher-order functional languages.

● Challenge: side effects + pervasive sharing, capturing,
and escaping in higher-order programs.

● Key idea: qualifying types with a set of variables

New: Tracking Freshness

new Ref(42) // : Ref[Int]◆, fresh allocation
val i = 42 // : Int∅, no tracking

// library code
def par(a: (() => Unit)◆)(b: (() => Unit)◆): Unit
// user code
val c1 = new Ref(0), c2 = new Ref(0)
par {
 // ok: operate on c1 only, cannot access c2
 c1 += 42
} {
 // ok: operate on c2 only, cannot access c1
 c2 -= 100
}

● This work: use a special marker ◆ in qualifiers to
explicitly track fresh resources that are not yet bound.

Implementation
● Diamond prototype language
● Scala-like syntax in the frontend
● Type checker for polymorphic

reachability types based on F-sub

Safe Parallelization

val x = new Ref(42) // : Ref[Int]x

val y = x // : Ref[Int]y

// in typing context y: Ref[Int]x, x: Ref[Int]◆

● Preserving indirection in reachability tracking

Sharing Mutable States (not expressible in Rust)

def counter(n: Int) = {
 val c = new Ref(n)
 (() => c += 1, () => c -= 1)
}
// counter : Int =>
// 𝜇p.Pair[(() => Unit)p, (() => Unit)p]◆
val ctr = counter(0)
// ctr: Pair[(() => Unit)ctr, (() => Unit)ctr]ctr
val incr = fst(ctr) // : (() => Unit)ctr
val decr = snd(ctr) // : (() => Unit)ctr

● Contextual subtyping of qualifiers

def id[Tz <: Top◆](x: T◆): Tx = x
def id[T](x: T◆) = x // shorthand notation

● This work: functions can abstract over the argument’s
qualifier and preserve precise reachability.

● Polymorphic identity function in F-sub style:

id(42) // : Int∅

val x = new Ref(42)
id(x) // : Ref[Int]x
id(new Ref(42)) // : Ref[Int]◆

● id is parametric over the argument reachability:

Self-references 𝜇p as upper bounds of reachability for
the escaped pair:

Local Invariants
(e.g. uniqueness,

linearity, …)

Reachability & Separation
(No global invariant)

Global Invariants
(e.g. uniqueness, linearity, …)

Local
Relaxation/

Unsafe Features
(e.g. Borrowing)

Rust/ownership-style: Reachability types:

Reachability types (OOPSLA ‘21): tracking lifetimes,
sharing, and separation in higher-order languages.

Cool Examples

More examples (borrowing, ownership transfer, capability programming, etc.) in OOPSLA 21 and our new preprint!

Requiring two thunks that have disjoint qualifiers to
ensure non-interference:

● Simply typed λ◆-calculus
● Parametric polymorphic F◆-calculus
○ Bounded quantification over reachability qualifiers

● Type and qualifiers preservation: Qualifiers may
increase only due to fresh allocations.

● Separation preservation: Two separate terms remain
separate after reduction steps.

● Syntactic formalizations
○ Reachability Types (OOPSLA ‘21)
○ Polymorphic Reachability Types (cond. acc. POPL ‘24)

● Logical relation formalizations
○ Alias/effect-aware IR for optimizations (OOPSLA ‘23)
○ Allowing to prove termination, equivalence, etc.

<:

x: T{y, w}

z: T∅

y: T{z}
w: T{u, v}

u: T∅
v: T∅

<: T∅ x: T{y, w}

z: T∅

y: T{♦, z}
w: T{u, v}

u: T∅
v: T∅

<: T{y}

s: Tq

Upcasting allows refining qualifiers by looking up the
context (left), but only up to the freshness marker (right).

Intuition: ◆ represents a statically unknown
set of reachable variables.

● Intuition: q is the set of variables that can be reached
from the evaluation result of e.

Γ ⊢ e : T q

... // c1: Tc1, c2: Tc2
def foo[T](x: T{c1,◆}): Tx = { c1 := !c1 + 1; x }
// foo : ((x: T{c1,◆}) => Tx)c1
foo(c1) // : Tc1
foo(c2) // : Tc2 ← precision retained

● Qualifier-dependent applications:

