
Polymorphic Reachability Types: Tracking Freshness,

Aliasing, and Separation in Higher-Order Generic Programs

GUANNAN WEI, Purdue University, USA
OLIVER BRAČEVAC∗, Purdue University, USA and Galois, Inc., USA

SONGLIN JIA, Purdue University, USA
YUYAN BAO, Augusta University, USA
TIARK ROMPF, Purdue University, USA

Fueled by the success of Rust, many programming languages are adding substructural features to their type
systems. The promise of tracking properties such as lifetimes and sharing is tremendous, not just for low-level
memory management, but also for controlling higher-level resources and capabilities. But so are the di�culties
in adapting successful techniques from Rust to higher-level languages, where they need to interact with other
advanced features, especially various �avors of functional and type-level abstraction. What would it take to
bring full-�delity reasoning about lifetimes and sharing to mainstream languages? Reachability types are a
recent proposal that has shown promise in scaling to higher-order but monomorphic settings, tracking aliasing
and separation on top of a substrate inspired by separation logic. However, naive extensions on top of the prior
reachability type system _∗ with type polymorphism and/or precise reachability polymorphism are unsound,
making _∗ unsuitable for adoption in real languages. Combining reachability and type polymorphism that is
precise, sound, and parametric remains an open challenge.

This paper presents a rethinking of the design of reachability tracking and proposes new polymorphic
reachability type systems. We introduce a new freshness quali�er to indicate variables whose reachability sets
may grow during evaluation steps. The new system tracks variables reachable in a single step and computes
transitive closures only when necessary, thus preserving chains of reachability over known variables that can
be re�ned using substitution. These ideas yield the simply-typed _q-calculus with precise lightweight, i.e.,
quanti�er-free, reachability polymorphism, and the Fq

<:
-calculus with bounded parametric polymorphism over

types and reachability quali�ers, paving the way for making true tracking of lifetimes and sharing practical
for mainstream languages. We prove type soundness and the preservation of separation property in Coq.
We discuss various applications (e.g., safe capability programming), possible e�ect system extensions, and
compare our system with Scala’s capture types.

CCS Concepts: • Software and its engineering→ Semantics; Functional languages; General program-

ming languages.

Additional Key Words and Phrases: type systems, reachability types, polymorphism, aliasing, e�ects

ACM Reference Format:

Guannan Wei, Oliver Bračevac, Songlin Jia, Yuyan Bao, and Tiark Rompf. 2024. Polymorphic Reachability
Types: Tracking Freshness, Aliasing, and Separation in Higher-Order Generic Programs. Proc. ACM Program.

Lang. 8, POPL, Article 14 (January 2024), 32 pages. https://doi.org/10.1145/3632856

∗Work completed while at Purdue University

Authors’ addresses: Guannan Wei, Purdue University, West Lafayette, IN, USA, guannanwei@purdue.edu; Oliver Bračevac,
Purdue University, West Lafayette, IN, USA and Galois, Inc., Portland, OR, USA, oliver@galois.com; Songlin Jia, Purdue
University, West Lafayette, IN, USA, jia137@purdue.edu; Yuyan Bao, Augusta University, USA, yubao@augusta.edu; Tiark
Rompf, Purdue University, USA, tiark@purdue.edu.

© 2024 Copyright held by the owner/author(s).
ACM 2475-1421/2024/1-ART14
https://doi.org/10.1145/3632856

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 14. Publication date: January 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
HTTPS://ORCID.ORG/0000-0002-3150-2033
HTTPS://ORCID.ORG/0000-0003-3569-4869
HTTPS://ORCID.ORG/0009-0008-2526-0438
HTTPS://ORCID.ORG/0000-0002-3832-3134
HTTPS://ORCID.ORG/0000-0002-2068-3238
https://doi.org/10.1145/3632856
https://orcid.org/0000-0002-3150-2033
https://orcid.org/0000-0003-3569-4869
https://orcid.org/0009-0008-2526-0438
https://orcid.org/0000-0002-3832-3134
https://orcid.org/0000-0002-2068-3238
https://orcid.org/0000-0002-2068-3238
https://doi.org/10.1145/3632856

14:2 Guannan Wei, Oliver Bračevac, Songlin Jia, Yuyan Bao, and Tiark Rompf

1 INTRODUCTION

Type systems based on ownership and borrowing are seeing increasing practical adoption, most
prominently for ensuring memory safety in comparatively low-level “systems languages” such as
Rust [Matsakis and Klock 2014]. But what about higher-level languages, speci�cally those that rely
on a larger degree on functional and type-level abstraction (e.g., Scala and OCaml)?
Tracking substructural properties such as lifetimes and sharing in the type system holds great

promise, not only for low-level memory management, but also for managing a variety of other
resources (e.g., �les, network sockets, access tokens, mutex locks, etc.), for tracking e�ects (e.g.,
via capabilities for exceptions, algebraic e�ects, continuations, callbacks via async/await, etc.), as
well as for compiler optimizations (e.g., �ne-grained dependency analysis [Bračevac et al. 2023],
safe destructive updates, etc.). Therefore, it is no surprise that several mainstream languages are
moving in this direction with experimental proposals backed by serious engineering e�orts, which
are to a large degree inspired by the success of Rust, e.g., Linear Haskell [Bernardy et al. 2018] and
Scala capture types [Boruch-Gruszecki et al. 2023].
However, these proposals all focus on relatively narrow substructural properties rather than

attempting tomodel lifetimes and sharingwith similar generality as Rust’s ownership and borrowing
approach. For example, Linear Haskell speci�cally tracks multiplicity of uses, and Scala capture
types speci�cally target e�ect capabilities. Of course, this is neither neglect nor coincidence, but the
observable e�ect of an underlying hard problem: ownership type systems [Clarke et al. 2013, 1998;
Noble et al. 1998] that would enable tracking more sophisticated lifetime properties traditionally
rely on strict heap invariants (selectively relaxed via borrowing [Hogg 1991]) that are di�cult to
enforce in the presence of pervasive functional and type-level abstraction (e.g., Figure 1).
In this paper, we build on reachability types [Bao et al. 2021], a recent proposal for bringing

the bene�ts of ownership type systems to higher-order languages, in a way that is more directly
inspired by separation logic [O’Hearn et al. 2001; Reynolds 2002]. We propose new reachability
type systems that are suitable for tracking aliasing and separation in polymorphic higher-order
languages, addressing several limitations of Bao et al.’s work, and thus paving the way for adoption
in realistic languages.

Reachability Types: Tracking Sharing. The key idea of reachability types is to track reachable
variables/locations as type quali�ers, which is best demonstrated by an example with ML-style
references (types and contexts shown as comments):

val x = new Ref(0) // : Ref[Int]x in context [x: Ref[Int]q]

val y = x // : Ref[Int]y in context [y: Ref[Int]x, x: Ref[Int]q]

Variable x is bound to a freshly allocated reference, indicated by the freshness marker q which is
part of the new design in this paper. The assigned type quali�er of expression x tracks only x itself,
and just the same, the alias y of x tracks only y itself. By inspecting the typing context, we are able to
collect all reachable variables transitively on demand, e.g., through y we can reach both itself and x.
We say that variable x is reachable from y in the sense that there is an access path starting

from y to x, corresponding to their reachability in the runtime store. Note that reachability is not
symmetric, and stronger than aliasing, e.g., y reaches x, but x does not reach y. Reachability is
cheaper to compute than full aliasing, yet su�cient to check non-aliasing, i.e., separation.

Quali�ers for function types include the free variables captured by the function from its de�ning
scope, re�ecting the fact that these free variables are reachable by the runtime closure value of a
function. For example, function inc below captures variable counter de�ned in the outer scope:

val counter = new Ref(0)

def inc(n: Int): Unit = { counter := !counter + n } // : inc: (Int => Unit)counter

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 14. Publication date: January 2024.

Polymorphic Reachability Types 14:3

def counter(n: Int) = { // counter: Int => `p.Pair[(()=>Unit){p}, (()=>Unit){p}]q

val c = new Ref(n) // : Ref[Int]{c}

(() => c += 1, () => c -= 1) // : Pair[(()=>Unit){c}, (()=>Unit){c}]{c}

}

// instantiate the self-reference p with bound name ctr:

val ctr = counter(0) // : Pair[(()=>Unit){ctr}, (()=>Unit){ctr}]{ctr}

// name ctr abstracts over its captured variables:

val incr = fst(ctr) // : (()=>Unit){ctr}

val decr = snd(ctr) // : (()=>Unit){ctr}

Fig. 1. An example (adapted from [Bao et al. 2021]) demonstrating first-class functions supported by reach-
ability types. The counter function returns two closures over a shared mutable reference (which is a fresh
value before binding it to c). The return value is a pair typed with a self-reference p to express the capture of c
by both closures. The self-reference introduced by the `-notation is similar to DOT, though directly a�ached
to function types in our formalization (cf. Section 8.1 for the encoding and Section 4.1 for the formal syntax).
In comparison, Rust’s type system prevents returning closures over local mutable references due to its “shared
XOR mutable” restriction, and requires falling back to dynamic reference counting for similar functionality.

The quali�er of a function can be considered as the observability of the function (or short, its ability),
since it constrains what part of the context can be used within the function body. In addition, both
function arguments and return types can be quali�ed with reachability sets.

Reachability Types: Tracking Separation. The idea of tracking reachability at the type level gives
rise to powerful reasoning capabilities — most importantly, when considering the absence of
reachability, namely separation. Two terms are separate when their type quali�ers are (transitively)
disjoint. Argument quali�ers of function types indicate the permissible overlap between a call-site
argument and the function’s reachable set. Consider the following inc function capturing counter:
def inc(r: Ref[Int]q): Unit = { r := !counter + 1 }

Its argument quali�er is the fresh marker, demanding that the argument can be anything but cannot
be aliased with the resources that the function can observe from its context (i.e., cannot be counter).

The metatheory of reachability types guarantees not only preservation of types but also preser-
vation of separation: if two expressions have disjoint quali�ers, they will evaluate to disconnected
object graphs at runtime (Section 4.4.3). Taking reachability and separation as the fundamental
building blocks of a type system stands in contrast to traditional ownership type systems that put
heap invariants about unique access paths �rst and selectively re-introduce sharing via borrowing.
Crucially, reachability and separation appear as more fundamental properties in the sense that
formal accounts of Rust’s type system [Jung et al. 2018] are typically expressed using separation
logic as the metalanguage.

Escaping Closures with Shared Mutable Data. Previous work [Bao et al. 2021] has shown how
reachability types elegantly support functional abstraction beyond what is available in Rust. For
example, Figure 1 shows a program with escaping functions that can track the sharing of locally-
de�ned resources, which cannot be expressed under Rust’s “shared XOR mutable” constraint.
In Figure 1, we de�ne the counter function that returns a pair of functions to increment or

decrement a mutable variable. Both functions capture the local heap-allocated reference cell c.
Hence, before returning, both components of the pair track quali�er c. Once escaped from c’s
de�ning scope, the name c is not meaningful in the outer scope, but we still need to track the
sharing between the pair components. Reachability types preserve the tracking of shared resources
through self-references, a concept borrowed from Dependent Object Types (DOT) [Amin et al. 2016;
Rompf and Amin 2016].

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 14. Publication date: January 2024.

14:4 Guannan Wei, Oliver Bračevac, Songlin Jia, Yuyan Bao, and Tiark Rompf

x: T{y, z, w, u, v}

z: T∅

y: T{z} w: T{u, v}

u: T⊥
v: T⊥

s: Tq

(a) _∗ [Bao et al. 2021] tracks
all reachable variables transitively.
Leaf nodes are untracked (⊥ in _∗).

z: T∅

y: T{z} w: T{u, v}

u: T∅
v: T∅

x: T{y, w} <: T∅

(b) _q tracks one-step reachability
by default. x: T{y, w} can be up-
cast to untracked x: T∅.

z: T♦

y: T{z} w: T{u, v}

u: T∅
v: T∅

s: Tq

x: T{y, w} <: T{z}

(c) _q models freshness using the q
marker, which prevents further up-
casting via subtyping (beyond z).

Fig. 2. Illustration and comparison of di�erent reachability tracking mechanisms. We use solid lines for direct
reachability, and dashed lines for reachability that is unobservable in the current context (cf. Section 3.1.2). 2a
illustrates prior work by Bao et al. [2021], 2b reflects both this work and Scala capture types [Boruch-Gruszecki
et al. 2023], and 2c illustrates the unique feature of this work, which prevents upcasting through “fresh”
variables, and thus allows substituting fresh variables with larger (but observably separate) reachability sets
during evaluation. Thus, this work subsumes the essential aspects of both _∗ (separation) and capture types
(qualifier refinement using subtyping).

Self-references are identi�ers introduced at the type level, but can only be used in quali�ers.
A self-reference serves as an abstraction of a set of captured variables. For example, the counter

function in Figure 1 returns a pair with the self-reference p, which by subtyping is an upper bound
of the captured reference c, i.e., {c} <: {p}. When leaving the scope (but before binding the pair to a
variable), we use the self-reference to pack the encapsulated resources that are not visible outside:

Pair[(()=>Unit)c, (()=>Unit)c] { `p.Pair[(()=>Unit)p, (()=>Unit)p]

Then, when the returned value is bound to an identi�er, we unpack the self-reference and instantiate
it to the bound variable. Unpacking eliminates the self-reference and replaces it with a concrete
local binding (i.e., ctr in Figure 1):

`p.Pair[(()=>Unit)p, (()=>Unit)p] { Pair[(()=>Unit)ctr, (()=>Unit)ctr]

Therefore, we have properly maintained the mutable sharing between the two pair components. In
contrast, Rust does not allow two functions to capture shared resources in mutable ways, unless
using dynamic reference counting or unsafe mechanisms to bypass the static ownership discipline.

In Section 8.1, we study the Church-encoding of pairs, and explain how function self-references
support escaping values. It is important to note that, just like with recursive types [Amadio and
Cardelli 1993; Zhou et al. 2023, 2022], the theory of subtyping for self references is subtle, and
also di�ers from recursive types in important ways (e.g., in having to preserve the identity of
references). Hence, while our formalization (Sections 4 and 5) tracks self-references precisely in
type assignment, it curbs their use in subtyping, and leaves a full development of subtyping for
self references to future work. Our encodings of data types thus rely on coercions via [-expansion.
However, these conversions justify corresponding subtyping rules that could be soundly added to
implementations with �rst-class datatype support.

Preserving Chains of Reachability. As mentioned in the �rst motivating example, it su�ces to assign
a re�exive quali�er when typing variables, i.e., x is typed as Tx under a well-formed context. When
necessary, we can compute the transitively saturated reachability sets on demand, e.g., before
computing intersections to check separation (see Section 3.1.5).
As an important new ingredient in this paper, this one-step reachability preserves the chains

of reachability and maintains higher precision across substitution, both as part of dependent

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 14. Publication date: January 2024.

Polymorphic Reachability Types 14:5

function application and during reduction steps. This approach yields a new notion of “maybe-
tracked” values, whose tracking status contextually and transitively depends on other variables
from the context, e.g., by re�ning reachability through the subtyping relation (see Section 3.1.4), x’s
reachability set in Figure 2b can be “upcast” to the empty set, re�ecting its true untracked status.

Compared with the prior work, quali�ers in Bao et al. [2021]’s _∗-calculus are assigned to always
include all transitively reachable variables, i.e., the reachability sets are eagerly saturated. The two
di�erent mechanisms are illustrated in Figure 2. In Figure 2a, _∗ tracks all variables that can be
transitively reached from x, whereas in Figure 2b, x only tracks its immediate reachable variables,
namely {y, w}. Tracking saturated reachability is not always necessary and leads to precision
loss when the reachability set of a variable is re�ned to a smaller set using substitution. If the
reachability set containing the variable is transitively saturated, the now super�uous elements
cannot be removed, unless one would recompute the transitive closure from scratch.

Distinguishing Untracked, Tracked, and Fresh Resources. Another key limitation of Bao et al.’s _∗

is the use of an explicit untracked marker ⊥ (e.g., for pure functions and non-resource values)
and reserving variable sets for both “fresh” (using ∅) and tracked resources. This design leads
to a loss of tracking precision and interacts badly with type polymorphism (cf. [Wei et al. 2023],
Appendix A). We found that it is more natural and intuitive to let quali�ers uniformly be sets,
and optionally include the novel freshness marker q as an explicit representation of statically
unobservable variables/locations which may materialize during evaluation (e.g., from allocations).
While the q placeholder as such requires careful treatment in subtyping chains (e.g., Figure 2c), it
also enables a harmonious integration of reachability with type polymorphism.

Polymorphic Reachability Types. Based on one-step reachability and the novel freshness repre-
sentation, this paper proposes new variants of reachability types that track �ne-grained lifetime
properties for higher-order, imperative, and polymorphic languages.

We develop the _q-calculus (Section 4), featuring precise lightweight reachability polymorphism
(without explicit quanti�ers), deep dependencies in quali�er-dependent applications, and nested
references. The _q-calculus overcomes fundamental expressiveness limitations of Bao et al.’s _∗.
Furthermore, on top of the _q-calculus, we develop extensions with bounded quanti�cation over
types and quali�ers (Section 5), leading to the Fq

<:-calculus that for the �rst time can soundly
support polymorphic data types with granular reachability tracking of components.

Contributions. We make the following speci�c contributions:

• We informally introduce the polymorphic reachability type system with several motivating
examples (Section 2), highlighting key use cases and demonstrating expressiveness.
• We introduce the key new ideas that lead to precise reachability tracking (Section 3). Speci�cally,
we propose a new mechanism that preserves transitive chains of reachability based on an
explicit “freshness” representation.
• We present the formal theory and metatheory of (1) the _q-calculus with precise reachability
polymorphism that improves over Bao et al. [2021]’s _∗-calculus (Section 4), and (2) the Fq

<:-
calculus with bounded type-and-quali�er abstraction as an F<:-style extension of _q (Section 5).
We prove type soundness and the preservation of separation property for both calculi, which
have been mechanized in Coq, along with the examples in this paper.
• We discuss decidability issues and our prototype type checker for Fq

<: (Section 6).
• We discuss limitations and possible extensions of the current system, including general nested
references and �ow-sensitive e�ect systems (Section 7).
• We present two case studies, the Church-encoding of polymorphic data types and a comparison
with Scala capture types (Section 8). Our system subsumes both the original reachability types
_∗ [Bao et al. 2021] and the essence of capture types [Boruch-Gruszecki et al. 2023].

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 14. Publication date: January 2024.

14:6 Guannan Wei, Oliver Bračevac, Songlin Jia, Yuyan Bao, and Tiark Rompf

Section 9 discusses related work and Section 10 concludes the paper. The Coq mechanization and
prototype type checker can be found at https://github.com/tiarkrompf/reachability.

2 MOTIVATING EXAMPLES

In this section, we present several examples to demonstrate the expressiveness and applications of
polymorphic reachability types. In these examples, we adopt a Scala-like surface syntax of _q/Fq

<:,
which are formally introduced in Sections 4 and 5.

2.1 Examples Enabled by Tracking Reachability and Separation

Scoped Borrowing. We start by implementing Rust-style borrowing using reachability types. As
a general pattern, borrowing grants unique access to a resource and temporarily disables other
accesses to that resource. Following Bao et al. [2021], we can de�ne a combinator borrow:

def borrow[Aq, Bq](x: A)(block: (A => B)q): B = block(x)

Type checking in reachability types ensures that x and block are (transitively) separate (see details
in Section 3.1.5), therefore block can only access the borrowed resource via its argument. A client
program can look like the following snippet:

val x = new Ref(42)

borrow(x) { y => ... /* can only access the reference cell via y, but not x */ }

Non-Escaping. Reachability types are useful to track lifetimes of resources/capabilities. Consider
the withFile combinator that ensures an opened �le handle will eventually be closed after it is used:

def withFile[Tq](path: String)(block: (Fileq => T∅)q): T∅ = {

val file = openFile(path); val res = block(file)

closeFile(file); res

}

For safety, we must also ensure that the �le handle accessed by block does not escape. In reachability
types, this is guaranteed by the empty quali�er ∅ of block’s return type in the de�nition of withFile.
A client program that attempts to return a closure capturing the file handle is rejected:

withFile("a.txt") { file => ...

{ () => file.readLine() } // type error: since (Unit => String)file ≮: (Unit => String)∅

}

This pattern of encoding non-escaping capabilities has broad applications, especially for preventing
leaks of resources that are only valid within a bounded lifetime, such as �le handles, sockets, locks,
stack-allocated e�ect handlers, etc. In Section 8.2, we compare reachability types with capture
types [Boruch-Gruszecki et al. 2023], a recent proposal for tracking e�ects as capabilities in Scala.

Automatic Memory Management. Tracking resources that are non-escaping is also useful for scope-
based automatic memory management (ARM). If a resource does not escape, we can safely reclaim
it before leaving the scope.

def f(n: Int): Unit = {

val temp = new Ref(n) // heap-allocated reference cell

...

free(temp) // compiler can insert a call to free

}

In the above example, the compiler can insert a call to free that deallocates the reference cell on
the heap, akin to Rust-style drop function that is automatically inserted at the end of the lifetime.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 14. Publication date: January 2024.

https://github.com/tiarkrompf/reachability

Polymorphic Reachability Types 14:7

Safe Parallelization. We now discuss safe parallelization enabled by ensuring non-interference of
two functions. Recall that function types are quali�ed with a set of variables, representing the
resources/capabilities that the function can access. If the quali�ers of two functions are separate,
they cannot share any resources, thus it is safe to run them in parallel.

Consider the following library function par (adapted from Bao et al. [2021]) that takes two thunks
as arguments. By ensuring that the quali�ers of the two thunks are disjoint, the implementation of
par can safely schedule their execution in parallel without interference. A client program using par

must provide two functions that use disjoint sets of resources, e.g.:

def par(a: (() => Unit)q)(b: (() => Unit)q): Unit

val c1 = new Ref(0); val c2 = new Ref(0)

par { c1 += ... /* ok: operate on c1 only, cannot access c2 */ }

{ c2 -= ... /* ok: operate on c2 only, cannot access c1 */ }

2.2 Examples Enabled by Layering an E�ect System

Although reachability types o�er ways to track usage and lifetimes of capabilities, they are some-
times too coarse-grained. For example, two functions attempting to read the same mutable reference
cell can still be executed in parallel if there are no interfering writes. With an e�ect system (Sec-
tion 7.2), we can not only discern non-interference with a �ner granularity, but also enable move
semantics, safe deallocation, and more.

Flow-Sensitivity and Move Semantics. Bao et al. [2021] have discussed layering a �ow-sensitive
e�ect system on top of tracking reachability. The basic idea is to track the e�ect induced by
aliased variables and maintain the aliases and their e�ects with respect to control-�ow structure.
This enables not only tracking e�ects and identifying non-interference more precisely, but also
expressing move semantics (ownership transfer) and safe deallocation as destructive e�ects.

To �rst see a simple example, consider that we have aliased variables x and y. Reading the content
of y induces a read e�ect on y, and transitively on x too, as noted in the comment:

val x = new Ref(42); val y = x

!y // : Int @read(y) in context [y: Ref[Int]x, x: Ref[Int]q]

A powerful e�ect supported by Bao et al. is the destructive “kill” e�ect (terminology borrowed
from data-�ow analysis). The kill e�ect takes execution order into account (i.e., �ow-sensitive)
and applying it to a variable disables any future use via all aliases of this resource. This e�ectively
expresses a wide range of behaviors, such as ownership transfer and uniqueness. For example, the
language could o�er a primitive move for Rust-style ownership transfer, which induces the kill e�ect
on its argument and yields a fresh value that uniquely holds the underlying resource:

val x = new Ref(42)

val y = move(x) // : Ref[Int]y @kill(x) in context [y: Ref[Int]q,
✭
✭
✭
✭
✭

x: Ref[Int]q]

After the ownership transfer, y uniquely holds the underlying resource, and reading or writing x is
a compile-time error.

Safe Deallocation with E�ects. Similar to move, we can extend our language with a free primitive
for memory deallocation. The e�ect of free is to “kill” its argument, and any use of that resource
induces a compile-time use-after-free error.

// free: (x: Ref[Int]q) => Unit @kill(x)

val x = new Ref(42); val y = x

free(y) // : Unit @kill(y) in context [
✭
✭

✭
✭
✭✭

y: Ref[Int]x,
✭
✭
✭
✭
✭

x: Ref[Int]q]

!x + !y // type error: both !x and !y reach a killed resource

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 14. Publication date: January 2024.

14:8 Guannan Wei, Oliver Bračevac, Songlin Jia, Yuyan Bao, and Tiark Rompf

Note that the free function has a latent e�ect which kills its argument. This latent e�ect is propagated
to downstream computation that e�ectively prohibits using any alias of that argument to free.
The key idea behind our e�ect system extension is to deploy an e�ect quantale [Gordon 2021]

that gives rise to �ow-sensitivity via partial sequential e�ect composition. In Section 7.2, we discuss
the e�ect system extension on top of the new polymorphic reachability types in this paper.

Optimizing E�ectful Functional Languages. Compiler optimizations often rely on precisely tracking
dependencies between statements, so that reordering, rewriting, or elimination of statements
preserve the original semantics. Bračevac et al. [2023] have showed that an e�ect system extension
on top of reachability types (Section 7.2) can enable such �ne-grained dependency analysis for
higher-order e�ectful programs. Here, we demonstrate an example that optimizes “write-after-
write”:

val x1 = new Ref(42)

val x2 = x1

val x3 = (x1 := 10) // @write(x1), can be eliminated by compiler

val x4 = (x2 := 20) // @write(x2)

In Bračevac et al. [2023], programs are represented as graphs where nodes (e.g. x1, x2, etc.) are
statements and edges are dependencies. Through an e�ect-and-dependency analysis, the compiler
is able to identify that (1) node x3 and x4write to the same reference cell since x1 and x2 transitively
reach the same resource, and (2) x4 does not directly depend on the side e�ect performed by x3

(known as anti-dependency or soft-dependency). That is, there is no direct dependency from x4 to
x3, thus it is sound to eliminate the statement x3 when generating code. For more sophisticated
optimizations involving function abstractions, readers are referred to Bračevac et al. [2023].

Towards Polymorphic Reachability Types. We see a wide range of applications of reachability types,
especially in enabling safe and novel programming paradigms for e�ects and capabilities in higher-
order languages. While variants of examples discussed in this section can already be expressed
in Bao et al. [2021]’s monomorphic system, their precise typing requires polymorphism, which
Bao et al. [2021]’s reachability type system cannot express. We discuss the new ideas to make
reachability types smoothly integrate with type polymorphism next.

3 POLYMORPHIC REACHABILITY TYPES

We �rst propose the simply-typed _q-calculus, which features a new treatment of freshness and a
�ne-grained reachability assignment, leading to a well-behaved and precise notion of reachability
polymorphism. Then we show that the ideas smoothly scale to the Fq

<:-calculus with type-and-
quali�er abstraction.

In Appendix A of the extended version of this paper [Wei et al. 2023], we review the prior reacha-
bility type system _∗ [Bao et al. 2021] and its limitations with regards to reachability polymorphism.

3.1 Precise Reachability Polymorphism in _q

3.1.1 One-Step Reachability Tracking. _q keeps reachability sets minimal in type assignment and
only computes transitive closures on demand (cf. Section 3.1.5), which ensures that we can preserve
chains of reachability and re�ne elements in the chain later by substitution or subtyping. In contrast,
Bao et al. [2021] use an “eager” strategy to track aliases: typing relations assign saturated quali�ers,
i.e., these quali�ers are large enough to include all transitively reachable variables.
The new system’s “on-demand” and Bao et al. [2021]’s “eager” tracking strategies each treat

variable bindings di�erently (typing context shown to the right of ⊣):

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 14. Publication date: January 2024.

Polymorphic Reachability Types 14:9

val x = alloc() // : T{x} ⊣ x: T{q}

val y = x // : T{y} ⊣ y: T{x}, x: T{q}
val x = alloc() // : T{x}

val y = x // : T{x, y}

The on-demand version (left) only assigns the one-step reachability set {y}. It can be scaled to the
saturated set by subtyping ({y} <: {x,y}), which includes the subset relation. In the eager version
(right), y reaches {x, y}, transitively including x’s reachability set from the context.

On-demand tracking preserves the chains of reachability in typing: during reduction steps,
quali�ers in the chain can be replaced with smaller reachable sets, leading to an increase in
precision via substitution.

3.1.2 Freshness Marker q. We model potential freshness by adding a marker q to quali�ers, con-
necting static observability with evaluation. A type) {q} describes expressions which cannot reach
the currently observable variables (thus observable separation), but they may reach unobservable
variables, including new references. The prime example is the reduction of allocations:

alloc() // : Ref[Int]{q} reduces to ℓ // : Ref[Int]{ℓ}, where ℓ is a fresh location value

Before reduction, alloc() is fresh, i.e., it must be tracked but is not bound to a variable. Afterwards,
we have a new and de�nitely known store location, which is considered not fresh, thus q vanishes.
The presence of q indicates that reduction steps may grow the quali�er, and its absence indicates
that they will not. Bao et al.’s track/untrack system assumes that any tracked quali�er might grow.

The q marker also serves as a “contextual freshness” indicator for function parameters, e.g., here
is the reachability-polymorphic identity function in _q :

def id(x: Tq): T{x} = x // : ((x: Tq) => T{x})∅

The type speci�es that id (1) cannot observe anything about its context (∅), and (2) it accepts
arguments that may reach any unobservable variables. Thus, the id function accepts T arguments
with any quali�er and the function body can only observe a fresh argument.

Adjusting parameter quali�ers permits controlling the overlap between functions and their
arguments, e.g., consider variants of id which close over some variable z in the context:
def id2(x: T{q}): T{x} = { val u = z; x } // : ((x: T{q}) => T{x}){z}

def id3(x: T{q,z}): T{x} = { val u = z; x } // : ((x: T{q,z}) => T{x}){z}

def id4(x: T{z}): T{x} = { val u = z; x } // : ((x: T{z}) => T{x}){z}

The quali�ers on the function type and the parameter specify the reachability information that
the implementation can observe about its context (only z here), and about any given argument,
respectively. It also says that the implementation is oblivious to anything it cannot observe. Function
id2 accepts arguments reaching anything that does not (directly or transitively) reach z. But id3
permits z in the parameter’s quali�er, e�ectively allowing any argument. Finally, id4’s parameter
lacks the freshness marker, constraining arguments to be contextually non-fresh. That is, only
observable arguments which reach at most z are allowed.

With the freshness marker, it is no longer necessary to use ⊥ to indicate untracked values. In _q ,
quali�ers of untracked values (e.g., primitive values) are simply denoted by the empty set ∅.

3.1.3 Precise Reachability Polymorphism. Unlike its _∗ version (cf. [Wei et al. 2023], Appendix A),
id is truly reachability polymorphic, as it properly preserves the tracking status of arguments:

id(42) // : Int{x} [x ↦→∅] = Int∅ ← unbound and untracked

id(alloc()) // : T{x} [x↦→q] = T{q} ← unbound and tracked (fresh)

The key design di�erence here is having the q marker in quali�ers to explicitly communicate
(non-)freshness which is preserved by dependent application and substitution. Consider a function
that mutates a captured reference cell and returns the argument. We annotate that the argument
x is potentially aliased with the captured argument c1 but apply the function with argument c2. _q

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 14. Publication date: January 2024.

14:10 Guannan Wei, Oliver Bračevac, Songlin Jia, Yuyan Bao, and Tiark Rompf

would not propagate such imprecision by tracking one-step reachability. The return type only tracks
the argument x. When applying di�erent arguments to the function, precise reachability is retained:

... // c1: T{c1}, c2: T{c2}

def foo(x: T{c1,q}): T{x} = { c1 := !c1 + 1; x } // : ((x: T{c1,q}) => T{x}){c1}

foo(c1) // : T{c1}

foo(c2) // : T{c2} ← precision retained

In contrast, in Bao et al. [2021]’s system, this potential alias is propagated to the return type
quali�er and we cannot get rid of it even when applying with a non-overlapped argument c2:
foo(c2) : T{c1, c2}. The freshness marker also prevents typing the problematic fakeid function, since
{q} is not compatible with the result quali�er {x}:

def fakeid(x: Tq): T{x} = alloc() // type error: {q} ̸<: {x}

3.1.4 Maybe-Tracked and Subtyping. With one-step reachability tracking, a novel notion of “maybe-
tracked” status emerges in _q . For example, the tracking status of Int{x} only depends on the
reachability of x, and therefore x is “maybe” tracked:

val x = 42 // : Int{x} ← bound but untracked

id(x) // : Int{x} <: Int∅ ← unbound and upcast via one-step reachability

Moreover, Int{x} is equivalent to Int∅, upcast by one-step reachability using _q’s subtyping relation.
Chasing the typing assumptions, both {x} <: ∅ and ∅ <: {x} hold in the above context, which
justi�es the equivalence. This reasoning step uses a subtyping rule for looking up quali�ers of
bound variables in the context (see Section 4.2.6), which permits smaller, context-dependent steps
to form reachability chains as long as quali�ers in the chain are all non-fresh. Therefore, id(y) cannot
be upcast since its one-step reachable variable y is fresh:

val y = alloc() // : T{y} ← bound and tracked

id(y) // : T{y} ← bound and cannot further upcast since y fresh

3.1.5 On-Demand Transitivity. When does the type system actually need to compute saturated
quali�ers with the “on-demand” tracking strategy (Section 3.1.1)? Applying functions that expect
fresh arguments is the only situation where this is necessary. For example, consider a function f

that does not permit overlap between the argument’s quali�er and its own reachable set:

val c1 = alloc() // : Ref[Int]{c1} ⊣ c1: Ref[Int]q

def f(x: Ref[Int]q) = !c1 + !x // : (f(x: Ref[Int]q) => Int){c1}

val c2 = c1 // : Ref[Int]{c2}

f(c2) // type error: since {c1,c2} ∩ {c1} ≠ ∅

The application f(c2) should be rejected due to the lack of separation between c2 and f. Since
the one-step reachability strategy lets variable bindings reach only themselves by default, naively
intersecting the function and argument at the call site would not detect that c2 overlaps with f

through c1. Thus, a sound overlap check at call sites must �rst compute saturated upper bounds on
demand, and then compute their intersection. We discuss the formal details of saturated quali�ers
and overlap checking further in Section 4.2.1.

Finally, it is worth noting that c2’s quali�er cannot be upcast through its reachability chain c1 to
{q} via subtyping, which would result in unsound overlap checking (cf. Section 4.2.6).

3.1.6 �alifier-Dependent Application. The _q-calculus also supports precise reachability polymor-
phism via dependent function applications. That is, given a function type 5 (G :)

@1
1
) →)

@2
2

, the
argument variable G may occur in the codomain type)2 and quali�er @2 (cf. Section 4.2.4). This is

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 14. Publication date: January 2024.

Polymorphic Reachability Types 14:11

more expressive than the _∗ system [Bao et al. 2021], which forbids occurrences within)2 to ensure
a sound treatment of escaping closures. Consider the following function returning another function:

val c = alloc()

def f(x: Ref[Int]{c}) = () => x // : (f(x: Ref[Int]{c}) => (Unit => Ref[Int]{x}){x})∅

f(c) // : (Unit => Ref[Int]{c}){c}

We can assign the reachability set of f’s innermost return type, depending on the outer argument
x. The dependent application f(c) yields a precise type, whereas the _∗-calculus would have to
upcast the returned function type to a self-reference before application (thus introducing impre-
cision). Such precision is enabled by _q’s re�ned freshness-marker model, which distinguishes
fresh/growing from non-fresh/static quali�ers.

3.2 Type-and-�alifier Abstractions in Fq
<:

Next, we extend _q with type-and-quali�er abstractions in the style of F<: [Cardelli et al. 1994],
resulting in the Fq

<:-calculus. Such an extension is not possible on top of the _∗-calculus, because of
its confounding of fresh, tracked values and untracked values.

Type Abstractions. The �rst step towards Fq
<: is to add F<:-style quanti�cation over proper types

without quali�ers. This is already attractive and enough to express the identity function with both
type and lightweight reachability polymorphism. The following de�nition of id adds the type
parameter T and does not require F<:-style abstraction of quali�ers:

def id[T <: Top](x: Tq): T{x} = x

As in F<:, we add an upper bound Top of all types to the system. However, reachability sets attached
to proper types must be concrete and cannot be abstracted over.

�alifier Abstractions. We now introduce an abstract quali�er and an upper bound quali�er in the
style of F<:. In this way, the polymorphic identity function is a shorthand notation that does not
need to use the abstract quali�er. The fully desugared term is

def id[Tz <: Topq](x: Tq): T{x} = x

def id[T](x: Tq) = x // shorthand notation

where z is the abstract quali�er variable bounded by q. One could further omit the abstract quali�er,
type-and-quali�er bound, and return type using the shorthand notation shown above.

Although the additionally introduced abstract quali�er (z) does not yield further expressiveness
for the identity function, quanti�ed quali�ers vary independently of the type variable, and one is
free to attach them to any proper type. In Section 5, we present the formalization of Fq

<:, which
combines _q with F<:-style polymorphism for bounded type-and-quali�er abstraction.

3.3 Polymorphic Data Types

In Figure 1, we have used escaping pairs to capture shared mutable data. Now we show how
parametric data types such as pairs can work in a suitable extension of Fq

<:. In Section 8.1, we study
the Church-encoding of pairs in core Fq

<: which conforms to the behaviors laid out here, so that the
core formalization does not require built-in pairs. Appendix B of the extended version of this paper
[Wei et al. 2023] further studies typing rules for other common data types, e.g., lists.
Suppose that we have extended the language with native pair types, let us �rst examine how

the user-level typing for pairs would work. First, a pair type Pair[Aa, Bb] annotates quali�ers to
components. Moreover, the projection functions should preserve precise reachability whenever
possible. For example, given an expression of type Pair[Aa, Bb], retrieving its components should
yield exactly the same quali�ers we put in:

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 14. Publication date: January 2024.

14:12 Guannan Wei, Oliver Bračevac, Songlin Jia, Yuyan Bao, and Tiark Rompf

Syntax _q

G,~, I ∈ Var Variables
5 , 6, ℎ ∈ Var Function Variables
C ::= 2 | G | _5 (G).C | C C | ref C | ! C | C ≔ C Terms

?, @, A ∈ Pfin (Var ⊎ {q}) Reachability Quali�ers
(,) ,* ,+ ::= � | 5 (G : &) → & | Ref & Base/Function/Reference Types
$, %,&, ' ::=) @ Quali�ed Types

i ∈ Pfin (Var) Observations
Γ ::= ∅ | Γ, G : & Typing Environments

�alifier Shorthands ?, @ := ? ∪ @ G := {G} q := {q} q@ := {q} ∪ @

Fig. 3. The syntax of _q . The qualifier shorthands allow us to compactly write unions or singleton sets.

... // u: Ref[Int]u, v: Ref[Int]v

val p = Pair(u, v) // : Pair[Ref[Int]u, Ref[Int]v]p
fst(p) // : Ref[Int]u

snd(p) // : Ref[Int]v

The above snippet creates a pair of two reference cells and then extracts its components. Type
applications are omitted and can be inferred, e.g., by bidirectional typing [Pierce and Turner 2000].
Second, pairs capturing local variables can escape from their de�ning scope (e.g., the counter

example in Figure 1). To this end, we designate a self-reference p for pairs `p.Pair[Aa, Bb], which
serves as an upper bound of the pair’s component reachability. To handle escaped pairs, the key
insight is similar to function types: a component quali�er in covariant positions can be upcast to
the self-reference of the pair, i.e., Pair[Aa, Bb] <: `p.Pair[Ap, Bp], just as with function subtyping
where the codomain’s quali�er can be upcast to the function’s self-reference.

def f() = { ... // u: Ref[Int]u, v: Ref[Int]v

Pair(u, v) // : Pair[Ref[Int]u, Ref[Int]v]{u,v}

} // upcast to `p.Pair[Ref[Int]p, Ref[Int]p]q when escaping

Once the pair is bound to a variable, we “unpack” the self-reference so that projections are properly
aliased.
// now u and v are not in the context:

val q = f() // : Pair[Ref[Int]q, Ref[Int]q]q
fst(q) // : Ref[Int]q

snd(q) // : Ref[Int]q

In our Church-encoding of pairs (Section 8.1), the “upcasting with self-reference” is achieved
by coercions via [-expansion, which justi�es the subtyping rule if added with �rst-class pair types.

4 SIMPLY-TYPED REACHABILITY POLYMORPHISM

This section presents the formal metatheory of the base _q-calculus (Section 3.1), a generalization
of the _∗-calculus by Bao et al. [2021] that adds the notion of freshness markers for a more precise
notion of lightweight quali�er polymorphism.

4.1 Syntax

Figure 3 shows the syntax of _q which is based on the simply-typed _-calculus with mutable
references and subtyping. We denote general term variables by the meta variables G,~, I, and
reserve 5 , 6, ℎ speci�cally for function self-references in contexts where the distinction matters.
Terms consist of constants of base types, variables, recursive functions _5 (G).C (binding the

self-reference 5 and the argument G in the body C), function applications, reference allocations,
dereferences, and assignments. Reachability quali�ers ?, @, A are �nite sets of variables that may
additionally include the distinct freshness marker q. Once we add store typings (Section 4.3),

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 14. Publication date: January 2024.

Polymorphic Reachability Types 14:13

Term Typing Γ
i ⊢ C : &

G :) @ ∈ Γ G ∈ i

Γ
i ⊢ G :) G

(t-var)

(Γ , 5 : � , G : %) @,G,5 ⊢ C : & @ ⊆ i

� = (5 (G : %) → &) @

Γ
i ⊢ _5 (G).C : �

(t-abs)

Γ
i ⊢ C1 : (5 (G :) ?) → &) @ Γ

i ⊢ C2 :)
?

q ∉ ? & = * A A ⊆ qi, G, 5 5 ∉ fv(*)

Γ
i ⊢ C1 C2 : & [?/G, @/5]

(t-app)

Γ
i ⊢ C1 :

(

5 (G :) ? q∩@) → &
) @

Γ
i ⊢ C2 :)

?

& = * A A ⊆ qi, G, 5

q ∈ ? ⇒ G ∉ fv(*) 5 ∉ fv(*)

Γ
i ⊢ C1 C2 : & [?/G, @/5]

(t-appq)

2 ∈ �

Γ
i ⊢ 2 : � ∅

(t-cst)

Γ
i ⊢ C :) @

q ∉ @

Γ
i ⊢ ref C : (Ref) @) q@

(t-ref)

Γ
i ⊢ C : (Ref) ?) @ q ∉ ? ? ⊆ i

Γ
i ⊢ !C :) ?

(t-deref)

Γ
i ⊢ C1 : (Ref) ?) @ Γ

i ⊢ C2 :)
?
q ∉ ?

Γ
i ⊢ C1 ≔ C2 : Unit∅

(t-assgn)

Γ
i ⊢ C : & Γ ⊢ & <:) @ @ ⊆ qi

Γ
i ⊢ C :) @

(t-sub)

Fig. 4. Typing rules of _q .

Subtyping Γ ⊢) <:) Γ ⊢ @ <: @ Γ ⊢ & <: &

Γ ⊢ � <: �
(s-base)

Γ ⊢ (<:) Γ ⊢) <: (

Γ ⊢ @1 <: @2 Γ ⊢ @2 <: @1

Γ ⊢ Ref (@1 <: Ref) @2
(s-ref)

Γ ⊢ % <: $

Γ , 5 : (5 (G : $) → &) q , G : % ⊢ & <: '

Γ ⊢ 5 (G : $) → & <: 5 (G : %) → '
(s-fun)

Γ ⊢) <: (Γ ⊢ (<: *

Γ ⊢) <: *
(s-trans)

? ⊆ @ ⊆ qdom(Γ)

Γ ⊢ ? <: @
(q-sub)

Γ ⊢ @1 <: @2

Γ ⊢ ?, @1 <: ?, @2
(q-cong)

5 :) @ ∈ Γ q ∉ @

Γ ⊢ @, 5 <: 5
(q-self)

G :) @ ∈ Γ q ∉ @

Γ ⊢ G <: @
(q-var)

Γ ⊢ ? <: @ Γ ⊢ @ <: A

Γ ⊢ ? <: A
(q-trans)

Γ ⊢ (<:) Γ ⊢ ? <: @

Γ ⊢ (?
<:) @

(sq-sub)

Fig. 5. Subtyping rules of _q .

quali�ers will include store locations in addition to variables. For readability, we often drop the set
notation for quali�ers and write them down as comma-separated lists of atoms.
We distinguish ordinary types) from quali�ed types & =) @ , where the latter annotates a

quali�er @ to an ordinary type) . The types consist of base types � (e.g., Int, Unit), references, and
dependent function types 5 (G : %) → & , where both argument and return type are quali�ed. The
codomain & may depend on both the self-reference 5 and argument G in its quali�er and type. We
could alternatively separate self-references from function types using DOT-style �rst-class self
types [Rompf and Amin 2016], e.g., `5 .((G : %) → & [5 , G]).
Mutable reference types Ref & track the known aliases of the value held by the reference. We

also permit forms of nested references, which are prohibited in the base _∗-calculus unless a
�ow-sensitive e�ect system is added [Bao et al. 2021].

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 14. Publication date: January 2024.

14:14 Guannan Wei, Oliver Bračevac, Songlin Jia, Yuyan Bao, and Tiark Rompf

�alifier Substitution and Growth @ [?/G] @ [?/q]

@ [?/G] = @ \ {G} ∪ ? G ∈ @ @ [?/q] = @ ∪ ? q ∈ @

@ [?/G] = @ G ∉ @ @ [?/q] = @ q ∉ @

Reachability and Overlap Γ ⊢G { G Γ ⊢@∗ Γ ⊢ ? q∩ @

Reachability Relation Γ ⊢G { ~ ⇔ G :)@,~ ∈ Γ Variable Saturation Γ ⊢G∗ := {~ | G {∗ ~ }

Quali�er Saturation Γ ⊢@∗ :=
⋃

G∈@ G∗ Quali�er Overlap Γ ⊢ ? q∩ @ := q(?∗ ∩ @∗)

Fig. 6. Operators on qualifiers. We o�en leave the context Γ implicit (marked as gray).

An observation i is a �nite set of variables which is part of the term typing judgment (Section 4.2).
It speci�es which variables in the static environment Γ are observable. The latter assigns quali�ed
typing assumptions to variables.

4.2 Static Semantics

The term typing judgment Γ i ⊢ C : & in Figure 4 states that term C has quali�ed type & and may
only access the typing assumptions of Γ observable by i . For & =) @ , one may think of C as a
computation that yields a result value of type) reaching no more than the transitive closure of @,
if it terminates. Alternatively, we could formulate the typing judgment without internalizing i ,
and instead have an explicit context �lter operation Γ

i
:= {G :) @ ∈ Γ | @, G ⊆ i} for restricting

the context in subterms, just like Bao et al. [2021] who loosely take inspiration from substructural
type systems. Internalizing i (1) makes observability an explicit notion, which facilitates reasoning
about separation and overlap, and (2) greatly simpli�es the Coq mechanization. Context �ltering is
only needed for term typing, but not for subtyping, so as to keep the formalization simple.

4.2.1 One-Step Reachability. Term typing usually assigns minimal quali�ers in the currently
observable context. For instance, term variables G track exactly themselves (t-var), and can be
used only if they are observable (G ∈ i). Similarly, constants of base types are untracked (t-cst).
We can further scale up the quali�er to include transitively reachable variables by subsumption
(t-sub) if needed. This “one-step” treatment of reachability is su�cient for soundness, and shows
that most of the time, we do not have to track fully transitive reachability, but instead may compute
it on-demand where it matters, i.e., when checking separation and overlap in function applications
(discussed further below). In contrast, Bao et al. [2021] implicitly ensures fully transitive reachability,
i.e., term typing always assigns transitively closed quali�ers.1 Their (t-var) rule would assign) @,G

where @ is transitively closed. One-step reachability simpli�es the system and adds �ner-grained
precision over transitive reachability, since we can re�ne each step in a reachability chain as more
information is discovered during evaluation. Dependent function application and abstraction with
function self-references are prime examples (Section 4.2.4).

4.2.2 Functions and Lightweight Polymorphism. Function typing (t-abs) implements the observable
separation guarantee (cf. Section 3.1.2), i.e., the body C can only observe what the function type’s
quali�er @ speci�es, plus the argument G and self-reference 5 , and is otherwise oblivious to anything
else in the environment. We model this by setting the observation to @, G, 5 when typing the body.
Thus, its observation @ at least includes the free variables of the function. To ensure well-scopedness,
@must be a subset of the observationi . In essence, a function type implicitly quanti�es over anything
that is not observed by @, achieving a lightweight form of quali�er polymorphism.

1Cf. their mechanization of this variant https://github.com/tiarkrompf/reachability/tree/main/base/lambda_star_overlap.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 14. Publication date: January 2024.

https://github.com/tiarkrompf/reachability/tree/main/base/lambda_star_overlap

Polymorphic Reachability Types 14:15

4.2.3 �alifier Substitution and Growth. The base substitution operation @ [?/G] of quali�ers for
variables is de�ned in Figure 6, and we use it along with its homomorphic extension to types
in dependent function application. Substitution replaces the variable with the given quali�er, if
present in the target. We suggestively overload the substitution notation for quali�er growth @ [?/q].
Capturing the intuition behind the freshness marker q, growth adds ? to @ only if q is present, and
otherwise ignores ? . Growth abstracts over reduction steps that may allocate new reachable store
locations in type preservation (Theorem 4.7). We do not remove q to permit continuous growth.

4.2.4 Dependent Application, Separation and Overlap. Function applications are typeable by rules
(t-app) and (t-appq). The former rule applies if the function’s parameter is non-fresh (q ∉ ?) and
it matches the argument, i.e., the argument quali�er reaches only bound variables and will not
increase at run time. Applications in (t-app) are dependent, substituting the function and argument
variable in the type and quali�er of the codomain with the given quali�ers (see Section 3.1.6). Note
that the dependency to the argument is unrestricted in the codomain, but the function self-reference
can only occur in the outer most return quali�er.
Rule (t-appq) applies to cases where the argument’s quali�er is bigger than what the function

type assumes, or is expected to grow bigger due to the freshness marker q. These cases require
more nuanced treatment and restrictions on the degree of dependency in the codomain. That is, if
the argument is fresh, then the codomain’s type* may not be dependent on the respective variable.
Otherwise, type preservation is lost due to the potential growth with fresh runtime locations. In
other words, (t-appq) is a synthesis of two specialized rules: If the argument is not fresh, we permit
unconstrained dependency to the argument in the codomain:

Γ ⊢ C1 :
(

5 (G :) ? q∩@) → * A
) @

Γ ⊢ C2 :)
?

q ∉ ? 5 ∉ fv(*)

Γ ⊢ C1 C2 : *
A [?/G, @/5]

(t-dapp)

If the argument is fresh, we require that neither G nor 5 occur freely the codomain type* (as in
Bao et al.).

Γ ⊢ C1 :
(

5 (G :) ? q∩@) → * A
) @

Γ ⊢ C2 :)
q? {G, 5 } ∩ fv(*) = ∅

Γ ⊢ C1 C2 : *
A [q?/G,@/5]

(t-ndapp)

In all instances of (t-appq), since ? is potentially bigger than the function domain, we need to
check for observable separation/overlap between function and argument, i.e., the portion of ? that
the function can observe should conform with the function parameter. This is the only place in
the type system requiring fully re�exive-transitive reachability using the overlap operator ? q∩ @

(Figure 6), which is the intersection of the smallest saturated reachability sets of ? and @, always
including q to indicate that the argument is allowed to have a bigger quali�er than the domain. For
the type safety proof, it is also su�cient to just demand any saturated supersets, as done in our
present Coq mechanization.
Both function application rules impose an observability restriction on the codomain quali�er

A ⊆ qi, G, 5 , which is to ensure that the resulting quali�er of term typings is always observable
under i (Lemma 4.1), a critical property for the substitution lemmas and type soundness proof.

4.2.5 Mutable References. The _∗ system by Bao et al. [2021] cannot express nested references
without the addition of a �ow-sensitive e�ect system. Although extending it with an e�ect system
is possible, our type system readily supports a limited form of nested references by means of
reachability and the fresh/non-fresh distinction. Quali�ers in reference types need to be non-fresh
in (t-ref), (t-deref), and (t-assgn). On the outside, reference allocations (t-ref) track the referent’s
non-fresh quali�er and q, because the �nal result will be a fresh new store location, which will be

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 14. Publication date: January 2024.

14:16 Guannan Wei, Oliver Bračevac, Songlin Jia, Yuyan Bao, and Tiark Rompf

added to the quali�er. Since referent quali�ers are invariant, only values with equivalent quali�ers
can ever be assigned in (t-assgn). Invariance is also re�ected in the subtyping rule for references,
discussed next.

4.2.6 Subtyping. We distinguish subtyping between quali�ers @, ordinary types) , and quali�ed
types & , where the latter two are mutually dependent. Subtyping is assumed to be well-scoped
under the typing context Γ, i.e., types and quali�ers mention only variables bound in Γ, and so do
its typing assumptions. Quali�ed subtyping (sq-sub) just forwards to the other two judgments for
scaling the type and quali�er, respectively.

�alifier Subtyping. Quali�er subtyping includes the subset relation (q-sub), the two contextual
rules (q-self) and (q-var), and transitivity (q-trans). Rule (q-self) is inherited from Bao et al.
[2021], and used for abstracting the quali�ers of escaping closures (Figure 1), i.e., if a function self
reference 5 and its assumed quali�er @ occur in some quali�er context, then we may delete @ and
just retain 5 , because @ may contain captured variables that are not visible in an outer scope. Rule
(q-var) is new here and critical for one-step reachability: a quali�er ?, G is more precise than ?, @

since substitution may replace G with a smaller quali�er than @ later (cf. Section 3.1.3). This is only
valid if q ∉ @, because otherwise, G could be replaced later with a larger set than @ and we would
lose track of it. The same restriction applies to (q-self).

Ordinary Subtyping. Subtyping rules for base types (s-base), reference types (s-ref), and function
types (s-fun) are standard modulo quali�ers. Re�exivity is admissible for subtyping on ordinary and
quali�ed types. Altough transitivity (s-trans) is also admissible, our Coq mechanization relies on
invertible value typing as a proof method [Rompf and Amin 2016] that proves subtyping transitivity
only for inhabited types. References are invariant both in the enclosed quali�er and the value type,
expressed by bidirectional subtype constraints. Function types are contravariant in the domain,
and covariant in the codomain, as usual. Due to dependency in the codomain, we are careful to
extend the context with the smaller argument type and self reference. Importantly, the function
self-reference added to the context only carries the q marker. This distinguishes self-references
introduced by term typing in (t-abs) from synthetic ones for subtyping. Only the former is eligible
for abstraction by function self-references, and the freshness marker prevents the use of both
(q-self) and (q-var) in the latter case.

4.3 Dynamic Semantics and Stores

The _q-calculus adopts the standard call-by-value reduction of the _-calculus with mutable refer-
ences and a store (Figure 7). The V-reduction rule simultaneously substitutes the argument with
the parameter and the function with the self-reference.
Term typing and subtyping change accordingly to include store typings Σ, and both quali�ers

and observations may now include store locations from dom(Σ). Typing a location value (t-loc)
requires that it be observable, along with the full quali�er of the referent (@, ℓ ⊆ i). This model
implements the fully transitive reachability notion for store locations instead of one-step reachability
(in contrast to variables, Section 4.2.1), as we never substitute store locations and thus do not alter
the assumed quali�ers in the store typing Σ. The well-formedness predicate Σ ok ensures that all
assumptions in Σ are closed and have transitively closed quali�ers consisting only of other store
locations. Well-formedness is required by Corollary 4.8 to ensure fully disjoint reachability chains
and object graphs. The notion of store typing with �lter [Σ | Γ]i ⊢ f is de�ned in Figure 7.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 14. Publication date: January 2024.

Polymorphic Reachability Types 14:17

Term Typing [Γ | Σ] i ⊢ C : &

ℓ ∈ Loc Σ ::= ∅ | Σ, ℓ : & ?,@, A ⊆ Pfin (Var ⊎ Loc ⊎ {q}) i ⊆ Pfin (Var ⊎ Loc)

Σ(ℓ) =) @ @ ⊆ dom(Σ) fv()) = ∅ �v()) = ∅ @, ℓ ⊆ i

[Γ | Σ] i ⊢ ℓ : (Ref) @) @,ℓ
(t-loc)

Location Reachability, Location & �alifier Saturation Γ | Σ ⊢ ℓ { ℓ Γ | Σ ⊢ ℓ∗ Γ | Σ ⊢@∗

Γ | Σ ⊢ ℓ { ℓ′ ⇔ Σ(ℓ) =) @,ℓ ′
Γ | Σ ⊢ ℓ∗ := {ℓ′ | ℓ {∗ ℓ′} Γ | Σ ⊢@∗ :=

⋃

G∈@ G∗ ∪
⋃

ℓ∈@ ℓ∗

Well-Formed and Well-Typed Stores Γ | Σ ⊢ f Σ ok

[Γ | Σ] i ⊢ f := i ⊆ dom(f) ⊆ dom(Σ) ∧ ∀ℓ ∈ i, [Γ | Σ] i ⊢ f (ℓ) : Σ(ℓ)

Γ | Σ ⊢ f := [Γ | Σ] dom(Σ) ⊢ f

∅ ok

Σ ok fv()) = ∅ �v()) = ∅ ∅ | Σ ⊢ @∗ = @ ℓ ∉ dom(Σ)

Σ , ℓ :) @ ok

Reduction Contexts, Values, Terms, Stores

� ::= □ | � C | E � | ref � | !� | � := C | E := � | � [&] C ::= · · · | ℓ

E ::= _5 (G).C | 2 | ℓ | unit | Λ5 (- G).C f ::= ∅ | f, ℓ ↦→ E

Reduction Rules C | f → C | f

� [(_5 (G) .C) E] | f → � [C [E/G, (_5 (G) .C)/5]] | f (V)

� [ref E] | f → � [ℓ] | (f, ℓ ↦→ E) ℓ ∉ dom(f) (ref)

� [!ℓ] | f → � [f (ℓ)] | f ℓ ∈ dom(f) (deref)

� [ℓ := E] | f → � [unit] | f [ℓ ↦→ E] ℓ ∈ dom(f) (assign)

� [(Λ5 (- G) .C) &] | f → � [C [&/- G , (Λ5 (- G) .C)/5]] | f (V))

Fig. 7. Extension with store typings and call-by-value reduction for _q (Section 4) and Fq
<:

(Section 5).

4.4 Metatheory

The _q-calculus exhibits syntactic type soundness which we prove by standard progress and preser-
vation properties (Theorems 4.6 and 4.7). Type soundness implies the preservation of separation
corollary (Corollary 4.8) as set forth by Bao et al. [2021] for their _∗-calculus. It is a memory property
certifying that the results of well-typed _q terms with disjoint quali�ers indeed never alias. We also
prove a preservation of separation corollary (Corollary 4.9) for two parallel reductions on disjoint
store fragments. Below, we discuss key lemmas required for the type soundness proof, which has
been mechanized in Coq. Due to space limitations, we elide standard properties such as weakening
and narrowing.

4.4.1 Observability Properties. Reasoning about substitutions and their interaction with over-
lap/separation in preservation lemmas requires that the quali�ers assigned by term typing are
observable. The following lemmas are proved by induction over the respective typing derivations:

Lemma 4.1 (Observability Invariant). Term typing always assigns observable quali�ers, i.e., if
[Γ | Σ] i ⊢ C :) @ , then @ ⊆ qi .

Well-typed values cannot observe anything about the context beyond their assigned quali�er:

Lemma 4.2 (Tight Observability for Values). If [Γ | Σ] i ⊢ E :) @ , then [Γ | Σ] @ ⊢ E :) @ .

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 14. Publication date: January 2024.

14:18 Guannan Wei, Oliver Bračevac, Songlin Jia, Yuyan Bao, and Tiark Rompf

It is easy to see that any observation for a function _5 (G).C will at least track the free variables of
the body C . Finally, well-typed values are always non-fresh in the following sense:

Lemma 4.3 (Values are Non-Fresh). If [Γ | Σ] i ⊢ E :) @ , then [Γ | Σ] i ⊢ E :) @\q .

This lemma is important for substitution, and asserts that values only reach statically fully known
variables and locations in context. That is, we may safely assume that values are never the source
of q, and it can only stem from subsumption, which we may undo by Lemma 4.3. Ruling out q for
values ensures that we do not accidentally add it when it is expected to be absent in a substitution
target @. The absence indicates that a substitution on @ will not increase it with fresh locations.

4.4.2 Substitution Lemma. We consider type soundness for closed terms and apply “top-level”
substitutions, i.e., substituting closed values with quali�ers that do not contain term variables, but
only store locations. The proof of the substitution lemma critically relies on the distributivity of
substitution and the overlap operator (Figure 6), which is required to proceed in the (t-appq) case:

Lemma 4.4 (Top-Level Substitutions Distribute with Overlap). If G :) @ ∈ Γ, and ?, @ ⊆
qdom(Σ), and ? ∩ qi ⊆ @, and A∗, A ′∗ ⊆ qi , then (A q∩ A ′)\ = A\ q∩ A ′\ where \ = [?/G].

Quali�er substitution does not generally distribute with set intersection, due to the problematic case
when the substituted variable G occurs in only one of the saturated sets A∗ and A ′∗. Distributivity
holds if (1) we ensure that what is observed about the quali�er ? we substitute for G is bounded by
what the context observes about G , i.e., ? ∩ qi ⊆ @ for G :) @ ∈ Γ, and (2) ?, @ are top-level as above.

In the type preservation proof, V-reduction substitutes both the function parameter and self-
reference in (t-abs) (Figure 4) for some values. The two substitutions can be expressed by sequen-
tially applying a substitution lemma on the �rst variable in the context:

Lemma 4.5 (Top-Level Term Substitution). If [G :) @, Γ | Σ] i ⊢ C : & , and [∅ | Σ] ? ⊢ E :) ? ,

and ?, @ ⊆ qdom(Σ), and ? ∩ qi ⊆ @, and @ = ? ∨@ = q(? ∩ A), then [Γ\ | Σ] i\ ⊢ C [E/G] : &\ where
\ = [?/G].

Proof. By induction over the derivation [G :) @, Γ | Σ] i ⊢ C : & . Most cases are straightforward,
exploiting that quali�er substitution is monotonic w.r.t. ⊆ and that the substitute ? for G consists of
store locations only. The case (t-appq) critically requires Lemma 4.4 for (? q∩ @)\ = ?\ q∩ @\ in the
induction hypothesis. The case (t-sub) requires an analogous substitution lemma for subtyping
(elided due to space limitations). □

Just as above, the substitution lemma imposes the observability condition ? ∩ qi ⊆ @. The condition
@ = ? ∨@ = q(A ∩?) captures the two di�erent cases of substitution: (1) a precise substitution where
the assumed quali�er @ for G is identical to the value’s quali�er ? , i.e., the parameter in (t-app) or
the function’s self-reference 5 in (t-app)/(t-appq), or (2) a growing substitution for the parameter
in (t-appq) with overlap between ? and the function quali�er A , growing the result by ? \ A∗.

4.4.3 Main Soundness Result.

Theorem 4.6 (Progress). If [∅ | Σ] i ⊢ C : & and Σ ok, then either C is a value, or for any store f
where [∅ | Σ] i ⊢ f , there exists a term C ′ and store f ′ such that C | f → C ′ | f ′.

Proof. By induction over the derivation [∅ | Σ] i ⊢ C : & . □

Similar to [Bao et al. 2021], reduction preserves types up to quali�er growth (cf. Section 4.2.3):

Theorem 4.7 (Preservation). If [∅ | Σ] i ⊢ C :) @ , and [∅ | Σ] i ⊢ f , and C | f → C ′ | f ′,

and Σ ok, then there exists Σ′ ⊇ Σ, i ′ ⊇ i ∪ ? , and ? ⊆ dom(Σ′ \ Σ) such that [∅ | Σ′] i
′
⊢ f ′ and

[∅ | Σ′] i
′
⊢ C ′ :) @ [?/q] .

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 14. Publication date: January 2024.

Polymorphic Reachability Types 14:19

Proof. By induction over the derivation [∅ | Σ] i ⊢ C :) @ . □

Corollary 4.8 (Preservation of Separation). Sequential reduction of two terms with disjoint
quali�ers preserve types and disjointness:

[∅ | Σ] dom(Σ) ⊢ C1 :)
@1
1

C1 | f → C ′
1
| f ′ ∅ | Σ ⊢ f Σ ok

[∅ | Σ] dom(Σ) ⊢ C2 :)
@2
2

C2 | f
′ → C ′

2
| f ′′ @1 q∩ @2 ⊆ {q}

∃?1 ?2 Σ
′
Σ
′′ . [∅ | Σ′] dom(Σ

′) ⊢ C ′
1
:)

?1
1

Σ
′′ ⊇ Σ

′ ⊇ Σ

[∅ | Σ′′] dom(Σ
′′) ⊢ C ′

2
:)

?2
2

?1 q∩ ?2 ⊆ {q}

Proof. By sequential application of Preservation (Theorem 4.7) and the fact that a reduction step
increases the assigned quali�er by at most a fresh new location, thus preserving disjointness. □

Corollary 4.9 (Progress and Preservation in Parallel Reductions). Non-value expressions
with disjoint observability �lters can be evaluated in parallel on non-overlapping parts of the store
(f↾i restricts the domain of f to locations in i), and the resulting quali�ers remain separate:

[∅ | Σ] i1 ⊢ C1 :)
@1
1

[∅ | Σ] i1 ⊢ f C1, C2 non-value Σ ok

[∅ | Σ] i2 ⊢ C2 :)
@2
2

[∅ | Σ] i2 ⊢ f i1 ∩ i2 ⊆ ∅

∃f ′
1
f ′
2
Σ1 Σ2 ?1 ?2 i

′
1
i ′
2
.

C1 | f↾i1 → C ′
1
| f ′

1
[∅ | Σ1]

i ′
1 ⊢ C ′

1
:)

?1
1

Σ1 ⊇ Σ

C2 | f↾i2 → C ′
2
| f ′

2
[∅ | Σ2]

i ′
2 ⊢ C ′

2
:)

?2
2

Σ2 ⊇ Σ ?1 q∩ ?2 ⊆ {q}

Proof. Since i1 and i2 are disjoint, by Lemma 4.1, @1 and @2 are also disjoint. By Progress
(Theorem 4.6), C1 and C2 can be reduced to C ′1 and C

′
2
, respectively. Then by Preservation (Theorem 4.7),

the contractums are well-typed. With disjoint new locations picked for the two reductions, the
resulting quali�ers ?1 and ?2 are also disjoint. In a real system, this requires a thread-safe allocator
with synchronization between two parallel threads or thread-local allocation pools. □

5 REACHABILITY AND TYPE POLYMORPHISM

We extend the simply-typed reachability-polymorphic system _q with type-and-quali�er abstraction
in the style of F<: [Cardelli et al. 1994]. The typing of this extension behaves the same as in standard
F<: modulo self-references and reachability sets. As mentioned in Section 3.2, we simultaneously
abstract over both types and quali�ers.

5.1 Syntax

Figure 8 shows the syntax of Fq
<: as a F<:-style extension of _q . Types now include the Top type,

type variables - , and universal types. A universal type introduces a quanti�ed type variable -
along with a quanti�ed quali�er variable G , which are both upper-bounded by a quali�ed type& . It
is important to read the combined quanti�cation as an abbreviation introducing the abstract type
and quali�er independently, as they do not need to be used together, i.e., ∀(- <:)).∀(G <: @).& ≡

∀(- G
<:) @).& . We choose the more compact syntax for readability since types and quali�ers are

often instantiated together. Similar to function types, universal types have self-references, which
are useful when a polymorphic closure escapes its de�ning scope. The body of a universal type
is also quali�ed and can access the self-reference 5 of the universal type in addition to G . Terms
now include type abstractions and quali�ed type applications. Type abstractions bind their own
self-reference 5 , type parameter - , and quali�er parameter G in the body C . Typing environments
now include bounded type-and-quali�er variables of the form - G

<: & .

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 14. Publication date: January 2024.

14:20 Guannan Wei, Oliver Bračevac, Songlin Jia, Yuyan Bao, and Tiark Rompf

Syntax Fq
<:

) ::= · · · | Top | - | ∀5 (- G
<: &) .& Types

C ::= · · · | Λ5 (- G) .C | C [&] Terms
Γ ::= · · · | Γ, - G

<: & Typing Environments

Term Typing Γ
i ⊢ C : &

(Γ , 5 : � , - G
<: %) @,G,5 ⊢ C : & � = (∀5 (- G

<: %) .&) @ @ ⊆ i

Γ
i ⊢ Λ5 (- G) .C : �

(t-tabs)

Γ
i ⊢ C : (∀5 (- G

<:) ?) .&) @ q ∉ ? 5 ∉ fv(*)

? ⊆ i A ⊆ qi, G, 5 & = * A

Γ
i ⊢ C [) ?] : & [) ?/- G , @/5]

(t-tapp)

Γ
i ⊢ C :

(

∀5 (- G
<:) ? q∩@).&

) @
q ∈ ? ⇒ G ∉ fv(*) 5 ∉ fv(*)

? ⊆ i A ⊆ qi, G, 5 & = * A

Γ
i ⊢ C [) ?] : & [) ?/- G , @/5]

(t-tappq)

Subtyping Γ ⊢ @ <: @ Γ ⊢) <:)

- G
<:) @ ∈ Γ q ∉ @

Γ ⊢ ?, G <: ?, @
(q-qvar)

- G
<:) @ ∈ Γ

Γ ⊢ - <:)
(s-tvar)

Γ ⊢) <: Top
(s-top)

Γ ⊢ & <: $

Γ , 5 : (∀5 (- G
<: $) .%) q , - G

<: & ⊢ % <: '

Γ ⊢ ∀5 (- G
<: $) .% <: ∀5 (- G

<: &) .'
(s-all)

Fig. 8. The syntax and typing rules of Fq
<:

as an extension of _q .

5.2 Static Semantics

The typing and subtyping rules of Fq
<: (Figure 8) are a superset of those presented for _

q in Section 4.

5.2.1 Typing Rules. We add the typing rules for type abstractions and type applications. The type
system is de�ned declaratively in Curry-style, and hence for type abstractions (t-tabs) we need to
“guess” the whole universal type and its quali�er. Other parts are analogous to term abstraction
typing (Section 4.2.2). Notably, observable separation naturally generalizes to type abstraction.
That is, the quali�er @ constrains what the type abstraction’s implementation can observe, and % ’s
quali�er in - G

<: % determines observable overlap/separation for instantiations of G . Especially, if
% mentions the freshness marker q, then instantiations of G can mention unobserved variables.
Similar to function applications in _q , there are two type application rules: (t-tapp) for non-

fresh dependent applications and (t-tappq) for restricted dependent applications. Requiring non-
freshness ensures that we pass a quali�er argument that is bounded by other variables in the
context. Rule (t-tappq) is analogous to (t-appq) (cf. Section 4.2.4): If the argument quali�er is
fresh, then the result type* cannot be dependent on it. We impose observability constraints on
the codomain quali�er A to ensure the observability invariant (Lemma 4.1) for Fq

<:.

5.2.2 Subtyping Rules. Rule (s-top) is the standard rule for the Top type. Instead of de�ning a single
subtyping rule for type-and-quali�er variables that simply looks up the context in the premise, we
disentangle it to the (q-qvar) rule and (s-tvar) rule, distinguishing the subtyping for quali�ers and
ordinary types (cf. Section 4.2.6). The former accounts for subtyping of quali�ers, allowing upcasting
a quali�er variable to its upper bound. The latter is akin to standard type variable subtyping. This

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 14. Publication date: January 2024.

Polymorphic Reachability Types 14:21

disentanglement re�ects the fact that we can upcast the quanti�ed quali�er and type independently,
despite that they are introduced together using a combined syntax.
For universal types (s-all), we use the “full” subtyping rule for richer expressiveness [Curien

and Ghelli 1992] where type bounds are contravariant. This rule renders subtyping an undecidable
relation [Pierce 1992] (see Section 6 for discussion on decidability). Due to self-references, we also
extend the context with the smaller universal type when subtyping the body, as in DOT [Rompf
and Amin 2016]. Note that (s-all) invokes subtyping on quali�ed types in its premises. Similar to
the base system, typing transitivity in Fq

<: can be admissible, but our Coq mechanization relies on it
along with invertible value typing [Rompf and Amin 2016].

5.3 Dynamic Semantics and Metatheory

Figure 7 highlights the changes and new rules of Fq
<:’s dynamic semantics, as an extension of _q .

The reduction semantics is entirely standard compared to F<:, the only di�erence being that type
abstractions are recursive, so that type application (V)) also substitutes the type abstraction itself
along with the argument. Since location typing (t-loc) and store well-formedness require closed
types in store typings, we additionally demand the absence of free type variables.
Fq
<: enjoys the same soundness properties as _q , i.e., progress, preservation, and the separation

of preservation corollary (cf. Section 4.4.3). As for _q , we have proved these results in Coq for Fq
<:.

6 IMPLEMENTATION CONSIDERATIONS

Accompanying the declarative type systems and their metatheory, in this section we discuss our
experience in implementing a prototype type checker2 for the Fq

<:-calculus. The type checker
accepts an enriched input language (similar to the surface language used in Section 2) with quali�ed
types and val/def de�nitions in addition to the core calculus.

Bidirectional Typing and Annotations. We adopt the recipes of bidirectional typing [Dun�eld and
Krishnaswami 2022] so that the prototype supports both type checking and type inference. As
in Scala, users still need to annotate function argument types and quali�ers, but can omit most
annotations on val-bound variables, function returns, and type applications. Some syntactic sugar
is provided, e.g., untracked types do not need to be explicitly annotated. More precise user-provided
annotations are still accepted and checked against the inferred types by subtyping.

Decidability. The _q-calculus is based on the simply-typed _-calculus with subtyping and references,
which is known to be decidable. Our addition, i.e., quali�ers in _q (including their transitive closures),
are �nite sets, and therefore are not a source of undecidability, either. The polymorphic Fq

<:-calculus
is developed on top of the “full” variant of F<:, which is known to be undecidable due to the
subtyping of universal types [Pierce 1992]. However, the choice of using the “full” variant is
orthogonal to our calculus and our focus of this paper is type soundness and preservation of
separation. In practice, undecidable subtyping is not a severe concern. Many languages such as
Rust or Scala do not have decidable typing, yet are still practically useful. In our case, it is possible
to obtain a decidable fragment by building atop the “kernel” variant of F<:.

�alifier Subtyping and Inference. At the core of our prototype is the algorithmic version of subtype
checking, which also decides the subquali�er relation. Similar to the “exposure” algorithm [Pierce
2002] for type variables in F<:, checking sub-quali�er relations induces (1) exposing the quali�ers
to their largest equivalent following q-self (cf. Figure 5), and (2) checking their subsumption
recursively following q-var.

2The prototype can be found at https://github.com/tiarkrompf/reachability.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 14. Publication date: January 2024.

https://github.com/tiarkrompf/reachability

14:22 Guannan Wei, Oliver Bračevac, Songlin Jia, Yuyan Bao, and Tiark Rompf

Additionally, our prototype supports inferring supertypes with self-references in many cases.
This is the key to make function applications with fresh arguments work without user annotations,
where deep dependency of bound variables is disallowed when the argument is fresh (cf. t-app♦ in
Figure 4). Such deep dependencies must be upcast to self-references before application. An example
is escaping pairs that have been presented in Section 3.3:

def f() = { ... // u: Ref[Int]u, v: Ref[Int]v

Pair(u, v) // : Pair[Ref[Int]u, Ref[Int]v]{u,v}

} // upcast to `p.Pair[Ref[Int]p, Ref[Int]p]q when escaping

To avoid inferring ill-typed quali�ers, our prototype detects escaping names (e.g., u and v) and
upcasts them to the self-reference p by q-self, as they occur in covariant positions. The full
formalization and metatheory of inference are topics beyond the scope of this paper and will be
addressed in future work.

From Prototype to Scala. Scaling the prototype to a full-blown language is a long way to go, but an
interesting question to ask. Scala 3 now has an experimental implementation [Odersky et al. 2023]
for capture types [Boruch-Gruszecki et al. 2023], which provides the basic mechanism of tracking
captured variables in functions in addition to existing Scala concepts such as self-references and
bidirectional type inference. It should be thus possible to implement our proposal of reachability
types on top of the infrastructure of capture types. To achieve that, reachability types have to
be extended to handle Scala’s rich notions of types and objects. Also, constraint resolution of
quali�ers is required to integrate with Scala’s type inference [Odersky et al. 2001]. Despite the
substantial engineering e�ort, bringing reachability types to Scala would be bene�cial to introduce
the freshness notion and separation guarantee, enabling new applications such as safe parallelism
in Scala. In Section 8.2, we compare the expressiveness of capture types and our proposal.

7 LIMITATIONS & EXTENSIONS

In this section, we discuss a few directions to extend the base type system for richer expressiveness.

7.1 Nested Mutable References

Section 4.2.5 has presented the formalization of nested references. This is already an expressiveness
improvement compared to Bao et al. [2021], which requires layering a �ow-sensitive e�ect system
on top the base system. However, our nested references are also limited in supporting escaping or
cyclic references. Here we discuss possible extensions to address these limitations.

Nested References in Fq
<:. With nested references, a reference’s content also carries a reachability

annotation, e.g., Ref[T p]q, where T can be any type as long as p is not fresh. That is, only refer-
ences with fully observable reachability are permitted, and these references remain invariant once
introduced, and can only be assigned with values having the same reachability set.
This pattern permits more �exible uses of capabilities, e.g., registering e�ectful functions as

callbacks or tracking permissible escaping via assignments. Recall the counter example (Figure 1)
that returns two functions to increase or decrease an encapsulated state. Both functions share
the same reachable set containing ctr. Note that both functions encapsulate and mutate a locally-
de�ned heap reference cell, thus are e�ectful. Fq

<: allows to create a reference cell that stores either
the fst(ctr) or snd(ctr) function:

val ctr = counter(0) // : Pair[(()=>Unit)ctr,(()=>Unit)ctr]ctr

val cf = new Ref(fst(ctr)) // : Ref[(()=>Unit)ctr]cf

cf := snd(ctr) // : Unit∅

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 14. Publication date: January 2024.

Polymorphic Reachability Types 14:23

Escaping Nested References. In the current system, although it is possible to store a reference cell
into another, the outer reference cell cannot escape to a scope that does not observe the inner
reference. Consider the following example that attempts to return a nested reference:

def f(n: Int) = {

val c1 = Ref(n) // : Ref[Int]c1

val c2 = Ref(c1) // : Ref[Ref[Int]c1]c2

c2 // cannot return as either Ref[Ref[Int]∅]q or Ref[Ref[Int]q]q

}

At the end of function f, we cannot properly type c2 due to its inner quali�er c1. Since c1 is not
visible once f returns, we have to replace it with something else. However, assigning the untracked
empty set or the freshness marker would violate our type soundness guarantee (i.e., losing tracking
status or aliasing). Part of the di�culty is because reference types do not have self-references as
function types, so that we cannot use the self-reference (of the outer reference cell) to encapsulate
or upcast the inner quali�er. Yet, it is still possible to escape c2 by eta-expanding the reference with
a pair of fractional capabilities to read or write the reference cell [Boyland 2003; Reynolds 1988], so
that we can make use of the self-references of these functions:

def f(n: Int) = {

... // same as before

(() => !c2, (m: Ref[Int]c1) => c2 := m) // : Pair[(() => Int)c2, (Ref[Int]c1 => ())c2]

} // upcast to `p.Pair[(() => Int)p, (Ref[Int]∅ => ())p]

It is important to note that after packing the internal quali�er with the pair’s self-reference, the
write capability’s argument quali�er has been narrowed from {c1} to ∅, since it is in a contravariant
position. Thus, the write capability is not applicable once escaped, since there is no untracked
reference in our system. Still, this paradigm can o�er a useful fractional capability to write functions
or other maybe-tracked data, and generally when the argument quali�er can be narrowed to a
non-empty set.

Cyclic References. Another limitation in the current system is that it disallows cyclic references, so
we cannot create data structures such as doubly-linked lists or graphs. All these limitations suggest
that we should also add self-references `p.Ref[Tq] to reference types. This would enable expressing
cyclic references with type `p.Ref[Tp].

However, this can only be sound with a careful treatment of the self-reference. It is known that
monolithic reference types are invariant, but we can allow upcasting reachability to its enclosing
self-reference only at covariant (as in pairs) but not contravariant positions. Therefore, to properly
address the limitation of escaping or cyclic references with self-references, we would need to re�ne
references to two fractional quali�ers or types, and deploy di�erent self-reference rules for them
(see the above example).

7.2 Move Semantics and Uniqueness via Flow-Sensitive E�ects

In Section 2, we have demonstrated several examples enabled by extending the base reachability
type system with a �ow-sensitive e�ect system. This is useful to track �ne-grained behaviors such
as move semantics, ownership transfer, deallocation, etc. Bao et al. [2021] have presented a fruitful
marriage of e�ects and reachability by augmenting types with e�ect tracking. This section brie�y
discusses how to adopt Bao et al.’s �ow-sensitive e�ect system to Fq

<:.
Applying the e�ect system extension of Bao et al. to Fq

<: gives rise to the following augmented
type, reachability, and e�ect judgement Γ i ⊢ C :) @ | n , where n is an alias-aware e�ect store that
maps sets of variables to their e�ects. For example, the following store instance records the fact that
aliased variables G and ~ induce a read e�ect and I induces a write e�ect: ⟨{G,~} ↦→ rd, {I} ↦→ wr⟩.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 14. Publication date: January 2024.

14:24 Guannan Wei, Oliver Bračevac, Songlin Jia, Yuyan Bao, and Tiark Rompf

Informed by the quali�ers, possibly overlapping components and their e�ects are combined while
checking e�ects. The alias-aware e�ect store is an instance of Gordon [2021]’s generic sequential
e�ect system using e�ect quantales; see Bao et al. for more details.

The e�ect extension of Bao et al. relies on obtaining transitively reachable sets when building up
the alias-aware e�ect store. This is necessary to ensure any overlapping check is sound. However,
as discussed in Section 4.2.1, our system Fq

<: assigns minimal one-step reachability when typing
terms. Luckily, in Fq

<: we can still request saturated reachable sets when necessary, which is already
used in the (t-appq) rule (Figure 4). In fact, we could just use the @∗ de�ned in Figure 6 to obtain
the fully saturated quali�er. We illustrate this idea with the type-and-e�ect version of reference
assignment (e-assign) (other rules can be extended similarly):

Γ
i ⊢ C1 : (Ref)

?) @ | n1 Γ
i ⊢ C2 :)

? | n2 q ∉ ?

Γ
i ⊢ C1 ≔ C2 : Unit

∅ | n1 ▷ n2 ▷ ⟨@ ↦→ wr⟩
(e-assign)

The e�ects of subterm C1 and C2 are n1 and n2, respectively. The interesting part is that an assignment
term has its own intrinsic e�ect, which imposes a write e�ect wr over all aliases of @. These
three sub-e�ects are sequentially composed using ▷, which merges overlapped domains and their
e�ects w.r.t. their execution order. The de�nitions of the sequential composition operator ▷ and
the alias-aware e�ect store follows the one presented by Bao et al. [2021], additionally computing
transitive closures when necessary. In Fq

<:, it is possible that @ is the singleton set of the freshness
marker q. In this case, the e�ect composition yields that the empty set is associated with some
e�ect, indicating some non-observable e�ectful operation has happened.

Linearity, A�inity, and Uniqueness. It has been folklore that linearity and uniqueness are dual to
each other, and their formal relation have been carefully revisited recently [Marshall et al. 2022].
Our e�ect system extension is closer to uniqueness and ownership types, which guarantees a
variable uniquely holds the resource via move semantics. With the “kill” e�ect, we can express
a�nity that an entity is killed once it is used, i.e., used at most once (see examples in Section 2.2).
With a possible “must-reachable” extension of reachability types, we can also implement the notion
of “at least used once”, which leads to linearity when combined with “at most used once”.

Consumption vs Use & Mention. Traditional substructural type systems use the concept of “con-
sumption” to check linearity or a�nity (e.g. [Bernardy et al. 2018]). However the common notion
of “consumption” fails to distinguish the “use” and “mention” of a resource [Gordon 2020]. The
former is considered e�ectful and the later can be considered pure. This is partly due to the lack of
e�ect information. In this work, with a proper integration of alias tracking and e�ect systems, the
purity of a term becomes evident, allowing us to safely mention a resource (e.g., a pointer) multiple
times, but enforcing e�ectful uses at most once.

8 CASE STUDIES

8.1 Church-Encodings of Polymorphic Data Structures

Section 3.3 has explained how polymorphic pairs can behave in a suitable extension of Fq
<:. Their

behavior is justi�able by Church-encodings in the core calculus. We distinguish between “transpar-
ent” pairs and “opaque” pairs. Transparent pairs track precise reachability of components using
Fq
<:’s parametric quali�ers and can only be used under appropriate contexts. Opaque pairs use

self-references as an abstraction to hide local quali�ers and can escape to an outer scope. Finally,
we justify the connection between transparent and opaque pairs via subtyping, since there is a
coercion function that eta-expands pairs, converting transparent pairs to opaque pairs.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 14. Publication date: January 2024.

Polymorphic Reachability Types 14:25

Typing Church Pairs, Transparently. The transparent pair type Pair[A, B] is de�ned as a universal
type with argument type C. We also introduce abstract quali�ers along with types A, B, and C. The
quali�er of result type C is simply parametric.

type Pair[Aa <: Topq, Bb <: Top{a,q}] =

[Cc <: Top{a,b,q}] => ((Aa, Bb) => Cc)∅ => Cc){c,a,b}

We also assume the base system is extended with multi-argument functions (instead of currying
arguments), where each argument is disjoint from others. Similarly, the term constructor uses C’s
quali�er for the application f(a, b):

def Pair[Aa <: Topq, Bb <: Top{a, q}](a: Aa, b: Bb): Pair[A, B]{a,b} =

[Cc <: Top{a,b,q}] => (f: (A, B) => C) => f(a, b)

When using the quanti�ed type for the argument or return type, its accompanying quali�er is
implicitly attached, i.e., we write A as a shorthand of Aa when using it.
The projectors fst and snd have their usual de�nitions but using accurate types and quali�ers:

def fst[Aa <: Topq, Bb <: Top{a, q}](p: Pair[Aa, Bb]{a,b,q}): Aa = p((a, b) => a)

def snd[Aa <: Topq, Bb <: Top{a, q}](p: Pair[Aa, Bb]{a,b,q}): Bb = p((a, b) => b)

By making the elimination type C’s quali�er parametric, we can instantiate it in the projection func-
tion with the precise component quali�ers, as shown by the example at the beginning of Section 3.3.

Typing Escaped Church Pairs, Opaquely. The transparent pair typing works for cases where the
components are still in the context, but the pair cannot escape from that scope (cf. Figure 1). We
now discuss the types of escaped pairs using self-references as abstraction. To avoid confusion, we
name the type and constructor of opaque pairs as OPair, and transparent pairs remain Pair.

type `p.OPair[Aa <: Topq, Bb <: Top{a,q}] = // p: self-reference of a pair instance

p[Cc <: Top∅] => (h((x: Aq, y: B{x,q}) => C{x,y}) => Ch)p

Recall that in Fq
<: universal types and type abstractions also have self-references (e.g., p in the

de�nition) that can be used to express escaping polymorphic closures, similar to their term-level
correspondences (e.g., h in the de�nition). Therefore, the self-reference in `p.OPair is just a syntactic
annotation referring to the self-reference of the universal type. Compared to the transparent typing,
here we do not use quanti�ed quali�ers that are parametrically introduced. Instead, we use a chain
of self-references in the codomains, upcasting from the inner most reachability {x, y} to h and to p.
The introduction and elimination forms of opaque pairs also re�ect the typing using self-references:

def OPair[Aa <: Topq, Bb <: Top{a,q}](a: A, b: B): `p.OPair[A, B]{a,b} =

[Cc <: Top∅] => (f: (x: Aq, y: B{x,q}) => C{x,y}) => f(a, b)

def fst[Aa <: Topq, Bb <: Top{a,q}](p: `p.OPair[A, B]{a,b}): Ap = p((a, b) => a)

def snd[Aa <: Topq, Bb <: Top{a,q}](p: `p.OPair[A, B]{a,b}): Bp = p((a, b) => b)

Imprecise Eliminations. While the typing works out, the resulting quali�ers of the projections
fst/snd are imprecise. We have no means to vary the quali�er of the elimination type C in type OPair.
When the component quali�ers are not available in the context, using the self-reference to track
possible sharing is the most accurate option. This is the intended design as discussed in Section 3.3.
A side e�ect of such a typing is that in-scope elimination can yield the set of joint quali�ers, since
the pair can reach them by our “maybe-tracked” notation:

... // u and v defined as before

val p = OPair(u, v) // : `p.OPair[Ref[Int], Ref[Int]]q binds to p, unpacking the self-ref

fst(p) // : Ref[Int]p <: Ref[Int]{u,v} ← imprecise joint qualifiers

snd(p) // : Ref[Int]p <: Ref[Int]{u,v} ← imprecise joint qualifiers

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 14. Publication date: January 2024.

14:26 Guannan Wei, Oliver Bračevac, Songlin Jia, Yuyan Bao, and Tiark Rompf

Conversion between Opaque and Transparent Pairs. The two di�erent types for Church-encoded
pairs are connected, i.e., transparent pairs can be converted to opaque via eta-expansion:

def conv[Aa <: Topq, Bb <: Top{a,q}](p: Pair[A, B]{a,b,q}): `p.OPair[A, B]{a,b} =

OPair(fst(p), snd(p))

From a pragmatic perspective, when the language is extended with pairs as native algebraic data
types, the eta-expansion justi�es an admissible subtyping rule for escaped pairs.

General Data Types. The general Church-encoding of data types via sums and products can also
bene�t from the increased precision. In Appendix B [Wei et al. 2023], we discuss the typing rules of
other generic data types, including boxes, options, and lists.

8.2 Comparison with Scala Capture Types

A closely related work to ours is the recent Scala capture types (CT) proposal [Boruch-Gruszecki
et al. 2023] which also tracks sets of variables. The system is tailored to programming with e�ects
as non-escaping capabilities, providing a lightweight form of e�ect polymorphism. In this section,
we inspect a few aspects of CT and demonstrate its limitation in handling fresh resources.

Capture Sets, Universal �alifier, and Box Types. Similar to our system, capture types are built on
top of F<: and types can be annotated with variable sets, i.e., {21, . . . , 2=}) where 28 is a variable
representing the captured capability. Here is a (simpli�ed) combinator for scoped exception handling
using capture types [Odersky et al. 2021]:

// declares the throw capability:

class CanThrow

// passes a tracked non-escaping capability to a block:

def _try[A](block: (c: {*} CanThrow) -> A) = block(CanThrow())

Importantly, {*} is a special marker for the top element for quali�er subtyping in capture types,
meaning some unknown set of variables is tracked, e.g., {*} CanThrow above.

While super�cially similar, this top quali�er should not be confused with our q marker indicating
a fresh/growing quali�er, and behaves di�erently, as we will show later.
Since c represents a universal capability, we want to enforce that the lifetime of capability c

passed to the given block is bound to the scope of _try. In other words, it should not be leaked for
any given block, e.g., by directly returning it or returning it indirectly through an escaping closure.
Capture types enforce this by requiring that the universal capability {*} cannot escape. This is in
contrast to capabilities bound to a variable in an outer scope.
When combined with parametric type polymorphism, Boruch-Gruszecki et al. [2023] propose

to use a box type operator □) to turn quali�ed types into proper, unquali�ed types, so that type
variables only need to range over proper types. A boxed value □[@)] capturing local variables in
@ is upcast to □[{∗})] when going out of scope. Unboxing such types recovers the capture set.
Boxed values can only be unboxed if the contained quali�er @ is a concrete variable set, speci�cally
excluding the top quali�er {*}. This provides a mechanism for statically enforcing non-escaping
capabilities, i.e., boxes are implicitly inserted at the abstraction boundary whenever the block’s
return type A is instantiated with a tracked type:

// illegal use (escaping capabilities):

val x = _try { c => c } // : □[{*} CanThrow], error: cannot box/unbox

val y = _try { c => () => c } // : □[{*} (() -> CanThrow)], error : cannot box/unbox

On the outside, subtyping can only assign the {*} quali�er to blocks that return or capture the
capability c, since the captured variable is not visible in the outer scope.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 14. Publication date: January 2024.

Polymorphic Reachability Types 14:27

Limitation: Tracking Fresh Values. Let us now consider combining _trywith other resources that
have non-scoped introduction forms and should be tracked:

// assume freshAlloc() : {*} T

val outer = freshAlloc() // : {*} T is bound to {outer} T

val z = _try { c => () => outer } // : □[{outer} (() -> T)], ok: can box/unbox

The compiler rejects unboxing the {*} quali�er, but allows it for any more concrete one. However,
while the box type prevents capabilities from escaping, the compiler must infer and insert box intro-
ductions and eliminations at declaration and use sites of polymorphic terms. But more importantly,
the capture type mechanism does not support unbound fresh values well, e.g., fresh allocations.
The obvious choice is assigning the top-quali�er {*} to indicate some new value, but this is at odds
with boxing/unboxing, e.g., one cannot write

val fresh = _try { c => freshAlloc() } // : □[{*} T], error

val fresh2 = _try { c => val f = freshAlloc(); () => f } // : □[{*} (() -> T)], error

A potential workaround is having a separate global capability (e.g., heap) for allocations:

// fresh3 : {fresh2} T <: {heap} T

val fresh3 = _try { c => heap.freshAlloc() } // : □[{heap} T], ok: can unbox

This solution works well for e�ects-as-capabilities models, but it is unsatisfactory for tracking
aliasing and separation, e.g., all fresh values have a common super type {heap} T which pollutes
subtyping chains and leads to a loss of distinction between separate fresh allocations. In summary,
if we want to track the lifetimes of a given class of resources, these lifetimes must be properly
nested in a stack-like manner with the lifetimes of all other resources.

The Reachability Approach. Our Fq
<:-calculus can correctly handle fresh values, while at the same

time not requiring a box type. This stems from (1) having an intersection operator for reasoning
about separation/overlap, and (2) a strong observability guarantee on function types and universal
types. For instance, here is the type- and quali�er-polymorphic version of _try:

// ∀AI <: Topq . ((CanThrowq → A{I,q})q → A{I,q})

def _try[Aq](block: ((c: CanThrowq) => A)q): A = block(CanThrow())

The annotation on the block parameter speci�es that it is contextually fresh for the implementation
of _try and thus entirely separate in terms of transitive reachability. We still reject the x and y

examples above (Section 8.2), but we now permit fresh: Tq and fresh2: f(() => T{f}), which correctly
preserves the freshness of unnamed results. Finally, Fq

<: permits �ner-grained type distinctions
when returning fresh values, due to function self references:

// CT: {*} (() -> T)

// Fq
<:: () => Tq

def retFresh() = () => freshAlloc()

// CT: {*} (() -> T)

// Fq
<:: f(() => T{f})

def retConst() = { val f = freshAlloc(); () => f }

Fq
<: distinguishes between returning a fresh value on each invocation, versus returning one and the

same fresh value escaping a local scope, whereas both are indistinguishable in capture types.

Outlook. Compared to CT, reachability types exhibit similar expressiveness and can support all
relevant uses of capture types. Additionally, reachability types show richer expressiveness in a
few key aspects, especially the tracking of freshness and the guarantee of separation. In future
work, we propose to implement reachability types on top of the experimental CT implementation
[Odersky et al. 2023] in Scala 3, which would provide additional guarantees, such as separation.
We look forward to seeing how these two lines of similar ideas can bene�t each other in the future.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 14. Publication date: January 2024.

14:28 Guannan Wei, Oliver Bračevac, Songlin Jia, Yuyan Bao, and Tiark Rompf

9 RELATED WORK

Tracking Variables in Types. The most directly related work of this paper is the original work on
reachability types [Bao et al. 2021]. This paper addresses key limitations of Bao et al. [2021] and
improves its expressiveness by introducing a new reachability tracking mechanism, the freshness
marker, and type-and-quali�er quanti�cation.
Capture types [Boruch-Gruszecki et al. 2021; Boruch-Gruszecki et al. 2023; Odersky et al. 2021,

2022] is another recent ongoing e�ort to integrate capability tracking and escaping checking into
Scala 3. Several calculi have been proposed for capture types, e.g., CF<: [Boruch-Gruszecki et al.
2021] and CC<:□ [Odersky et al. 2021, 2022]. In Section 8.2, we have discussed and compared with
capture types. To achieve capture tunnelling with universal polymorphism, the CC<:□ calculus uses
boxing/unboxing, inspired by contextual modal type theory (CMTT) [Nanevski et al. 2008]. Scherer
and Ho�mann [2013] propose open closure types used for data-�ow analysis where function types
carry their de�ning lexical environments. Several type systems [Jang et al. 2022; Kiselyov et al.
2016; Parreaux et al. 2018] designed for manipulating open code in metaprogramming also track
free variables and contexts in types, which are closely related to CMTT.

Escaping, Freshness, and Existential Types. Works inspired by regions [Tofte and Talpin 1997] use
existential types for tracking freshness or escaping entities, e.g., in Alias types [Smith et al. 2000],
!3 [Ahmed et al. 2007], and Cyclone [Grossman et al. 2002], analogous to our freshness marker
and self-reference. As an analogy, one can think of a type with the freshness marker Ref

q as
having an underlying quasi-existential type `G .Ref{x} where the reference type tracks its own
self-reference. However, existentials for this purpose in our system would have to preserve precise
reachability information across temporary aliases created during pack/unpack operations. That
is, special facilities simulating the freshness marker and related constructs would need to be used
in the implementation of existentials, if those were taken as primitives. Therefore, we believe the
typing with self-references is more concise and appropriate than existentials here, because we
can use the same variable. In addition, the use of self-references for escaping closures in our work
makes reasoning about them more succinct. Similar to our calculi, type systems distinguishing
second-class values can also enforce non-escaping properties of e�ects or capabilities [Brachthäuser
et al. 2022, 2020; Osvald et al. 2016; Siek et al. 2012; Xhebraj et al. 2022]. To regain the ability to
return second-class capabilities, Brachthäuser et al. [2022] again make use of boxing and unboxing.

Separation. The notion of separation and the intersection operator (Section 4.2.4) used in reachability
types is inspired by separation logic [O’Hearn et al. 2001; Reynolds 2002] and its predecessors
[O’Hearn et al. 1999; Reynolds 1978, 1989]. Bunched typing [O’Hearn 2003] and syntactic control of
interference [O’Hearn et al. 1999; Reynolds 1978, 1989] allow reasoning about disjoint and shared
resource access. This is similar to reachability types, however, our system does not enforce that the
computations of the function and arguments are disjoint, but their �nal values are disjoint (rule
t-appq in Figure 4). Bunched typing enforces separation by splitting the typing context, whereas
our work enforces separation by checking disjointness of saturated reachability sets. Bunched
typing also lacks an explicit treatment of aliasing.

Uniqueness types [Barendsen and Smetsers 1996; de Vries et al. 2006, 2007] ensure that there is
no more than one reference pointing to the resource, e�ectively establishing separation. Marshall
et al. [2022] present a language unifying linearity [Wadler 1990] and uniqueness. Our base system
does not directly track either linearity or uniqueness, instead, �ow-sensitive “kill” e�ects that
disable all aliases can be integrated to statically enforce uniqueness [Bao et al. 2021].

Polymorphism. Reachability types and our variants feature lightweight reachability polymorphism
without introducing explicit quanti�cation (cf. Section 4.2.2). Capture types [Boruch-Gruszecki

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 14. Publication date: January 2024.

Polymorphic Reachability Types 14:29

et al. 2021; Odersky et al. 2021, 2022] provide a similar �avor via dependent function applica-
tion. Brachthäuser et al. [2022, 2020] propose to represent e�ects as capabilities, which yields a
lightweight form of e�ect polymorphism that requires little annotations.
Various forms of polymorphism exist in prior work on ownership types. Noble et al. [1998]

use generic parameters to pass aliasing modes into a class. But they do not allow ownership
parameterization isolated from type parameterization. Clarke [2003] further supports ownership
polymorphism via context parameters. Similarly, Ownership Generic Java [Potanin et al. 2006]
allows programmers to specify ownership information through type parameters. Jo∃ [Cameron
and Drossopoulou 2009; Cameron 2009] combines the theory of existential types with a parametric
ownership type system, where ownership information is passed as additional type arguments.
Generic Universe Types [Dietl et al. 2011] integrate the owners-as-modi�ers discipline with type
genericity, e�ectively separating the ownership topology from the encapsulation constraints.

Collinson et al. [2008] combine F-style polymorphism with bunched logic, where universal types
are discerned to be either additive and multiplicative, but do not allow abstraction over additivity
and multiplicativity. Our system Fq

<: has quanti�ed abstraction over quali�ers, which can be used
as an argument’s reachability, permitting �exible instantiations of either disjointness or sharing.

Constraints in alias types [Smith et al. 2000] support a form of location and store polymorphism,
where the latter abstracts over irrelevant store locations. Our calculi implicitly abstract over contexts
by baking the observability notion into typing.

Ownership Types. Ownership type systems [Clarke et al. 1998; Noble et al. 1998] are generally
concerned with objects in OO programs and start from the uniqueness restriction [Boyapati et al.
2002; Clarke et al. 2001; Dietl et al. 2011; Müller and Poetzsch-He�ter 2000; Zhao et al. 2008] and
then selectively re-introduce sharing in a controlled manner [Clebsch et al. 2015; Hogg 1991; Naden
et al. 2012]. Inherited from Bao et al. [2021], our calculi are designed for higher-order languages and
deem sharing and separation as essential substrates, on top of which an additional e�ect system
can be layered to achieve uniqueness and ownership transfer. The focus of this paper is to address
the limitations in expressiveness of Bao et al. [2021] regarding reachability and type polymorphism.

Rust’s type system [Matsakis and Klock 2014] enforces strict uniqueness of mutable references,
while immutable references can be shared via borrowing, known as the “shared XOR mutable” rule.
Mezzo [Balabonski et al. 2016] is a language designed for controlling aliasing and mutation, and
share some similarities with Fq

<:. Mezzo tracks aliasing using singleton types [Smith et al. 2000].
When dealing with e�ects, Mezzo imposes restrictions like Rust: mutable portions of the heap
must have a unique owner, whereas reachability types relax this constraint. Moreover, Mezzo lacks
the notion of separation between functions and arguments and uses existential quanti�cation to
handle escaping functions that capture local variables. Fq

<: checks separation at the call site and has
a lightweight mechanism to track escaping functions via self-references.

Typestate-oriented programming [Aldrich et al. 2009] and its combination with gradual typing
[Garcia et al. 2014] also provides static �ow-sensitive reasoning or dynamic enforcement.

10 CONCLUSION

In this work, we propose a new reachability type system _q that has lightweight, precise, and sound
reachability polymorphism. Based on _q , we add bounded quanti�cation over types and quali�ers,
leading to a type-and-reachability-polymorphic calculus Fq

<:. We have formalized these systems and
proved the soundness and separation guarantees in Coq. We further discuss implementation con-
siderations and possible directions to extend the base system for richer expressiveness. We compare
our system with Scala capture types in the context of programming with capabilities. Our system
subsumes both prior reachability types and the essence of Scala capture types, while exhibiting
richer expressiveness in key aspects such as modeling freshness and guaranteeing separation.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 14. Publication date: January 2024.

14:30 Guannan Wei, Oliver Bračevac, Songlin Jia, Yuyan Bao, and Tiark Rompf

ACKNOWLEDGMENTS

We thank Siyuan He and Haotian Deng for related contributions to reachability types, and the
anonymous reviewers for their insightful comments and suggestions. This work was supported
in part by NSF awards 1553471, 1564207, 1918483, 1910216, DOE award DE-SC0018050, as well as
gifts from Meta, Google, Microsoft, and VMware.

REFERENCES

Amal Ahmed, Matthew Fluet, and Greg Morrisett. 2007. L3: A Linear Language with Locations. Fundam. Informaticae 77, 4
(2007), 397–449.

Jonathan Aldrich, Joshua Sunshine, Darpan Saini, and Zachary Sparks. 2009. Typestate-oriented programming. In OOPSLA

Companion. ACM, 1015–1022.
Roberto M. Amadio and Luca Cardelli. 1993. Subtyping Recursive Types. ACM Trans. Program. Lang. Syst. 15, 4 (1993),

575–631.
Nada Amin, Samuel Grütter, Martin Odersky, Tiark Rompf, and Sandro Stucki. 2016. The Essence of Dependent Object

Types. In A List of Successes That Can Change the World (Lecture Notes in Computer Science, Vol. 9600). Springer, 249–272.
Thibaut Balabonski, François Pottier, and Jonathan Protzenko. 2016. The Design and Formalization of Mezzo, a Permission-

Based Programming Language. ACM Trans. Program. Lang. Syst. 38, 4 (2016), 14:1–14:94.
Yuyan Bao, Guannan Wei, Oliver Bračevac, Yuxuan Jiang, Qiyang He, and Tiark Rompf. 2021. Reachability types: tracking

aliasing and separation in higher-order functional programs. Proc. ACM Program. Lang. 5, OOPSLA (2021), 1–32.
Erik Barendsen and Sjaak Smetsers. 1996. Uniqueness Typing for Functional Languages with Graph Rewriting Semantics.

Math. Struct. Comput. Sci. 6, 6 (1996), 579–612.
Jean-Philippe Bernardy, Mathieu Boesp�ug, Ryan R. Newton, Simon Peyton Jones, and Arnaud Spiwack. 2018. Linear

Haskell: practical linearity in a higher-order polymorphic language. Proc. ACM Program. Lang. 2, POPL (2018), 5:1–5:29.
Aleksander Boruch-Gruszecki, Jonathan Immanuel Brachthäuser, Edward Lee, Ondrej Lhoták, and Martin Odersky. 2021.

Tracking Captured Variables in Types. CoRR abs/2105.11896 (2021).
Aleksander Boruch-Gruszecki, Martin Odersky, Edward Lee, Ondřej Lhoták, and Jonathan Brachthäuser. 2023. Capturing

Types. ACM Trans. Program. Lang. Syst. (sep 2023). Just Accepted.
Chandrasekhar Boyapati, Robert Lee, and Martin C. Rinard. 2002. Ownership types for safe programming: preventing data

races and deadlocks. In OOPSLA. ACM, 211–230.
John Boyland. 2003. Checking Interference with Fractional Permissions. In Static Analysis, Radhia Cousot (Ed.). Springer

Berlin Heidelberg, Berlin, Heidelberg, 55–72.
Jonathan Immanuel Brachthäuser, Philipp Schuster, Edward Lee, and Aleksander Boruch-Gruszecki. 2022. E�ects, capabilities,

and boxes: from scope-based reasoning to type-based reasoning and back. Proc. ACM Program. Lang. 6, OOPSLA (2022),
1–30.

Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann. 2020. E�ects as capabilities: e�ect handlers and
lightweight e�ect polymorphism. Proc. ACM Program. Lang. 4, OOPSLA (2020), 126:1–126:30.

Oliver Bračevac, Guannan Wei, Songlin Jia, Supun Abeysinghe, Yuxuan Jiang, Yuyan Bao, and Tiark Rompf. 2023. Graph
IRs for Impure Higher-Order Languages: Making Aggressive Optimizations A�ordable with Precise E�ect Dependencies.
Proc. ACM Program. Lang. 7, OOPSLA2, Article 236 (oct 2023), 31 pages.

Nicholas Cameron and Sophia Drossopoulou. 2009. Existential Quanti�cation for Variant Ownership. In ESOP (Lecture

Notes in Computer Science, Vol. 5502). Springer, 128–142.
Nicholas Robert Cameron. 2009. Existential Types for Variance - Java Wildcards and Ownership Types. Ph. D. Dissertation.

Imperial College London, UK.
Luca Cardelli, Simone Martini, John C. Mitchell, and Andre Scedrov. 1994. An Extension of System F with Subtyping. Inf.

Comput. 109, 1/2 (1994), 4–56.
David Clarke. 2003. Object Ownership and Containment. Ph. D. Dissertation. University of New South Wales.
David Clarke, James Noble, and John Potter. 2001. Simple Ownership Types for Object Containment. In ECOOP (Lecture

Notes in Computer Science, Vol. 2072). Springer, 53–76.
Dave Clarke, Johan Östlund, Ilya Sergey, and Tobias Wrigstad. 2013. Ownership Types: A Survey. In Aliasing in Object-

Oriented Programming. Lecture Notes in Computer Science, Vol. 7850. Springer, 15–58.
David Clarke, John Potter, and James Noble. 1998. Ownership Types for Flexible Alias Protection. In OOPSLA. ACM, 48–64.
Sylvan Clebsch, Sebastian Blessing, Juliana Franco, and Sophia Drossopoulou. 2015. Ownership and reference counting

based garbage collection in the actor world. In ICOOOLPS’2015. ACM.
Matthew Collinson, David J. Pym, and Edmund Robinson. 2008. Bunched polymorphism. Math. Struct. Comput. Sci. 18, 6

(2008), 1091–1132.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 14. Publication date: January 2024.

Polymorphic Reachability Types 14:31

Pierre-Louis Curien and Giorgio Ghelli. 1992. Coherence of Subsumption, Minimum Typing and Type-Checking in F≤ .
Math. Struct. Comput. Sci. 2, 1 (1992), 55–91.

Edsko de Vries, Rinus Plasmeijer, and David M. Abrahamson. 2006. Uniqueness Typing Rede�ned. In IFL (Lecture Notes in

Computer Science, Vol. 4449). Springer, 181–198.
Edsko de Vries, Rinus Plasmeijer, and David M. Abrahamson. 2007. Uniqueness Typing Simpli�ed. In IFL (Lecture Notes in

Computer Science, Vol. 5083). Springer, 201–218.
Werner Dietl, Sophia Drossopoulou, and Peter Müller. 2011. Separating ownership topology and encapsulation with generic

universe types. ACM Trans. Program. Lang. Syst. 33, 6 (2011), 20:1–20:62.
Jana Dun�eld and Neel Krishnaswami. 2022. Bidirectional Typing. ACM Comput. Surv. 54, 5 (2022), 98:1–98:38.
Ronald Garcia, Éric Tanter, Roger Wol�, and Jonathan Aldrich. 2014. Foundations of Typestate-Oriented Programming.

ACM Trans. Program. Lang. Syst. 36, 4 (2014), 12:1–12:44.
Colin S. Gordon. 2020. Designing with Static Capabilities and E�ects: Use, Mention, and Invariants (Pearl). In ECOOP (LIPIcs,

Vol. 166). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 10:1–10:25.
Colin S. Gordon. 2021. Polymorphic Iterable Sequential E�ect Systems. ACM Trans. Program. Lang. Syst. 43, 1 (2021),

4:1–4:79.
Dan Grossman, J. Gregory Morrisett, Trevor Jim, Michael W. Hicks, Yanling Wang, and James Cheney. 2002. Region-Based

Memory Management in Cyclone. In PLDI. ACM, 282–293.
John Hogg. 1991. Islands: Aliasing Protection in Object-Oriented Languages. In OOPSLA. ACM, 271–285.
Junyoung Jang, Samuel Gélineau, Stefan Monnier, and Brigitte Pientka. 2022. Mœbius: metaprogramming using contextual

types: the stage where system f can pattern match on itself. Proc. ACM Program. Lang. 6, POPL (2022), 1–27.
Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. 2018. RustBelt: securing the foundations of the rust

programming language. Proc. ACM Program. Lang. 2, POPL (2018), 66:1–66:34.
Oleg Kiselyov, Yukiyoshi Kameyama, and Yuto Sudo. 2016. Re�ned Environment Classi�ers - Type- and Scope-Safe Code

Generation with Mutable Cells. In APLAS (Lecture Notes in Computer Science, Vol. 10017). 271–291.
Daniel Marshall, Michael Vollmer, and Dominic Orchard. 2022. Linearity and Uniqueness: An Entente Cordiale. In ESOP

(Lecture Notes in Computer Science, Vol. 13240). Springer, 346–375.
Nicholas D. Matsakis and Felix S. II Klock. 2014. The Rust language. In HILT. ACM, 103–104.
Peter Müller and Arnd Poetzsch-He�ter. 2000. A type system for controlling representation exposure in Java. In ECOOP

Workshop on Formal Techniques for Java Programs.
Karl Naden, Robert Bocchino, Jonathan Aldrich, and Kevin Bierho�. 2012. A type system for borrowing permissions. In

POPL. ACM, 557–570.
Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. 2008. Contextual modal type theory. ACM Trans. Comput. Log.

9, 3 (2008), 23:1–23:49.
James Noble, Jan Vitek, and John Potter. 1998. Flexible Alias Protection. In ECOOP (Lecture Notes in Computer Science,

Vol. 1445). Springer, 158–185.
Martin Odersky et al. 2023. Scala 3 Reference - Capture Checking. https://docs.scala-lang.org/scala3/reference/experimental/

cc.html
Martin Odersky, Aleksander Boruch-Gruszecki, Jonathan Immanuel Brachthäuser, Edward Lee, and Ondrej Lhoták. 2021.

Safer exceptions for Scala. In SCALA/SPLASH. ACM, 1–11.
Martin Odersky, Aleksander Boruch-Gruszecki, Edward Lee, Jonathan Immanuel Brachthäuser, and Ondrej Lhoták. 2022.

Scoped Capabilities for Polymorphic E�ects. CoRR abs/2207.03402 (2022).
Martin Odersky, Christoph Zenger, and Matthias Zenger. 2001. Colored local type inference. In POPL. ACM, 41–53.
Peter W. O’Hearn. 2003. On bunched typing. J. Funct. Program. 13, 4 (2003), 747–796.
Peter W. O’Hearn, John Power, Makoto Takeyama, and Robert D. Tennent. 1999. Syntactic Control of Interference Revisited.

Theor. Comput. Sci. 228, 1-2 (1999), 211–252.
Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. 2001. Local Reasoning about Programs that Alter Data Structures.

In CSL (Lecture Notes in Computer Science, Vol. 2142). Springer, 1–19.
Leo Osvald, Grégory M. Essertel, Xilun Wu, Lilliam I. González Alayón, and Tiark Rompf. 2016. Gentri�cation gone too far?

a�ordable 2nd-class values for fun and (co-)e�ect. In OOPSLA. ACM, 234–251.
Lionel Parreaux, Antoine Voizard, Amir Shaikhha, and Christoph E. Koch. 2018. Unifying analytic and statically-typed

quasiquotes. Proc. ACM Program. Lang. 2, POPL (2018), 13:1–13:33.
Benjamin C. Pierce. 1992. Bounded Quanti�cation is Undecidable. In POPL. ACM Press, 305–315.
Benjamin C. Pierce. 2002. Types and programming languages. MIT Press.
Benjamin C. Pierce and David N. Turner. 2000. Local type inference. ACM Trans. Program. Lang. Syst. 22, 1 (2000), 1–44.
Alex Potanin, James Noble, Dave Clarke, and Robert Biddle. 2006. Generic ownership for generic Java. In OOPSLA. ACM,

311–324.
John C. Reynolds. 1978. Syntactic Control of Interference. In POPL. ACM Press, 39–46.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 14. Publication date: January 2024.

https://docs.scala-lang.org/scala3/reference/experimental/cc.html
https://docs.scala-lang.org/scala3/reference/experimental/cc.html

14:32 Guannan Wei, Oliver Bračevac, Songlin Jia, Yuyan Bao, and Tiark Rompf

John C. Reynolds. 1988. Preliminary design of the programming language Forsythe. Tech Report, CMU-CS-88-159, Carnegie

Mellon University (1988).
John C. Reynolds. 1989. Syntactic Control of Inference, Part 2. In ICALP (Lecture Notes in Computer Science, Vol. 372).

Springer, 704–722.
John C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable Data Structures. In LICS. IEEE Computer Society,

55–74.
Tiark Rompf and Nada Amin. 2016. Type soundness for dependent object types (DOT). In OOPSLA. ACM, 624–641.
Gabriel Scherer and Jan Ho�mann. 2013. Tracking Data-Flow with Open Closure Types. In LPAR (Lecture Notes in Computer

Science, Vol. 8312). Springer, 710–726.
Jeremy G. Siek, Michael M. Vitousek, and Jonathan D. Turner. 2012. E�ects for Funargs. CoRR abs/1201.0023 (2012).
Frederick Smith, David Walker, and J. Gregory Morrisett. 2000. Alias Types. In ESOP (Lecture Notes in Computer Science,

Vol. 1782). Springer, 366–381.
Mads Tofte and Jean-Pierre Talpin. 1997. Region-based Memory Management. Inf. Comput. 132, 2 (1997), 109–176.
Philip Wadler. 1990. Linear Types can Change the World!. In Programming Concepts and Methods. North-Holland, 561.
Guannan Wei, Oliver Bračevac, Songlin Jia, Yuyan Bao, and Tiark Rompf. 2023. Polymorphic Reachability Types: Tracking

Freshness, Aliasing, and Separation in Higher-Order Generic Programs (Extended Version). CoRR abs/2307.13844 (2023).
Anxhelo Xhebraj, Oliver Bracevac, Guannan Wei, and Tiark Rompf. 2022. What If We Don’t Pop the Stack? The Return of

2nd-Class Values. In ECOOP (LIPIcs, Vol. 222). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 15:1–15:29.
Tian Zhao, Jason Baker, James Hunt, James Noble, and Jan Vitek. 2008. Implicit ownership types for memory management.

Science of Computer Programming 71, 3 (2008), 213–241.
Litao Zhou, Yaoda Zhou, and Bruno C. d. S. Oliveira. 2023. Recursive Subtyping for All. Proc. ACM Program. Lang. 7, POPL

(2023), 1396–1425.
Yaoda Zhou, Jinxu Zhao, and Bruno C. d. S. Oliveira. 2022. Revisiting Iso-Recursive Subtyping. ACM Trans. Program. Lang.

Syst. 44, 4 (2022), 24:1–24:54.

Received 2023-07-11; accepted 2023-11-07

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 14. Publication date: January 2024.

	Abstract
	1 Introduction
	2 Motivating Examples
	2.1 Examples Enabled by Tracking Reachability and Separation
	2.2 Examples Enabled by Layering an Effect System

	3 Polymorphic Reachability Types
	3.1 Precise Reachability Polymorphism in
	3.2 Type-and-Qualifier Abstractions in F<:
	3.3 Polymorphic Data Types

	4 Simply-Typed Reachability Polymorphism
	4.1 Syntax
	4.2 Static Semantics
	4.3 Dynamic Semantics and Stores
	4.4 Metatheory

	5 Reachability and Type Polymorphism
	5.1 Syntax
	5.2 Static Semantics
	5.3 Dynamic Semantics and Metatheory

	6 Implementation Considerations
	7 Limitations & Extensions
	7.1 Nested Mutable References
	7.2 Move Semantics and Uniqueness via Flow-Sensitive Effects

	8 Case Studies
	8.1 Church-Encodings of Polymorphic Data Structures
	8.2 Comparison with Scala Capture Types

	9 Related Work
	10 Conclusion
	Acknowledgments
	References

