
Refunctionalization of 
Abstract Abstract Machines
Bridging the Gap between Abstract Abstract Machines 
and Abstract Definitional Interpreters
(Functional Pearl)

Guannan Wei, James Decker, Tiark Rompf
Department of Computer Science, Purdue University

1



Order-of-
application
dependence:

Use of higher-order functions:

yes no

yes
direct interpreter 
for GEDANKEN

McCarthy’s
definition of LISP

no
Morris-Wadsworth
method

SECD machine,
Vienna definition

Definitional Interpreters
for Higher-Order Programming Languages*

JOHN C.REYNOLDS**
Systems and Information Science, Syracuse University

John Reynolds, Definitional Interpreters for Higher-Order Programming Languages, 
in Proceedings of the ACM Annual Conference, Volume 2, pages 717—740, August 1972.

2



Order-of-
application
dependence:

Use of higher-order functions:

yes no

yes
direct interpreter 
for GEDANKEN

McCarthy’s
definition of LISP

no
Morris-Wadsworth
method

SECD machine,
Vienna definition

Definitional Interpreters
for Higher-Order Programming Languages*

JOHN C.REYNOLDS**
Systems and Information Science, Syracuse University

3
John Reynolds, Definitional Interpreters for Higher-Order Programming Languages, 
in Proceedings of the ACM Annual Conference, Volume 2, pages 717—740, August 1972.



Order-of-
application
dependence:

Use of higher-order functions:

yes no

yes
direct interpreter 
for GEDANKEN

McCarthy’s
definition of LISP

no
Morris-Wadsworth
method

SECD machine,
Vienna definition

Definitional Interpreters
for Higher-Order Programming Languages*

JOHN C.REYNOLDS**
Systems and Information Science, Syracuse University

4
John Reynolds, Definitional Interpreters for Higher-Order Programming Languages, 
in Proceedings of the ACM Annual Conference, Volume 2, pages 717—740, August 1972.



Order-of-
application
dependence:

Use of higher-order functions:

yes no

yes
direct interpreter 
for GEDANKEN

McCarthy’s
definition of LISP

no
Morris-Wadsworth
method

SECD machine,
Vienna definition

defunctionalization: transform higher-order functions to 
first-order data types with their dispatching functions 

(e.g., closure conversion).

5
John Reynolds, Definitional Interpreters for Higher-Order Programming Languages, 
in Proceedings of the ACM Annual Conference, Volume 2, pages 717—740, August 1972.



Order-of-
application
dependence:

Use of higher-order functions:

yes no

yes
direct interpreter 
for GEDANKEN

McCarthy’s
definition of LISP

no
Morris-Wadsworth
method

SECD machine,
Vienna definition

defunctionalization: transform higher-order functions to 
first-order data types with their dispatching functions 

(e.g., closure conversion).

refunctionalization: the left-inverse of defunctionalization
[Danvy et al.].

6
John Reynolds, Definitional Interpreters for Higher-Order Programming Languages, 
in Proceedings of the ACM Annual Conference, Volume 2, pages 717—740, August 1972.



Functional Correspondence

- Refunctionalization / defunctionalization can be used to show 

the functional correspondence between small-step abstract 

machines and big-step evaluators.

- Idea: apply refunctionalization / defunctionalization to 

control flow.

7
Ager, Mads Sig, et al. A functional correspondence between evaluators and abstract machines, 
Proc. of the 5th ACM SIGPLAN inter. conf. on Principles and practice of declarative programming. 2003.



Functional Correspondence

- Example: refunctionalizing a CEK machine yields an interpreter 

in continuation-passing style.

8

CEK Machine
State := ⟨Expr, Env, Kont⟩
Kont  := Halt 

       | Ar⟨Expr, Env, Kont⟩ 
       | Fn⟨Lam, Env, Kont⟩



Functional Correspondence

- Example: refunctionalizing a CEK machine yields an interpreter 

in continuation-passing style.

CEK Machine
State := ⟨Expr, Env, Kont⟩
Kont  := Halt 

       | Ar⟨Expr, Env, Kont⟩ 
       | Fn⟨Lam, Env, Kont⟩

9

evaluation context
(first-order data types)



Functional Correspondence

- Example: refunctionalizing a CEK machine yields an interpreter 

in continuation-passing style.

CEK Machine
State := ⟨Expr, Env, Kont⟩
Kont  := Halt 

       | Ar⟨Expr, Env, Kont⟩ 
       | Fn⟨Lam, Env, Kont⟩

10

refunc.

defunc.

CPS Interpreter

eval : Expr × Env × (Val → Val) 
       → Value

continuation
(higher-order functions)

evaluation context
(first-order data types)



Functional Correspondence

- Example: refunctionalizing a CEK machine yields an interpreter 

in continuation-passing style.

- refunc. evaluation contexts = higher-order continuations
- defunc. continuations = first-order evaluation contexts

CEK Machine
State := ⟨Expr, Env, Kont⟩
Kont  := Halt 

       | Ar⟨Expr, Env, Kont⟩ 
       | Fn⟨Lam, Env, Kont⟩

11
Ager, Mads Sig, et al. A functional correspondence between evaluators and abstract machines, 
Proc. of the 5th ACM SIGPLAN inter. conf. on Principles and practice of declarative programming. 2003.

refunc.

defunc.

CPS Interpreter

eval : Expr × Env × (Val → Val) 
       → Value



- Example: refunctionalizing a CEK machine yields an interpreter 

in continuation-passing style.

- Transform CPS interpreter back to direct-style, i.e., a 

definitional evaluator.

Functional Correspondence

Abstract
Machines
(CEK/CESK)

Definitional
Interpreters

CPS
Interpreters

refunc.

defunc.

to direct-style

CPS trans.

12
Ager, Mads Sig, et al. A functional correspondence between evaluators and abstract machines, 
Proc. of the 5th ACM SIGPLAN inter. conf. on Principles and practice of declarative programming. 2003.



Abstract
Machines
(CEK/CESK) Functional correspondence between 

concrete abstract machines and evaluators

Definitional
Interpreters

13

Functional Correspondence

- Functional correspondence: independently designed concrete 

semantic artifacts can be inter-derived in a systematic way.

- Refunctionalization and defunctionalization plays an important 

role in the inter-derivation.

Ager, Mads Sig, et al. A functional correspondence between evaluators and abstract machines, 
Proc. of the 5th ACM SIGPLAN inter. conf. on Principles and practice of declarative programming. 2003.



Abstract
Abstract
Machines
[ICFP 10]

Abstract
Machines
(CEK/CESK) Functional correspondence between 

concrete abstract machines and evaluators

Definitional
Interpreters

A recipe to derive small-step abstract 
interpreters from concrete interpreters.

14



Abstract
Abstract
Machines
[ICFP 10]

Abstract
Machines
(CEK/CESK) Functional correspondence between 

concrete abstract machines and evaluators

Definitional
Interpreters

A recipe to derive small-step abstract 
interpreters from concrete interpreters.

15

- finite state space
State# := ⟨Expr, Env#, Store#, Kont#⟩

- nondeterministic state transition
State# → Set[State#]



Abstract
Abstract
Machines
[ICFP 10]

Abstract
Machines
(CEK/CESK)

Abstract
Definitional 
Interpreters

[ICFP 17]

Functional correspondence between 
concrete abstract machines and evaluators

Definitional
Interpreters

A big-step, compositional,
monadic abstract interpreter.

16



Abstract
Abstract
Machines
[ICFP 10]

Abstract
Machines
(CEK/CESK)

Abstract
Definitional 
Interpreters

[ICFP 17]

Functional correspondence between 
concrete abstract machines and evaluators

Definitional
Interpreters

17



Abstract
Abstract
Machines
[ICFP 10]

Abstract
Machines
(CEK/CESK)

Abstract
Definitional 
Interpreters

[ICFP 17]

Functional correspondence between 
concrete abstract machines and evaluators

Definitional
Interpreters

18

Is there a functional correspondence 

between the abstract semantic artifacts?

?



Abstract
Abstract
Machines
[ICFP 10]

Abstract
Machines
(CEK/CESK)

Abstract
Definitional 
Interpreters

[ICFP 17]

Functional correspondence between 
concrete abstract machines and evaluators

Linearization
↓

Lightweight
Fusion

↓
Disentanglement

Refunc.
Back to

Direct-Style

Definitional
Interpreters

19

Yes!



Abstract
Abstract
Machines
[ICFP 10]

Abstract
Machines
(CEK/CESK)

Abstract
Definitional 
Interpreters

[ICFP 17]

Functional correspondence between 
concrete abstract machines and evaluators

Linearization
↓

Lightweight
Fusion

↓
Disentanglement

Refunc.
Back to

Direct-Style

Definitional
Interpreters

20

Yes!
- A constructive answer from pushdown AAM to ADI.

- Refunctionalized AAM with two continuations.

- Back to direct-style using delimited control 

operators.



Abstract
Abstract
Machines
[ICFP 10]

Abstract
Machines
(CEK/CESK)

Abstract
Definitional 
Interpreters

[ICFP 17]

Functional correspondence between 
concrete abstract machines and evaluators

Linearization
↓

Lightweight
Fusion

↓
Disentanglement

Refunc.
Back to

Direct-Style

Definitional
Interpreters

21



Linearization

22

Concrete abstract machine (CEK) is 
deterministic...



Linearization

23

Abstract abstract machine (AAM) is 
nondeterministic...



Linearization

24

(f v)

f may represent multiple target closures.



Linearization

25

(f v)

AAM adds the successors into a worklist.

worklist

...



Linearization

26

(f v)

A driver function keeps popping up a 
state from the worklist, and asking 
“Have I see you before?”, if not, 
“Do you have successors?”.

worklist

...

driver



Linearization

27

(f v)

A driver function keeps popping up a 
state from the worklist, and asking 
“Have I see you before?”, if not, 
“Do you have successors?”.

worklist

...

driver



Linearization

28

(f v)

A driver function keeps popping up a 
state from the worklist, and asking 
“Have I see you before?”, if not, 
“Do you have successors?”.

worklist

...

driver



Linearization

29

(f v)

Linearization makes the state transition 
to be deterministic by using another 
meta-continuation to express the choices.



Linearization

30

(f v)

Pick a state as the successor state.



Linearization

31

(f v)

Save the information at the fork point 
into that meta-continuation of the 
state, so that we can come back later.



Linearization

32

(f v)

Continue working on this state, until 
we reach its end.



Linearization

33

(f v)

Remember we still have states left...



Linearization

34

(f v)

Resume to the most recent fork point, 
and construct the next state.



Linearization

35

(f v)

A driver function just keeps asking 
“Do you have a successor?”...
Until no more states and no more saved 
choices in all meta-continuations.



Linearization

36

(f v)

- Now the abstract state has two continuations, both are represented by 
first-order types.

- Change the state definition 
from ⟨Expr, Env#, Store#, Kont⟩
to   ⟨Expr, Env#, Store#, Kont, MKont⟩



Abstract
Abstract
Machines
[ICFP 10]

Abstract
Machines
(CEK/CESK)

Abstract
Definitional 
Interpreters

[ICFP 17]

Functional correspondence between 
concrete abstract machines and evaluators

Linearization
↓

Lightweight
Fusion

↓
Disentanglement

Refunc.
Back to

Direct-Style

Definitional
Interpreters

37



Fusion and Disentanglement

38

- Lightweight fusion and disentanglement further tweak the form 

of AAM and expose continuations explicitly.



Fusion and Disentanglement

39

- Lightweight fusion and disentanglement further tweak the form 

of AAM and expose continuations explicitly.

- Fusion: merges the step function and the drive function into 
one, so the abstract interpreter is a single, recursive 

function.



Fusion and Disentanglement

40

- Lightweight fusion and disentanglement further tweak the form 

of AAM and expose continuations explicitly.

- Fusion: merges the step function and the drive function into 
one, so the abstract interpreter is a single, recursive 

function.

- Disentanglement: lifts the code that dispatches those two data 

types representing continuations to be top-level functions.

aeval     : State × Cache ⇒ Cache

continue  : State × Cache ⇒ Cache

mcontinue : State × Cache ⇒ Cache



Abstract
Abstract
Machines
[ICFP 10]

Abstract
Machines
(CEK/CESK)

Abstract
Definitional 
Interpreters

[ICFP 17]

Functional correspondence between 
concrete abstract machines and evaluators

Linearization
↓

Lightweight
Fusion

↓
Disentanglement

Refunc.
Back to

Direct-Style

Definitional
Interpreters

41

We have obtained the defunctionalized form of AAM.



Abstract
Abstract
Machines
[ICFP 10]

Abstract
Machines
(CEK/CESK)

Abstract
Definitional 
Interpreters

[ICFP 17]

Functional correspondence between 
concrete abstract machines and evaluators

Linearization
↓

Lightweight
Fusion

↓
Disentanglement

Refunc.
Back to

Direct-Style

Definitional
Interpreters

42

We have obtained the defunctionalized form of AAM.

Continuations and their dispatching functions are 
exposed explicitly.



Refunctionalization

- Transforms the two first-order data type representing 

continuations and their dispatching functions to two 

higher-order functions.

- After which, the abstract interpreter is written in 

two-continuation-passing style.

43



Refunctionalization

- Types of the first-order dispatching functions:

State : ⟨Expr, Env#, Store#, Kont, MKont⟩

continue  : State × Cache ⇒ Cache

mcontinue : State × Cache ⇒ Cache

- Types of the higher-order continuations:

State : ⟨Expr, Env#, Store#, Kont, MKont⟩

type Cont  = (State, Cache, MCont) ⇒ Cache

type MCont  = (State, Cache) ⇒ Cache

44



Refunctionalization

- Types of the first-order dispatching functions:

State : ⟨Expr, Env#, Store#, Kont, MKont⟩

continue  : State × Cache ⇒ Cache

mcontinue : State × Cache ⇒ Cache

- Types of the higher-order continuations:

State : ⟨Expr, Env#, Store#, Kont, MKont⟩

type Cont  = (State, Cache, MCont) ⇒ Cache

type MCont  = (State, Cache) ⇒ Cache

45



Refunctionalization

def aeval(state: State, seen: Cache, k: Cont, mk: MCont): Cache = {
  e match {
    case Let(x, App(f, ae), e) if isAtomic(f) && isAtomic(ae) ⇒
      val closures = atomicEval(f, ρ, σ).toList
      val Clos(Lam(v, body), c_ρ) = closures.head
      val α = alloc(v);                  val new_ρ = c_ρ + (v ↦ α)
      val argvs = atomicEval(ae, ρ, σ);  val new_σ = σ.join(α ↦ argvs)
      val new_k: Cont = ...   

  // A HO function takes result of App and then evaluates e     
      val new_mk: MCont = ... 
      // A HO function iterates over the target closures
      aeval(State(body, new_ρ, new_σ), new_seen, new_k, new_mk)
    case ae if isAtomic(ae) ⇒ k(state, new_seen, mk) 
  }
}

46



Refunctionalization

def aeval(state: State, seen: Cache, k: Cont, mk: MCont): Cache = {
  e match {
    case Let(x, App(f, ae), e) if isAtomic(f) && isAtomic(ae) ⇒
      val closures = atomicEval(f, ρ, σ).toList
      val Clos(Lam(v, body), c_ρ) = closures.head
      val α = alloc(v);                  val new_ρ = c_ρ + (v ↦ α)
      val argvs = atomicEval(ae, ρ, σ);  val new_σ = σ.join(α ↦ argvs)
      val new_k: Cont = ...   

  // A HO function takes result of App and then evaluates e     
      val new_mk: MCont = ... 
      // A HO function iterates over the target closures
      aeval(State(body, new_ρ, new_σ), new_seen, new_k, new_mk)
    case ae if isAtomic(ae) ⇒ k(state, new_seen, mk) 
  }
}

47



Abstract
Abstract
Machines
[ICFP 10]

Abstract
Machines
(CEK/CESK)

Abstract
Definitional 
Interpreters

[ICFP 17]

Functional correspondence between 
concrete abstract machines and evaluators

Linearization
↓

Lightweight
Fusion

↓
Disentanglement

Refunc.
Back to

Direct-Style

Definitional
Interpreters

48

We have obtained a refunctionalized AAM in CPS.



Back to Direct-Style

- From extended CPS to direct-style, three choices:

- Use explicit side-effects and assignments.

- Use monads [Darais et al. ICFP 17].

- Use delimited control operators (shift/reset).

49



Back to Direct-Style

- From extended CPS to direct-style, three choices:

- Use explicit side-effects and assignments.

- Use monads [Darais et al. ICFP 17].

- Use delimited control operators (shift/reset).
- shift to capture the continuation
- reset to set the boundary

50



Back to Direct-Style

- From extended CPS to direct-style, three choices:

- Use explicit side-effects and assignments.

- Use monads [Darais et al. ICFP 17].

- Use delimited control operators (shift/reset).
- shift to capture the continuation
- reset to set the boundary

- After the transformation, the abstract interpreter looks almost 

no difference to a concrete interpreter.

51



Back to Direct-Style

def aeval(state: State, seen: Cache): (State, Cache) @cps[Cache] = {
  ...
  e match {
    case Let(x, App(f, ae), e) if isAtomic(f) && isAtomic(ae) ⇒
      val closures = atomicEval(f, ρ, σ).toList
      val (Clos(Lam(v, body), c_ρ), c_seen) = choices(closures, new_seen)
      val v_α = alloc(v);  val new_ρ = c_ρ + (v ↦ v_α)
      val new_σ = σ.join(v_α ↦ atomicEval(ae, ρ, σ))
      val (bd_state, bd_seen) = aeval(State(body, new_ρ, new_σ), c_seen)
      val State(bd_ae, bd_ρ, bd_σ) = bd_state
      val x_α = alloc(x);  val new_ρ_* = ρ + (x ↦ x_α)
      val new_σ_* = bd_σ.join(x_α ↦ atomicEval(bd_ae, bd_ρ, bd_σ))
      aeval(State(e, new_ρ_*, new_σ_*), bd_seen)
    case ae if isAtomic(ae) ⇒ (state, new_seen)
  }
}

52



Back to Direct-Style

def aeval(state: State, seen: Cache): (State, Cache) @cps[Cache] = {
  ...
  e match {
    case Let(x, App(f, ae), e) if isAtomic(f) && isAtomic(ae) ⇒
      val closures = atomicEval(f, ρ, σ).toList
      val (Clos(Lam(v, body), c_ρ), c_seen) = choices(closures, new_seen)
      val v_α = alloc(v);  val new_ρ = c_ρ + (v ↦ v_α)
      val new_σ = σ.join(v_α ↦ atomicEval(ae, ρ, σ))
      val (bd_state, bd_seen) = aeval(State(body, new_ρ, new_σ), c_seen)
      val State(bd_ae, bd_ρ, bd_σ) = bd_state
      val x_α = alloc(x);  val new_ρ_* = ρ + (x ↦ x_α)
      val new_σ_* = bd_σ.join(x_α ↦ atomicEval(bd_ae, bd_ρ, bd_σ))
      aeval(State(e, new_ρ_*, new_σ_*), bd_seen)
    case ae if isAtomic(ae) ⇒ (state, new_seen)
  }
}

53

Get a closure of f,
nondeterministically.



Back to Direct-Style

def aeval(state: State, seen: Cache): (State, Cache) @cps[Cache] = {
  ...
  e match {
    case Let(x, App(f, ae), e) if isAtomic(f) && isAtomic(ae) ⇒
      val closures = atomicEval(f, ρ, σ).toList
      val (Clos(Lam(v, body), c_ρ), c_seen) = choices(closures, new_seen)
      val v_α = alloc(v);  val new_ρ = c_ρ + (v ↦ v_α)
      val new_σ = σ.join(v_α ↦ atomicEval(ae, ρ, σ))
      val (bd_state, bd_seen) = aeval(State(body, new_ρ, new_σ), c_seen)
      val State(bd_ae, bd_ρ, bd_σ) = bd_state
      val x_α = alloc(x);  val new_ρ_* = ρ + (x ↦ x_α)
      val new_σ_* = bd_σ.join(x_α ↦ atomicEval(bd_ae, bd_ρ, bd_σ))
      aeval(State(e, new_ρ_*, new_σ_*), bd_seen)
    case ae if isAtomic(ae) ⇒ (state, new_seen)
  }
}

54

choices uses shift to 
capture the continuation, 
implicitly.

Get a closure of f,
nondeterministically.



What is still missing?

- The abstract interpreter may not terminate!

Solution: Co-inductive caching [Darais et al. ICFP 17] that 
ensures reaching fixed-points.

- The aeval still returns a set of states.
Solution: Only returns a set of final values instead of 
collected states.

55



Abstract
Abstract
Machines
[ICFP 10]

Abstract
Machines
(CEK/CESK)

Abstract
Definitional 
Interpreters

[ICFP 17]

Functional correspondence between 
concrete abstract machines and evaluators

Linearization
↓

Lightweight
Fusion

↓
Disentanglement

Refunc.
Back to

Direct-Style

Definitional
Interpreters

56



Abstract
Abstract
Machines
[ICFP 10]

Abstract
Machines
(CEK/CESK)

Abstract
Definitional 
Interpreters

[ICFP 17]

Functional correspondence between 
concrete abstract machines and evaluators

Linearization
↓

Lightweight
Fusion

↓
Disentanglement

Refunc.
Back to

Direct-Style

Definitional
Interpreters

- Linearization transforms nondeterministic choices to 
another continuation.

57



Abstract
Abstract
Machines
[ICFP 10]

Abstract
Machines
(CEK/CESK)

Abstract
Definitional 
Interpreters

[ICFP 17]

Functional correspondence between 
concrete abstract machines and evaluators

Linearization
↓

Lightweight
Fusion

↓
Disentanglement

Refunc.
Back to

Direct-Style

Definitional
Interpreters

- Linearization transforms nondeterministic choices to 
another continuation.

- Existing techniques for concrete functional 
correspondence, but we use it for two continuations.

58



Abstract
Abstract
Machines
[ICFP 10]

Abstract
Machines
(CEK/CESK)

Abstract
Definitional 
Interpreters

[ICFP 17]

Functional correspondence between 
concrete abstract machines and evaluators

Linearization
↓

Lightweight
Fusion

↓
Disentanglement

Refunc.
Back to

Direct-Style

Definitional
Interpreters

- Linearization transforms nondeterministic choices to 
another continuation.

- Existing techniques for concrete functional 
correspondence, but we use it for two continuations.

- shift/reset to transform CPS back to direct-style.

59



Abstract
Abstract
Machines
[ICFP 10]

Abstract
Machines
(CEK/CESK)

Abstract
Definitional 
Interpreters

[ICFP 17]

Functional correspondence between 
concrete abstract machines and evaluators

Linearization
↕

Lightweight
Fusion

↕
Disentanglement

Refunc.
Back to

Direct-Style

Definitional
Interpreters

60

Functional correspondence between 
abstract semantic artifacts by refunctionalization.



Abstract
Abstract
Machines
[ICFP 10]

Abstract
Machines
(CEK/CESK)

Abstract
Definitional 
Interpreters

[ICFP 17]

Functional correspondence between 
concrete abstract machines and evaluators

Linearization
↕

Lightweight
Fusion

↕
Disentanglement

Refunc.
Back to

Direct-Style

Definitional
Interpreters

61

Functional correspondence between 
abstract semantic artifacts by refunctionalization.

Thanks!

Questions?


