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defunctionalization: transform higher-order functions to 
first-order data types with their dispatching functions 

(e.g., closure conversion).

refunctionalization: the left-inverse of defunctionalization
[Danvy et al.].

6
John Reynolds, Definitional Interpreters for Higher-Order Programming Languages, 
in Proceedings of the ACM Annual Conference, Volume 2, pages 717—740, August 1972.



Functional Correspondence

- Refunctionalization / defunctionalization can be used to show 

the functional correspondence between small-step abstract 

machines and big-step evaluators.

- Idea: apply refunctionalization / defunctionalization to 

control flow.

7
Ager, Mads Sig, et al. A functional correspondence between evaluators and abstract machines, 
Proc. of the 5th ACM SIGPLAN inter. conf. on Principles and practice of declarative programming. 2003.



Functional Correspondence

- Example: refunctionalizing a CEK machine yields an interpreter 

in continuation-passing style.
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CEK Machine
State := ⟨Expr, Env, Kont⟩
Kont  := Halt 

       | Ar⟨Expr, Env, Kont⟩ 
       | Fn⟨Lam, Env, Kont⟩
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refunc.

defunc.

CPS Interpreter

eval : Expr × Env × (Val → Val) 
       → Value

continuation
(higher-order functions)

evaluation context
(first-order data types)



Functional Correspondence

- Example: refunctionalizing a CEK machine yields an interpreter 

in continuation-passing style.

- refunc. evaluation contexts = higher-order continuations
- defunc. continuations = first-order evaluation contexts

CEK Machine
State := ⟨Expr, Env, Kont⟩
Kont  := Halt 

       | Ar⟨Expr, Env, Kont⟩ 
       | Fn⟨Lam, Env, Kont⟩

11
Ager, Mads Sig, et al. A functional correspondence between evaluators and abstract machines, 
Proc. of the 5th ACM SIGPLAN inter. conf. on Principles and practice of declarative programming. 2003.

refunc.

defunc.

CPS Interpreter

eval : Expr × Env × (Val → Val) 
       → Value



- Example: refunctionalizing a CEK machine yields an interpreter 

in continuation-passing style.

- Transform CPS interpreter back to direct-style, i.e., a 

definitional evaluator.

Functional Correspondence

Abstract
Machines
(CEK/CESK)

Definitional
Interpreters

CPS
Interpreters

refunc.

defunc.

to direct-style

CPS trans.
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Functional Correspondence

- Functional correspondence: independently designed concrete 

semantic artifacts can be inter-derived in a systematic way.

- Refunctionalization and defunctionalization plays an important 

role in the inter-derivation.

Ager, Mads Sig, et al. A functional correspondence between evaluators and abstract machines, 
Proc. of the 5th ACM SIGPLAN inter. conf. on Principles and practice of declarative programming. 2003.
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A recipe to derive small-step abstract 
interpreters from concrete interpreters.
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- finite state space
State# := ⟨Expr, Env#, Store#, Kont#⟩

- nondeterministic state transition
State# → Set[State#]
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Functional correspondence between 
concrete abstract machines and evaluators

Definitional
Interpreters

A big-step, compositional,
monadic abstract interpreter.
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Is there a functional correspondence 

between the abstract semantic artifacts?

?
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Yes!
- A constructive answer from pushdown AAM to ADI.

- Refunctionalized AAM with two continuations.

- Back to direct-style using delimited control 

operators.
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Linearization

22

Concrete abstract machine (CEK) is 
deterministic...



Linearization

23

Abstract abstract machine (AAM) is 
nondeterministic...



Linearization
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(f v)

f may represent multiple target closures.



Linearization
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(f v)

AAM adds the successors into a worklist.

worklist

...



Linearization
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(f v)

A driver function keeps popping up a 
state from the worklist, and asking 
“Have I see you before?”, if not, 
“Do you have successors?”.

worklist

...

driver
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Linearization
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(f v)

Linearization makes the state transition 
to be deterministic by using another 
meta-continuation to express the choices.



Linearization
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(f v)

Pick a state as the successor state.



Linearization
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(f v)

Save the information at the fork point 
into that meta-continuation of the 
state, so that we can come back later.



Linearization
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(f v)

Continue working on this state, until 
we reach its end.



Linearization

33

(f v)

Remember we still have states left...



Linearization
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(f v)

Resume to the most recent fork point, 
and construct the next state.



Linearization
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(f v)

A driver function just keeps asking 
“Do you have a successor?”...
Until no more states and no more saved 
choices in all meta-continuations.



Linearization
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(f v)

- Now the abstract state has two continuations, both are represented by 
first-order types.

- Change the state definition 
from ⟨Expr, Env#, Store#, Kont⟩
to   ⟨Expr, Env#, Store#, Kont, MKont⟩
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Fusion and Disentanglement

38

- Lightweight fusion and disentanglement further tweak the form 

of AAM and expose continuations explicitly.



Fusion and Disentanglement
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- Lightweight fusion and disentanglement further tweak the form 

of AAM and expose continuations explicitly.

- Fusion: merges the step function and the drive function into 
one, so the abstract interpreter is a single, recursive 

function.



Fusion and Disentanglement
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- Lightweight fusion and disentanglement further tweak the form 

of AAM and expose continuations explicitly.

- Fusion: merges the step function and the drive function into 
one, so the abstract interpreter is a single, recursive 

function.

- Disentanglement: lifts the code that dispatches those two data 

types representing continuations to be top-level functions.

aeval     : State × Cache ⇒ Cache

continue  : State × Cache ⇒ Cache

mcontinue : State × Cache ⇒ Cache
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We have obtained the defunctionalized form of AAM.
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We have obtained the defunctionalized form of AAM.

Continuations and their dispatching functions are 
exposed explicitly.



Refunctionalization

- Transforms the two first-order data type representing 

continuations and their dispatching functions to two 

higher-order functions.

- After which, the abstract interpreter is written in 

two-continuation-passing style.
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Refunctionalization

- Types of the first-order dispatching functions:

State : ⟨Expr, Env#, Store#, Kont, MKont⟩

continue  : State × Cache ⇒ Cache

mcontinue : State × Cache ⇒ Cache

- Types of the higher-order continuations:

State : ⟨Expr, Env#, Store#, Kont, MKont⟩

type Cont  = (State, Cache, MCont) ⇒ Cache

type MCont  = (State, Cache) ⇒ Cache
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Refunctionalization

def aeval(state: State, seen: Cache, k: Cont, mk: MCont): Cache = {
  e match {
    case Let(x, App(f, ae), e) if isAtomic(f) && isAtomic(ae) ⇒
      val closures = atomicEval(f, ρ, σ).toList
      val Clos(Lam(v, body), c_ρ) = closures.head
      val α = alloc(v);                  val new_ρ = c_ρ + (v ↦ α)
      val argvs = atomicEval(ae, ρ, σ);  val new_σ = σ.join(α ↦ argvs)
      val new_k: Cont = ...   

  // A HO function takes result of App and then evaluates e     
      val new_mk: MCont = ... 
      // A HO function iterates over the target closures
      aeval(State(body, new_ρ, new_σ), new_seen, new_k, new_mk)
    case ae if isAtomic(ae) ⇒ k(state, new_seen, mk) 
  }
}
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We have obtained a refunctionalized AAM in CPS.



Back to Direct-Style

- From extended CPS to direct-style, three choices:

- Use explicit side-effects and assignments.

- Use monads [Darais et al. ICFP 17].

- Use delimited control operators (shift/reset).
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Back to Direct-Style

- From extended CPS to direct-style, three choices:

- Use explicit side-effects and assignments.

- Use monads [Darais et al. ICFP 17].

- Use delimited control operators (shift/reset).
- shift to capture the continuation
- reset to set the boundary

- After the transformation, the abstract interpreter looks almost 

no difference to a concrete interpreter.

51



Back to Direct-Style

def aeval(state: State, seen: Cache): (State, Cache) @cps[Cache] = {
  ...
  e match {
    case Let(x, App(f, ae), e) if isAtomic(f) && isAtomic(ae) ⇒
      val closures = atomicEval(f, ρ, σ).toList
      val (Clos(Lam(v, body), c_ρ), c_seen) = choices(closures, new_seen)
      val v_α = alloc(v);  val new_ρ = c_ρ + (v ↦ v_α)
      val new_σ = σ.join(v_α ↦ atomicEval(ae, ρ, σ))
      val (bd_state, bd_seen) = aeval(State(body, new_ρ, new_σ), c_seen)
      val State(bd_ae, bd_ρ, bd_σ) = bd_state
      val x_α = alloc(x);  val new_ρ_* = ρ + (x ↦ x_α)
      val new_σ_* = bd_σ.join(x_α ↦ atomicEval(bd_ae, bd_ρ, bd_σ))
      aeval(State(e, new_ρ_*, new_σ_*), bd_seen)
    case ae if isAtomic(ae) ⇒ (state, new_seen)
  }
}
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Get a closure of f,
nondeterministically.



Back to Direct-Style

def aeval(state: State, seen: Cache): (State, Cache) @cps[Cache] = {
  ...
  e match {
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}
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choices uses shift to 
capture the continuation, 
implicitly.

Get a closure of f,
nondeterministically.



What is still missing?

- The abstract interpreter may not terminate!

Solution: Co-inductive caching [Darais et al. ICFP 17] that 
ensures reaching fixed-points.

- The aeval still returns a set of states.
Solution: Only returns a set of final values instead of 
collected states.
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correspondence, but we use it for two continuations.
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- Linearization transforms nondeterministic choices to 
another continuation.

- Existing techniques for concrete functional 
correspondence, but we use it for two continuations.

- shift/reset to transform CPS back to direct-style.
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Functional correspondence between 
abstract semantic artifacts by refunctionalization.
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Functional correspondence between 
abstract semantic artifacts by refunctionalization.

Thanks!

Questions?


