
Refunctionalization of
Abstract Abstract Machines

Bridging the Gap between Abstract Abstract Machines and
Abstract Definitional Interpreters (Functional Pearl)

Guannan Wei, James Decker, and Tiark Rompf Purdue University

Abstract
Abstract
Machines
[ICFP 10]

Abstract
Machines
(CEK/CESK)

Abstract
Definitional
Interpreters
[ICFP 17]

Definitional
Interpreters

Defunctionalization transforms higher-order functions to first-order data type representations and their dispatching
functions (Reynolds, 1972). Closure conversion is one example of defunctionalization. Refunctionalization is its
left-inverse, transforming first-order data types back to higher-order functions. Refunctionalization and
defunctionalization can be used to construct a functional correspondence between abstract machines and evaluators (Ager
et al., 2003). This correspondence shows that abstract machines and evaluators can be inter-derived in a systematic way
after identifying their first-order/higher-order representations of contexts/continuations.

Is there a functional correspondence between the abstract semantic artifacts (i.e., abstract interpreters)?

?

Known as functional correspondence between concrete abstract machines and evaluators.

CPS
Interpreters

refunctionalization

defunctionalization

back to direct-style

CPS transformation

0. Pushdown AAM
Abstracting Abstract Machine (AAM) is a methodology to derive sound abstract
interpreters from concrete interpreters. For example, we can construct an abstract
interpreter for a call-by-value lambda calculus by systematically applying a
combination of abstractions (e.g., finite address space, store-allocated
continuations, etc.) to a concrete CESK machine.

In this pearl, we start from a variant of AAM, the pushdown AAM, which uses an
unbounded stack, and show the transformation to ADI.

Pushdown AAM
- Environment maps variables to addresses:

type Env = Map[String, Addr]
- Store maps (finite) addresses to sets of abstract values:

type Store = Map[Addr, Set[Clos]]
- Continuation keeps unbounded (same as a concrete CESK machine):

case class Frame(x: String, e: Expr, ρ: Env)
- State has four components:

case class State(e: Expr, ρ: Env, σ: Store, κ: List[Frame])
- State transition function and collecting function:

step : State ⇒ Set[State]
drive : List[State] × Set[State] ⇒ Set[State]

Why Pushdown AAM?
- Naturally corresponds to abstract definitional interpreters (Darais et al., 2017),

which inherents the stack structure from the defining language.

2. Lightweight Fusion
Lightweight fusion combines the step and drive functions.

 Before: step : State ⇒ Option[State]
 drive : State × Set[State] ⇒ Set[State]
 After: drive_step : State × Set[State] ⇒ Set[State]

The fused function drive_step does both state-transition and state-collection, which
looks like a “big-step” abstract interpreter, but still uses a first-order
representation of machine states.

4. Refunctionalization
- Transforms first-order data types and their dispatching functions to higher-order

functions, i.e., to CPS form.
-

- Types of the higher-order continuations and refunctionalized aeval function:
type Cont = (State, Set[State], MCont) ⇒ Set[State]
type MCont = (State, Set[State]) ⇒ Set[State]
aeval : State × Set[State] × Cont × MCont ⇒ Set[State]

- After refunctionalization, an abstract interpreter written with two HO continuations:
def aeval(state: State, seen: Set[State], k: Cont, mk: MCont): Set[State] = {

 e match {
 case Let(x, App(f, ae), e) if isAtomic(f) && isAtomic(ae) ⇒
 val closures = atomicEval(f, ρ, σ).toList
 val Clos(Lam(v, body), c_ρ) = closures.head
 val α = alloc(v); val new_ρ = c_ρ + (v ↦ α)
 val argvs = atomicEval(ae, ρ, σ); val new_σ = σ.join(α ↦ argvs)
 val new_k: Cont = ... // A HO function takes result of body and then evaluates e
 val new_mk: MCont = ... // A HO function iterates over the target closures
 aeval(State(body, new_ρ, new_σ), new_seen, new_k, new_mk)
 case ae if isAtomic(ae) ⇒ k(state, new_seen, mk) } }

Abstract
Abstract
Machines
[ICFP 10]

Abstract
Definitional
Interpreters
[ICFP 17]

Linearization Lightweight
Fusion Disentanglement Refunctionalization

Back to
Direct-Style

3. Disentanglement
- Identify first-order data types that represent contexts.

case class State(e: Expr, ρ: Env, σ: Store, κ: List[Frame], mκ: List[NDCont])

- Identify code blocks that handle different cases of these data types.
 def drive_step(nds: State, seen: Set[State]): Set[State] = { ...
 nds match {
 case State(Let(x, App(f, ae), e), ρ, σ, κ, mκ) if isAtomic(f) && isAtomic(ae) ⇒ ...
 case State(ae, ρ, σ, κ, mκ) if isAtomic(ae) ⇒
 κ match {
 case Nil ⇒
 mκ match {
 case Nil ⇒ new_seen
 case NDCont(Nil,_,_,_)::mκ ⇒ ...
 case NDCont(cls, argv, σ, κ)::mκ ⇒ ...
 }
 case Frame(x, e, f_ρ)::κ ⇒ ... } } }

- Lift these code blocks to top-level individual functions.
continue : State × Set[State] ⇒ Set[State]
mcontinue : State × Set[State] ⇒ Set[State]
drive_step calls continue when an atomic expression needs to be returned; continue
calls mcontinue when the object program’s stack is empty; mcontinue halts when the
nondeterministic stack is empty.

dispatching mκ

dispatching κ

Take-Home Message
- A constructive functional correspondence fills the gap between AAM and ADI.
- Linearization twists the worklist to a meta-continuation, then apply existing techniques (e.g., l.w. fusion,

disentanglement, refunc., and delimited cont.) to the two-continuation-passing style abstract interpreter.

From extended CPS to direct-style, three choices:
- Use explicit side-effects and assignments.
- Use monads (Darais et al., 2017)
- Use delimited control operators (shift/reset).

def aeval(state: State, seen: Set[State]): (State, Set[State]) @cps[Set[State]] = { ...
 e match {
 case Let(x, App(f, ae), e) if isAtomic(f) && isAtomic(ae) ⇒
 val closures = atomicEval(f, ρ, σ).toList
 val (Clos(Lam(v, body), c_ρ), c_seen) = choices(closures, new_seen)
 val v_α = alloc(v); val new_ρ = c_ρ + (v ↦ v_α)
 val new_σ = σ.join(v_α ↦ atomicEval(ae, ρ, σ))
 val (bd_state, bd_seen) = aeval(State(body, new_ρ, new_σ), c_seen)
 val State(bd_ae, bd_ρ, bd_σ) = bd_state
 val x_α = alloc(x); val new_ρ_* = ρ + (x ↦ x_α)
 val new_σ_* = bd_σ.join(x_α ↦ atomicEval(bd_ae, bd_ρ, bd_σ))
 aeval(State(e, new_ρ_*, new_σ_*), bd_seen)
 case ae if isAtomic(ae) ⇒ (state, new_seen)
 }
}
- choices returns a closure nondeterministically, and captures the reset computation

by internally using the shift operator.

What else?
- Co-inductive caching (Darias et al., 2017) to ensure termination.
- Polyvariant analysis by adding timestamp to addresses.
- Return a set of values instead of states, lift the fields of State to aeval.

5. Back to Direct-Style

delimited
continuation
captured into
choices.

1. Linearization
The linearization transforms the nondeterminism into another meta-continuation
component of the state, and makes the state transition deterministic.

The classical AAM has a
nondeterministic state
transition -- one state may
have multiple successors;
these will be added to an
additional worklist. A
drive function controls the
exploration of states by
repeatedly popping up a
state and getting its
successors.

After linearization, the
state transition becomes
deterministic. At a fork
point, we pick up one
state as the successor,
and save enough
information at this fork
point so that we can come
back later and construct
the remaining states.

When we reach an end of
one computation path,
there may still be
remaining states at some
fork point. By resuming
to the most recent fork
point and constructing a
new successor, the
reachable states will be
explored like traversing
a tree in depth-first
order.

Before: case class State(e: Expr, ρ: Env, σ: Store, κ: List[Frame])
After: case class State(e: Expr, ρ: Env, σ: Store, κ: List[Frame], mκ: List[NDCont])
 case class NDCont(cls: List[Clos], argvs: Set[Clos], σ: Store, κ: List[Frame])

